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Abstract—An original equation for nonequilibrium spin polarization in magnetic junctions based on dynamic
equations for magnetic moment was obtained. Spatial nonuniformity of the distribution of carriers is taken
into account in the equations, and the magnetic moment is averaged over the ensemble of nonequilibrium
spin-injected electrons. The solution to the dynamic equations for the magnetic moment is used to estimate
the probability of spin-flip electron transitions upon spin injection, and the solution to the equation for the
nonequilibrium spin polarization in magnetic junctions is used to calculate frequencies of photon emission
or absorption at energies corresponding to the energy of effective exchange splitting of spin subbands.
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INTRODUCTION
Magnetic heterostructures with spin-polarized

current f low are employed in terahertz spintronics,
3D nanomagnetic devices, sensors, and storage
devices [1–16]. Spin polarization of the current that
flows in a heterostructure may lead to significant non-
equilibrium accumulation of spins in a finite volume
of a ferromagnetic material. The spin relaxation of
nonequilibrium electrons may occur via interaction
with ferromagnetic lattice with excitation of oscilla-
tions of magnetization or magnetization switching
[17, 18]. Note less data on the interaction of spins of
conduction electrons and magnetic lattice of a ferro-
magnetic material under resonance conditions for
relaxation processes (including photoemission) caused
by spin flip of conduction (s) electrons [19–24]. Spin-
relaxation transitions of conduction electrons between
spin subbands of a ferromagnetic material are indi-
rectly stimulated via the sd-exchange interaction with
electromagnetic wave. Such spin-flip electron transi-
tions can be accompanied by emission or absorption of
photons [25] with the frequency determined by the
energy of effective exchange splitting of the spin sub-
bands. For several transitions, the splitting energy of the
spin subbands corresponds to the photon energies of the
terahertz frequency range [26–32]. In this case, the het-
erostructures can be employed in technical applications
as the basic units of terahertz radiation sources includ-
ing devices working at room temperature.

Conduction electrons may interact with external
electromagnetic radiation via the sd-exchange with
vector potential  of external field included in the
energy of the exchange sd-interaction [24]. Emission

via such a relativistic correction to the momentum of
conduction electrons (s-electrons) modulates the
sd-interaction and may cause radiative transitions of
s-electrons with spin f lip. Such an interaction channel
is more efficient than conventional multipole channels
by several orders of magnitude [33]. Its high efficiency
has been demonstrated in [24] using estimations of
probabilities of spin-flip electronic transitions. Note
that the effect of the dynamics of nonequilibrium pop-
ulation of electron subbands and the effect of thermo-
stat of electron system on the probability of energy
transitions of electrons with spin f lip have note been
taken into account. For a more correct analysis of the
photon emission, a model of the spin-flip transitions
based on the dynamic equations for magnetic moment
has been proposed in [31, 32]. Such equations deter-
mine the time dependence of the averaged magnetic
moment of nonequilibrium injected electrons and the
spatial nonuniformity of the distribution of carriers. In
this work, we use the dynamic equations for magnetic
moment of [31, 32] to derive an equation for nonequi-
librium spin polarization in magnetic junctions. The
solution to such an equation makes it possible to cal-
culate the frequencies of photon emission and absorp-
tion for indirect energy transitions of electrons with
spin f lip.

1. MODEL OF MAGNETIC JUNCTION
We consider a scheme of a typical magnetic junc-

tion that is similar to the scheme of [29] (Fig. 1). Here,
the nonequilibrium spin injection in a ferromagnetic
material is achieved using effective spin injection in
the presence of the current f low.
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Fig. 1. Scheme of spin-injection magnetic junction: (I) first ferromagnetic material that serves as injector, (II) injection region of
the second ferromagnetic material, and (III) fragment of the second ferromagnetic material outside the injection region.
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In the derivation of the original equations, we take
into account the dependence of the nonequilibrium
spin polarization on the x, y, and z coordinates [29]
and assume that the spin polarization is changed from
the initial state due to the presence of an injection cur-
rent pulse. A current pulse f lows through the interface
of metal ferromagnetic materials I and II magnetiza-
tion vectors of which  and  are parallel to quan-
tization axes in materials I and II, and  is the angle
between vectors  and  (Fig. 1). The exchange
interaction of ferromagnetic materials I and II is elim-
inated owing to the presence of an ultrathin buffer
layer made of nonmagnetic insulator or metal. In the
presence of the current f low through the spin-injec-
tion junction from the first ferromagnetic material
(region I), uncompensated spins are injected to region II
of the second ferromagnetic material (below, working
region of the magnetic junction). Then, the injected car-
riers pass through region III that serves as a collector.

