Anomalous diffusion of a dipole interacting with its surroundings

Kalmykov Yu.P., Titov S.V., Coffey W.T., Zarifakis M., Dowling W. J., Titov A. S. Anomalous diffusion of a dipole interacting with its surroundings. The Journal of Chemical Physics , 2020 , 152. р. 114101. ISSN 0021-9606

Полный текст не доступен из этого репозитория. (Заказать копию)

Аннотация

A fractional Fokker-Planck equation based on the continuous time random walk Ansatz is written via the Langevin equations for the dynamics of a dipole interacting with its surroundings represented by a cage of dipolar molecules. This equation is solved in the frequency domain using matrix continued fractions yielding the linear dielectric response for extensive ranges of damping, dipole moment ratio, and cage-dipole inertia ratio hence the complex susceptibility comprising a low frequency band with width depending on the anomalous parameter and a far infrared (THz) band with a comb-like structure of peaks. Several physical consequences of the model are discussed, relevant to anomalous diffusion in the presence of interactions. The entire calculation may be regarded as an extension of the cage model interpretation of the dynamics of polar molecules to anomalous diffusion taking into account inertial effects.

Тип объекта: Статья
Авторы на русском. ОБЯЗАТЕЛЬНО ДЛЯ АНГЛОЯЗЫЧНЫХ ПУБЛИКАЦИЙ!: Калмыков Ю.П., Титов С.В., Коффи В.Т., Зарифакис М., Доулинг В., Титов А.С.
Подразделения (можно выбрать несколько, удерживая Ctrl): 276 лаб. элементов систем лазерной связи
URI: http://cplire.ru:8080/id/eprint/9821
Только для зарегистрированных пользователей
Изменить объект Изменить объект