Titov S.V., Coffey W.T., Zarifakis M., Kalmykov Yu.P., Al Bayyari M.H., Dowling W. J. Generalization to anomalous diffusion of Budó’s treatment of polar molecules containing interacting rotating groups. The Journal of Chemical Physics , 2020 , 153. 044128.
Полный текст не доступен из этого репозитория. (Заказать копию)Аннотация
A fractional Smoluchowski equation for the orientational distribution of dipoles incorporating interactions with continuous time random walk Ansatz for the collision term is obtained. This equation is written via the non-inertial Langevin equations for the evolution of the Eularian angles and their associated Smoluchowski equation. These equations govern the normal rotational diffusion of an assembly of non-interacting dipolar molecules with similar internal interacting polar groups hindering their rotation owing to their mutual potential energy. The resulting fractional Smoluchowski equation is then solved in the frequency domain using scalar continued fractions yielding the linear dielectric response as a function of the fractional parameter for extensive ranges of the interaction parameter and friction ratios. The complex susceptibility comprises a multimode Cole-Cole like low frequency band with width dependent on the fractional parameter and is analogous to the discrete set of Debye mechanisms of the normal diffusion. The results in general comprise an extension of Budó’s treatment (A. Budó, J. Chem. Phys., 17, 686 (1949)) of the dynamics of complex molecules with internal hindered rotation to anomalous diffusion.
Тип объекта: | Статья |
---|---|
Авторы на русском. ОБЯЗАТЕЛЬНО ДЛЯ АНГЛОЯЗЫЧНЫХ ПУБЛИКАЦИЙ!: | Титов С.В., Коффи В.Т., Зарифакис М., Калмыков Ю.П., Аль Байяри М., Доулинг В. |
Подразделения (можно выбрать несколько, удерживая Ctrl): | 276 лаб. элементов систем лазерной связи |
URI: | http://cplire.ru:8080/id/eprint/9822 |
Изменить объект |