Figure 2 shows changes of the quasi-Fermi levels
for mean populations of the spin subbands in regions I
and II (and the energy relaxation transitions of elec-
trons with spin f lip in region II) [29]. For the terahertz
frequency range, we may assume relatively weak oscil-
lations of the magnetization of ferromagnetic lattices
(typical eigenfrequencies of such oscillations are 1010–
1011 Hz). Thus, the magnetic lattice is static in the first
approximation. Note also that the oscillations and
magnetic switching of the ferromagnetic lattice due to
transfer of torque from the s electrons are observed in
magnetic layers with thicknesses of about several
nanometers. We assume that the thickness of the layer
in which the spin state remains unchanged (working
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layer) is significantly greater than the above thickness.
Thus, the state with stationary direction of magnetiza-
tion of the ferromagnetic material becomes preferred
with respect to energy. In this case, the oscillation fre-
quencies of the spin subsystem of the s electrons are
significantly greater than the frequencies of the 3d
electrons that are localized on atoms of crystal lattice
and related to its magnetization. The above facts make
it possible to disregard the dynamics of magnetic lat-
tice at the terahertz frequencies.

Then, we assume that the conduction electrons
have isotropic parabolic energy spectrum with a cer-
tain effective mass. We also assume that such electrons
are affected by the exchange interaction with the d
electrons (sd exchange), external electromagnetic
field, and external equilibrium system of the thermo-
stat. The exchange interaction of the s electrons that
determine the conductivity of a ferromagnetic mate-
rial with the d electrons that are localized on the atoms
of the crystal lattice depends on the spin state of the s
and d electrons on the assumption that the spin state of
the d electrons is related to the magnetization of the
crystal lattice of the ferromagnetic material. Such
interaction is described using the sd exchange process
[34]. In the analysis of the mean populations of
injected electrons in the spin subbands, we may intro-
duce quasi-stationary Fermi levels in each subband as
a correction to the equilibrium position of the Fermi
level. In addition, we take into account the condition
for electroneutrality in such a way that the total num-
ber of electrons in the working region of the magnetic
junction remains unchanged. Thus, we obtain differ-
ent positions of the quasi-levels in the spin subbands,
which may lead to a negative spin temperature (that
 ELECTRONICS  Vol. 64  No. 12  2019
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Fig. 2. Schemes of electronic energy levels and quasi-Fermi levels (I) in the first ferromagnetic material, (II) for nonequilibrium
electrons in the second ferromagnetic material, and (III) for equilibrium electrons in the second ferromagnetic material outside
the injection region.
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has been predicted in [35]) upon current-induced spin
injection in the magnetic junction.

2. HAMILTONIAN 
OF INJECTED ELECTRONS

The Hamiltonian of a single injected electron with
allowance for the interaction with electromagnetic
wave for the Pauli equation can be represented as
[24, 31, 32]

(1)

Here  is the operator of kinetic energy of electron
that is equal to a product of /2m* and unity matrix
2 × 2,  is the operator of the sd exchange interac-
tion that is generally given by

(2)
where the vector matrix is written in the following way
using the unit vectors of coordinate axes:

  is the intrinsic effective sd-
exchange field,  is the Bohr magneton, and  is
the operator of the interaction with electromagnetic
wave with vector potential  that is given by [24]

(3)
where the sd-exchange field induced by the electro-
magnetic wave is represented as

(4)
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We use the first two terms of Hamiltonian (1) to obtain
the spinor solution with an up or down spin corre-
sponding to two parabolic spin subbands with energy
splitting by  The third term of Hamiltonian (1)
can be considered as perturbation that causes radia-
tive transitions between spin subbands with spin f lip
in the presence of electromagnetic wave with vector
potential 

For transition metals, atomic spin is predominantly
determined by the spin of d electrons. Therefore, we
use the formula for estimation of the exchange sd
interaction from [34] and introduce the s-exchange
tensor [31, 32]

(5)

where summation is performed with respect to identi-
cal indices. We use formula (3) to calculate sd-
exchange field  induced by electromagnetic wave
and employ formula (5) to show that vectors  and

 are collinear if the medium is isotropic. Owing to
the difference of diagonal terms of the sd-exchange
tensor (when reduced to the principal axes), fields 
and  are noncollinear and, hence, the medium is
anisotropic. Only in this case, the model under study
allows radiative transitions with spin f lip of electrons
in reduced states. This circumstance leads to notice-
able changes in the analysis of the spin-injection emis-
sion in comparison with the analysis of [26].

