Topaj – Pikovsky Involution in Hamiltonian Lattice of Locally Coupled Oscillators

Kruglov V.P., Kuznetsov S.P. Topaj – Pikovsky Involution in Hamiltonian Lattice of Locally Coupled Oscillators. Regular and Chaotic Dynamics , 2019 , 24 (6). С. 725-738. ISSN 1560-3547

[img]
Предварительный просмотр
Текст
2019RCD6.pdf

Загрузить (3MB) | Предварительный просмотр
Официальный URL: https://dx.doi.org/10.1134/S1560354719060108

Аннотация

We discuss the Hamiltonian model of an oscillator lattice with local coupling. The Hamiltonian model describes localized spatial modes of nonlinear the Schrödinger equation with periodic tilted potential. The Hamiltonian system manifests reversibility of the Topaj – Pikovsky phase oscillator lattice. Furthermore, the Hamiltonian system has invariant manifolds with asymptotic dynamics exactly equivalent to the Topaj – Pikovsky model. We examine the stability of trajectories belonging to invariant manifolds by means of numerical evaluation of Lyapunov exponents. We show that there is no contradiction between asymptotic dynamics on invariant manifolds and conservation of phase volume of the Hamiltonian system. We demonstrate the complexity of dynamics with results of numerical simulations.

Тип объекта: Статья
Авторы на русском. ОБЯЗАТЕЛЬНО ДЛЯ АНГЛОЯЗЫЧНЫХ ПУБЛИКАЦИЙ!: Круглов В.П., Кузнецов С.П.
Подразделения (можно выбрать несколько, удерживая Ctrl): СФ-7 лаб. теоретической нелинейной динамики
URI: http://cplire.ru:8080/id/eprint/7607
Только для зарегистрированных пользователей
Изменить объект Изменить объект