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Abstract
The spectral properties of gap electroacoustic waves in a PT-symmetric structure of
piezoelectrics of symmetry class 6mm separated by a gap are theoretically investigated. The
spectra were calculated for lead germanate (non-zero transverse piezoactivity) and barium
titanate (symmetry class 4mm—zero transverse piezoactivity). It has been established that at a
certain level of losses and gain in piezoelectrics, the symmetric and antisymmetric modes
intersect. The intersection point determines the singular point of the PT-symmetric structure.
Beyond this point, there is a violation of the symmetric and antisymmetric distribution of
electric fields in the gap of the slotted structure of two identical piezoelectrics, which is
confirmed by the calculation of the electric field profiles. It is shown that the dependence of the
amplitude on the frequency at an exceptional point has an extremely narrow resonance peak,
which opens up the possibility of creating supersensitive sensors based on PT-symmetric
physical structures.

Keywords: PT-symmetry, exceptional points, electroacoustic waves, gap waves, piezoelectrics,
films

(Some figures may appear in colour only in the online journal)

1. Introduction

The most popular type of waves used to study and manip-
ulate matter is electromagnetic radiation, which can change

∗
Author to whom any correspondence should be addressed.

its parameters, in particular its electric polarization [1, 2].
However, the use of ultrafast optical methods is often lim-
ited by the simultaneous generation of a large number of
nonequilibrium charge carriers, which, as a consequence,
leads to a significant increase in material temperature. Because
of this, other wave processes are being considered. Among
them, the interaction of acoustic waves with electrical systems
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(electroacoustic waves), in materials such as piezoelectrics
and ferroelectrics, is becoming increasingly popular because
of less scattering and much better prospects for downscal-
ing. In particular, so-called straintronics is a new area of
research in magnetism and electricity with promising applic-
ations [1, 3], which represents an outstanding alternative to
other wave-based approaches because of the very low atten-
uation of acoustic waves (phonons) compared to magnons or
plasmons [4, 5]. It has been shown that magnetic straintron-
ics can realize memory blocks with switching energies below
1 fJ, which is already very close to the Landauer theoretical
limit of kBTln2 [6, 7]. Acoustic waves are important in many
applications, such as condition monitoring of structures and
nondestructive testing [4], manipulation of small objects [8,
9], or in microelectromechanical systems [10, 11].

The energy of the collective modes of electroacoustic
waves can be transferred between coupled piezoelectric wave-
guides [10, 11]. Consequently, it is possible to influence acous-
tic wave propagation by changing the intrinsic attenuation in
the waveguides. A particular case, when the intrinsic atten-
uation in one waveguide is compensated by anti-damping in
the other (balanced electroacoustic losses and gain), is a sys-
tem with parity-time (PT) symmetry. The concept of PT sym-
metry appeared in 1998 [12]. Initially it concerned quantum
systems with a non-Hermitian Hamiltonian, which, however,
can have a real set of eigenstates with real eigenvalues. The
PT-symmetric Hamiltonian commutes with the parity oper-
ator P̂ and the time reversal operator T̂, i.e. P̂T̂Ĥ= ĤP̂T̂. The
action of the parity operator changes the signs of the coordin-
ate r and momentum p, so that r→−r, p→−p , while the
time reversal operator leads to the following transformations
r→ r, p→−p, and also leads to the complex conjugation
i→−i. A system described by a Schrödinger type equation
with a complex potential U(x), is called PT-symmetric if U(x)
has an even real part U ′(x) and an odd imaginary part iU ′ ′(x),
i.e. U(x) = U(−x) and U ′ ′(x) =−U ′ ′(−x) . The concept of
PT-symmetry has aroused great interest and has been exten-
ded by appropriate analogies with various physical systems,
namely in optics [13, 14] (paper [14] describe electromagnetic
waves in PT-symmetric optical structures), electronics [15],
acoustics [16, 17] and magnetism [18–21].

The spectrum of a PT-symmetric system is usually com-
plex, but it becomes real if the eigenmodes are invariant to
the PT-transformation. The transition of the system into a
symmetry-breaking phase occurs at the so-called exceptional
point (EP), where the eigenvalues change from real to com-
plex [22]. When the EP is passed, the eigenmodes and eigen-
values of the system become degenerate. Thus, PT-symmetric
systems represent an exotic class of conservative systems,
which simultaneously possess properties of dissipative sys-
tems. In addition, the unique nature of the PT-operator spec-
trum allows us to observe such exciting effects as, for example,
single-mode laser generation [23] and magnetic permeability
control at EPs [24]. The transition from the real spectrum to
the complex spectrum has been observed in different systems
with equally balanced gain and loss coefficients [25, 26] (in

paper [26] were considered acoustic waves in PT-symmetric
structures). However, in acoustics PT-symmetric solid-state
structures have not yet been considered. Papers concerned only
low-frequency acoustic systems. Therefore we are planning to
fill this gap, and our work is devoted to the solution to this
problem.

Planar PT-symmetric piezoelectric waveguides have not
yet been studied; they can be simple structures consisting of
two (or more) piezoelectric dielectric films obtained from the
same sample (thus having identical parameters). At present,
studies of the dispersion properties of gap electroacoustic
waves in such structures without regard to PT-symmetry are
focused on identifying the features associated with consid-
ering the dielectric properties of the layer material placed
without acoustic contact in the gap. Along with this, the dif-
ferences of piezoelectrics in terms of material parameters and
crystallographic symmetry were taken into account, the influ-
ence of the transverse size of one of the piezoelectrics of the
layered structure was considered, and the contribution of the
delay of electric fields was estimated [10, 11]. In addition to
the above aspects, the influence of the relative longitudinal dis-
placement of 4mm (6mm,∞m) class piezoelectrics separated
by an extremely thin gap on the behavior of gap electroacous-
tic waves was discussed in [27] in connection with the requests
of the rapidly developing mechatronics [28].