In accordance with formulas (2)–(4), for conve-
nience of the further analysis, we introduce vector 
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which has the dimension of energy using effective sd-
exchange field 

(6)

where  is the sd-exchange tensor
(note that selected directions of anisotropy may
emerge in thin single-crystalline films with cubic sym-
metry [34]). We also introduce vector  using sd-
exchange field  induced by electromagnetic wave:

(7)

Vector , which determines the sd-exchange
field with allowance for an additional contribution of
the external electromagnetic field is introduced as

(8)

Note that the coordinate component of field  is
supplemented with time component  the oscillation
frequency of which is determined by the external elec-
tromagnetic field. We assume that the frequency of the
external field is equal to the transition frequency of elec-
tron with spin flip between subbands  If
the frequency of external field is comparable with the
frequency of transition between the subbands (which
is greater than the frequency of ferromagnetic reso-
nance by several orders of magnitude), the lattice
magnetization (as was mentioned) cannot follow the
external field and the initial position is retained. Then,
we disregard the dynamics of magnetic lattice and
restrict consideration to transverse components of

 (e.g., components  and ).
Thus, the Hamiltonian of nonequilibrium injected
electrons is determined by the exchange field that is
modulated by the external radiation. The anisotropy of
the exchange interaction and the presence of external
field lead to a term in Hamiltonian (1) that describes
the perturbation and contains off-diagonal terms that
lead to spin f lip.

3. ANALOG OF THE BLOCH EQUATION 
FOR INJECTED ELECTRONS 

WITH ALLOWANCE 
FOR ELECTRON TRANSPORT

To describe kinetics of the magnetization of
injected electrons, it is expedient to consider an analog
of the modified Bloch equation (with the transport
term) and take into account the interaction of injected
electrons with electromagnetic field. Such an equation
can be used to study both relaxation and emission pro-
cesses and the transport of nonequilibrium spins. Spa-
tial nonuniformity of the spin distribution must be
taken into consideration to take into account the trans-
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port term in the analog of the Bloch equation. The equa-
tion has been derived in our previous work [32].

An analog of the Bloch equation with the transport
term for the magnetization of injected electrons that
takes into account transport and interaction of con-
duction electrons with electromagnetic wave via the sd
interaction is represented in the following way (trans-
verse and longitudinal decays related to nonradiative
spin relaxation upon interaction with medium are
introduced phenomenologically):

(9)

(10)

Here, braces {, } denote anticommutator,  is the
operator of the electron momentum,  and  are
the longitudinal and transverse components of the
magnetic moment of the spin of injected electrons, 
is the longitudinal (spin) relaxation time of injected
electrons,  is the relaxation time of the transverse
spin component that we assume to be related to the
Slonczewski–Berger mechanism [17]. The relaxation
time of the transverse spin component is relatively
small, and the relaxation takes place upon propagation
of the wave at a distance of about several nanometers
[17]. The longitudinal spin relaxation time is signifi-
cantly greater, and the relaxation occurs upon wave
propagation at a distance of several tens of nanome-
ters. System of equations (9) and its solution describe
the process when the longitudinal relaxation time is
determined by the intensity of the processes of energy
exchange between the injected electron and lattice
[36], and the transverse relaxation time is determined
by the rate at which the synchronous precession of
magnetic dipoles is disturbed [17]. The relaxation of
the transverse spin component is relatively fast on the
time scale of the longitudinal relaxation. Note that the
spin torque is transferred to the magnetic lattice of
the ferromagnetic material upon relaxation of the
transverse spin component. In this case, oscillations of
magnetization or magnetization switching of the fer-
romagnetic material may take place [1–10] (such pro-
cesses are not taken into account in this work). The
further spin relaxation involves transitions of electrons
between nonequilibrium quasi-Fermi levels with spin
flip, which may lead to emission in terahertz and far-
IR spectral ranges.

