Х Международная научная конференция

«АКТУАЛЬНЫЕ ПРОБЛЕМЫ ФИЗИКИ ТВЕРДОГО ТЕЛА»

X International Scientific Conference «ACTUAL PROBLEMS OF SOLID STATE PHYSICS»

ГО "НАУЧНО-ПРАКТИЧЕСКИЙ ЦЕНТР НАЦИОНАЛЬНОЙ АКАДЕМИИ НАУК БЕЛАРУСИ ПО МАТЕРИАЛОВЕДЕНИЮ"

SSPA "Scientific-Practical Materials Research Centre of NAS of Belarus"

МИНСК, БЕЛАРУСЬ 2023

X International Scientific Conference «ACTUAL PROBLEMS OF SOLID STATE PHYSICS»

Исследования морфологии и электрофизических характеристик МДП структур на основе сегнетоэлектрических пленок состава Ba_{0,8}Sr_{0,2}TiO₃

Д.А. Киселев, М.С. Афанасьев, Д.А. Белорусов, Г.В. Чучева* Фрязинский филиал Федерального государственного бюджетного учреждения науки Института радиотехники и электроники им. В.А. Котельникова Российской академии наук, Фрязино, Московская обл., Россия, gvc@ms.iri.rssi.ru

В работе представлены результаты исследования электрофизических свойств структур металл-диэлектрик-полупроводник на основе сегнетоэлектрических пленок состава $Ba_{0,8}Sr_{0,2}TiO_3$ (BST), синтезированных на кремниевые подложки р-типа с ориентацией [100] и толщиной 300 ± 10 мкм. Сегнетоэлектрическая пленка толщиной 350 ± 25 нм наносилась на кремниевую подложку методом высокочастотного распыления в атмосфере кислорода при давлении 10 Па. Температура подложки в процессе синтеза составляла 560 °C (BST $_{560}$) и 620 °C (BST $_{620}$). Для измерения электрофизических характеристик на пленку формировался электрод. Электрод наносился методом электронно-лучевого осаждения через теневую маску. Условия вормирования электрода: температура 70 °C; рабочее давление в камере 10^{-4} Па, скорость напыления 2.0 ± 0.1 Ангстрем/с. Материал электрода — никель, площадь электрода 2.7×10^{-4} см², толщина 0.1 мкм.

Рентгенодифракционное исследование показало, что для всех исследованных пленок наблюдалось параллельное расположение осей пленки и подложки в плоскости сопряжения, т.е. [100]BST//[100]p-Si.

Методом атомно-силовой микроскопии исследована топография пленок, показано, что среднеквадратичная шероховатость поверхности (Rms) пленки BST₅₆₀ составила 3.8 нм, BST₆₂₀ - 4.3 нм. Средний размер зерен составил для BST₅₆₀ - 47 нм, для BST₆₂₀ - 53 нм.

Проведенные исследования вольт-фарадных, емкостных и температурных характеристик МДП структур указали на влияние температуры синтеза тонких пленок BST на их диэлектрические характеристики. Установлено, что синтезированные при температуре $620~^{\circ}\mathrm{C}$ BST пленки обладают более высокими значениями емкости (и, соответственно, диэлектрической проницаемостью) по сравнению со структурами, полученными при $560~^{\circ}\mathrm{C}$.

Финансирование работы.

Работа выполнена при поддержке Российского научного фонда (проект № 22-19-00493).