System of equations (9) shows that the state of
injected nonequilibrium electrons is changed with
time due to the effect of the sd exchange, external elec-
tromagnetic field, nonradiative relaxation and transfer
of carriers, and electron transport. Below, we show
that Eqs. (9) can be used to derive an equation for non-
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equilibrium spin polarization in magnetic junctions
with allowance for spatial inhomogeneity of the spin
polarization.

4. EQUATIONS 
FOR NONEQUILIBRIUM SPIN 

POLARIZATION IN MAGNETIC JUNCTIONS
We consider the scenario in which electric current

flows through the interface of homogeneous ferro-
magnetic materials the magnetization vectors of which
(that correspond to quantization axes in the materials)
make mismatch angle . We introduce the following
notation: , nonequilibrium spin polarization of the
injector (ferromagnetic material from which spin-
polarized electrons are injected (Fig. 1)) and , equi-
librium spin polarization of the working region of
magnetic junction to which spin-polarized electrons
are injected. We assume that the electric current f lows
along the x axis through the interface of ferromagnetic
materials. For simplicity, we assume that electric cur-
rent density j changes neither along the transverse
cross section nor along the x axis of magnetic junction.
Then, we assume negligibly small anisotropy of the
exchange interaction (i.e., zero components of the
exchange field determined by the external electromag-
netic field) and the fact that the relaxation of the lon-
gitudinal component of the magnetic moment of con-
duction electron is fully determined by the interaction
of the spin system of conduction electrons and ther-
mostat.

The tensor of magnetization f lux is defined as [34]

(11)

where  is the wave function of electron with
momentum  in spin state ;  is the Bohr magneton;

 is the Pauli vector matrix; spin and vec-
tor indices are shown as subscripts and superscripts,
respectively; and  is the velocity operator.
When formula for  (10) and formula (11) are used, it is
seen that quantities  and  in formulas
(11) in the above configuration represent averaged com-
ponents of the magnetization flux tensor.

Let’s consider transformation of the injector mag-
netization component in the above configuration

(12)

upon transition to a new quantization axis. Such a
transition can be due to either transition of electron to
another magnetic medium with a different direction of
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the quantization axis or rotation (e.g., in the presence
of external magnetic field) of the quantization axis of
the homogeneous medium. The following matrix of
transformation of spin wave functions corresponds to
the rotation of coordinate axes by angle  around the
x axis [37]:

(13)

Hence, the component of magnetization tensor is
transformed in the following way upon transition to a
new quantization axis:

(14)

due to the condition  In this case, we also
obtain orthogonal component  given by

(15)
Thus, the magnetization flux (and the corresponding
spin f lux) from injector  passes to the medium with
a new quantization axis and is transformed into a f lux
that has component  =  polarized
along the new quantization axis and component

 =  polarized orthogonally to the
quantization axis. Recall that significantly different
spin relaxation times correspond to the longitudinal
and transverse polarizations. Hence, only longitudinal
polarization survives outside a layer with a thickness
on the order of the length of the transverse relaxation
(Slonczewski–Berger layer). Below, we consider a
region that lies outside such a layer, so that the term

with vector product  is eliminated in Eqs. (9).
Thus, to derive an equation for nonequilibrium spin
polarization, we employ only the second equation of
system (9).

Magnetic state of conduction electrons is described
using local spin polarization

(16)

where  are the partial concentrations of con-
duction electrons with spins that are parallel (antipar-
allel) to the quantization axis of the corresponding fer-
romagnetic material and  is the total
concentration that is assumed to be independent of
coordinate owing to neutrality of metal. Taking into
account expression (12), we introduce spin f lux den-
sity and obtain

(17)

where  are the partial densities of electric (charge)
current.
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With allowance for expressions (16) and (17), the
second equation of system (9) is represented under
stationary conditions ( ) as

(18)

In the presence of electric field  and gradients
of partial concentrations, we obtain partial densities of
electric (charge) current

(19)

where  and  are the partial mobilities and diffu-
sion coefficients of electrons, respectively.

Total density  in the stationary
state is independent of . Representing quantity 
in terms of  with allowance for expression (17), we
obtain the spin f lux density

(20)

where

(21)

We assume that carriers have identical mobilities and
diffusion coefficients in the subbands: 

 Then, we have  D(P) D, and
substitution of expression (20) in expression (18) with
allowance for conservation of electric charge 
yields the following equation [26]:

(22)

where  is the spin relaxation time, 
is the diffusion current density of electrons,  is
the spin relaxation length, and  is the electron con-
centration in metal.

5. NONEQUILIBRIUM SPIN POLARIZATION 
IN MAGNETIC JUNCTIONS

The solution to Eq. (22) is written as [29]
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Here, subscripts 1 and 2 correspond to signs “–” and
“+”, respectively. The solution to Eq. (22) can be sim-
plified under the condition:

(25)

For a spin diffusion length of  cm, a
concentration of conduction electrons in metal of

 cm–3, and a longitudinal (spin) relaxation
time of injected electrons of  s [6, 7], we
estimate electron diffusion current density as

 A/cm2. Normally, the maxi-
mum current densities in magnetic junctions in exper-
iments are less than the estimated current density by
an order of magnitude. Therefore, condition (25) is
reliably satisfied. Then, solution (23) is represented as

(26)

We have C2 = 0, since . Integration constant
 is determined from the condition for continuity of

the spin f lux at the interface of the two ferromagnetic
materials [6]

(27)

Boundary condition (27) is valid under the condition
that the spin polarization of injector remains
unchanged or is weakly perturbed, which is possible
for appropriately chosen materials [6]. In addition, we
assume that the effect of electron flux reflected from
the interface on the spin polarization of electrons hav-
ing passed to the working region of the magnetic junc-
tion can be disregarded.

Substituting expression (23) in expression (27), we
obtain

(28)

With allowance for formula (28), the distribution of
spin polarization of conduction electrons in the work-
ing region is written as

(29a)

Formula (29а) is valid at  and can be simpli-
fied as

(29b)

In the opposite case  ( ), formulas (24)
and (29a) yield

(29c)

For , formula (29c) shows that the spin
polarization of injected electrons becomes indepen-
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Fig. 3. Plot of frequency of spin-injection radiation ν vs.
relative current density  at an angle of 
between magnetizations of the first and second layers of
magnetic junction and polarization-degree ratios of the
first and second layers of  = (1) 0.1, (2) 1, (3) 2,
and (4) 5.
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dent of distance from the injector, and we have
 Thus, the spin polarization in the

working region of the magnetic junction cannot be
greater than the spin polarization in the injected f lux.

Formulas (29a)–(29c) show that, as was expected,
the spin polarization monotonically approaches the
equilibrium level for the working medium with an
increase in the distance from the injector. The maxi-
mum deviation of the spin polarization from the non-
equilibrium polarization  is reached at the
interface:

(30a)

For , formula (30a) is written as

(30b)

6. SPIN-FLIP ENERGY TRANSITIONS 
OF ELECTRONS

Nonequilibrium electrons have nonequilibrium
quasi-Fermi levels  and  that are determined
relative to the bottom of the lower spin subband
(Fig. 2). Under nonequilibrium conditions, electron
transitions are possible from occupied states that are
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lower than quasi-Fermi level  (e.g., for the minor
spin subband) to free electron states that are higher than
quasi-Fermi level  for the major spin subband
(Fig. 2). If quasi-Fermi level  is shifted relative to the
equilibrium position of the Fermi level in the working
region by  and quasi-Fermi
level  is shifted by  the
maximum radiation frequency can be represented as a
sum of quantities  and  divided by the
Planck constant [26]:

(31)

Here, we use modulus, to make formula valid for any
sign of quantity ΔP.

Quasi-levels of the subbands depend on the non-
equilibrium spin polarization and exchange energy
splitting (I2):

The formulas are written with allowance for the fact
that a phase volume of  corresponds to one
electron and the number of electrons with the same
direction of spin  is equal to the vol-
ume of a sphere with a radius that is equal to the Fermi
momentum divided by  For convenience, we
represent variations in the spin polarization of quasi-
levels in terms of equilibrium value ( ) and additional
nonequilibrium term ( ):

(32)

(33)

In formulas (32) and (33), the sign of variations in
quasi-levels depends on the sign of nonequilibrium
spin term, so that the variations can be positive and
negative.

Figure 3 presents the dependence of radiation fre-
quency  on reduced current density calculated with
the aid of formulas (31)–(33). It is seen that a frequen-
cy interval of the spin-injection radiation of 5–20 THz
corresponds to the current density that is greater than
the diffusion current density by approximately two or-
ders of magnitude. Using estimated diffusion current
density of  A/cm2, we obtain a current
density in the magnetic junction of  A/cm2

that can be reached in experiments in the absence of
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the thermal breakdown of magnetic contact. Lower
radiation frequencies correspond to lower current
densities. We must also take into account decay of elec-
tromagnetic wave that is predominantly determined by
the absorption of waves by free carriers in materials of
magnetic junctions. The results of [24] show that a
threshold current density of  A/cm2 must
be surpassed to provide a radiation power level that

corresponds to loss related to damping and thermal
noise.

7. PROBABILITY 
OF QUANTUM TRANSITIONS

Equations (9) can be used to find the probability of
transitions (number of quantum transitions per unit
time) [31]:

(34)

Here,  is the concentration of injected spin-nonequi-
librium electrons in metal,  is
the modulus of the transverse component of exchange
field,  is the nonequilibrium spin polarization at
the initial moment, and  is the equilibrium spin
polarization in ferromagnetic material.

At a relatively low Q factor, when 

(   is the precession fre-
quency), the probability of quantum transitions is
given by formula (34):

(35)

For a high Q factor, when , approximate
formula (34) coincides with the numerical solution to
system (9) at  In this case, the probability of
transitions given by formula (34)

(36)

is determined by transverse time of spin relaxation.
Note several properties of the relaxation processes

that follow from formula (34). When  and
, the population of the upper and lower

electronic sublevels become equal. At a high-Q pre-
cession (i.e., in the presence of relatively strong exter-

nal electromagnetic field  = 0.1), the rate
of energy transfer from the field may be higher than
the rate at which the oscillation energy of magnetic
moment is transferred to the thermostat. Thus, the
energy exchange between the electromagnetic field
and oscillator is balanced and the system reaches an
equilibrium state with respect to the external field, so
that the saturation takes place [38].

The probability of spin-flip transitions of conduc-
tion electrons upon interaction with thermostat is
given by formula (35) (below, we determine the contri-
bution of radiative transitions). On the assumption
that the quantum yield equals one (upper-bound esti-

mation), formula (35) yields a number of radiative
transitions of  s–1 cm–3 for a density of non-
equilibrium electrons of  cm–3 (a current
density of  108 A/cm2, see formula (29)). In this case,
liberated radiation power per unit volume Pi is deter-
mined as the number of transitions multiplied by pho-
ton energy . For = 30 THz, we have

(37)

The volume of the active region of the emitter is deter-
mined by the area of magnetic junction and spin relax-
ation length. For a junction diameter of about 1 μm
and a spin relaxation length of 10 nm, we obtain a vol-
ume of the active region of  cm3.
Thus, the maximum radiation power that can be emit-
ted in the active region is  W in accordance
with formula (37). Such a high estimated power is ob-
tained with disregard of the fact that, in practice, the
quantum yield is significantly less than one and the
number of nonequilibrium electrons is not equal to a
maximum number of  cm–3 at the given current
density [29].

CONCLUSIONS
We have derived an equation for nonequilibrium

spin polarization in magnetic junctions based on the
equation for dynamics of magnetic moment averaged
over the ensemble of nonequilibrium spin-injected
electrons with allowance for spatial nonuniformity of
the distribution. Using the solution of the equation for
nonequilibrium spin polarization at the interface of
two ferromagnetic materials with the current f low in
the contact region, we have obtained formulas for cal-
culation of photon emission and absorption in the case
of indirect energy transitions of electrons with spin
flip. It was shown that at a current density that exceeds
a threshold level, radiation can be emitted from the
contact region and the corresponding frequencies
belong to the terahertz range. In general, the frequen-
cies of photon emission and absorption for indirect
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energy transitions of electrons with spin f lip are deter-
mined by the current density, the angle between the
magnetization directions of the injector and working
region, and spin polarization of conduction electrons.
At current densities that substantially exceed the diffu-
sion current density, the maximum possible nonequi-
librium spin polarization is obtained in the working
layer and the corresponding frequencies of photon
emission and absorption reach saturation. The results
can be used for development of compact sources of
terahertz radiation.
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