In this paper we consider the propagation of electroacous-
tic waves in a PT-symmetric structure with a gap formed by a
pair of identical piezoelectrics of symmetry class 6 mm (4, 6,
4 mm,∞m). In the second part of the paper the model, the ini-
tial equations and the boundary conditions are considered. The
third part presents the solution of the boundary problem. The
fourth part is devoted to a discussion of the numerical solu-
tion of the dispersion equation, the profiles of electric fields
are given. The fifth part is the conclusion.

2. Statement of the problem

In the geometry of the problem presented in figure 1, it is
assumed that both crystals belong to the symmetry class 6 mm
with the same orientation of the crystallographic axes 6 per-
pendicular to the plane of the figure. In quantum systems, the
Hamiltonian is PT-symmetric [14] if:

Ĥ(p̂, r̂, t) = Ĥ∗(p̂,−r̂,−t) (1)

where p̂, r̂, t are momentum, radius vector and time.
Therefore, for the Schrödinger equation:(
∂2

∂x2
+

∂2

∂y2

)
Ψk(x,y)−

2m(V(x,y)−Ek)

h̄2
Ψk(x,y) = 0.

(2)

The PT-symmetry condition (1) reduces to the requirement
that the real part of the potential V(x,y) is an even function of
the coordinate and the imaginary part is an odd one:

V(x,y) = V∗(−x,−y). (3)
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Figure 1. Scheme of the task. Letters A, S denote antisymmetric and
symmetric modes.

In our case, the original equations:

∂2u1
∂t2

= c21∇2u1, ∇2Φ1 = 0. (4)

The second Laplace equation (4) is PT-symmetric based on
condition (1). The first equation (4) for a harmonic wave u1 ∼
exp(−iωt) has the form:(

∂2

∂x2
+

∂2

∂y2
+

ω2

c21

)
u1 = 0 (5)

and it formally coincides with the stationary Schrödinger
equation (2), if we make a formal change:

V(x,y)−Ek →(ω/c1)
2, Ψk(x,y)→ u1(x,y),

− h̄2/2m→ 1.
(6)

Since in quantum mechanics, the PT-symmetry condition
for the system described by (2), reduces to the requirement
imposed on the potential energy (3), then, by analogy between
the potential energy in quantum mechanics and the total wave
number in acoustics, the PT-symmetry condition for acous-
tic systems can be defined as a condition imposed on the total
wavenumber ℜ{k0(ω,x,y)}:

ℜ{k0(ω,x,y)}= ℜ{k0(ω,−x,−y)} (7a)

ℑ{k0(ω,x,y)}=−ℑ{k0(ω,−x,−y)}. (7b)

The time dependence is not included in the stationary
Schrödinger equation, so the time reversal operation is equi-
valent to the complex conjugation operation T̂. In what fol-
lows, by the T̂ symmetry of a system in electroacoustics we
will understand its complex conjugacy, continuing to call sys-
tems satisfying condition (7) as PT-symmetric.

The total wave number will be imaginary if there is either
attenuation or amplification of waves in the acoustic medium.

There may be various mechanisms for such attenuation (amp-
lification). In particular, if a piezoelectric is adjacent to a semi-
conductor with an electric current, then, depending on the dir-
ection of the current, the electroacoustic wave can be ampli-
fied or additionally attenuated due to the connection with the
electric fields of the semiconductor. In the first stage of our
research, we will not specify the type of mechanism, assum-
ing that the total wave number is complex.

In acoustics, it is accepted that if the losses are not too large
and the oscillatory process can be called quasi-periodic if an
imaginary component is added to the material parameters of
the composite parts. Usually, in reference data, the loss values
are given in units of dBm−1 at a particular frequency. To con-
vert these values into the imaginary part of the elastic modulus,
one can use the following formula [29]:

ℑ{c44}=
(ℜ{c44})3/2

20loge ·ω2√ρ
= d (8)

where ℜ{c44} is the elasticity in the quasi-static limit, d is the
decrease in the wave amplitude due to dissipation [dBm−1].
Thus, the modulus of elasticity of the waves included in
the velocity determines the dissipation (amplification) level,
which also determines the imaginary total wave number.

In our case, the speed of shear waves of horizontal polar-
ization in the jth piezocrystal is with elastic modulus c( j)44 ,

piezomodulus e( j)1,5, permittivity ϵj and density ρj. Assuming
the modulus to be imaginary, we, by virtue of the relation
k0(ω,x,y) = (ω/c1) , will obtain by calculation the real and
imaginary parts of the total wave number. Since we do not spe-
cify the mechanism of attenuation (amplification) of an acous-
tic wave, and for the sake of generality, we will choose the
level of losses (amplification) in the rangeℑ{k0(ω,x,y)} from
0 to 0.1 of ℜ{k0(ω,x,y)}. It is easy to show that if the modu-
lus of elasticity is imaginary c44 = ℜ{c44}+ iℑ{c44}, then in
approximation (ℑ{k0(ω,x,y)})2 ≪ (ℜ{k0(ω,x,y)})2 the fol-
lowing relation holds:

ℜ{k0(ω,x,y)}
ℑ{k0(ω,x,y)}

≈
ℜ{c44}+

4π e( j)21,5

ϵj

ℑ{c44}
≡ αcoeff (9)

where we agreed to consider the coefficient αcoeff from 0 to
0.1. The geometry of the problem is shown in figure 1. The
direction of wave propagation in crystals occurs along the x
axis (see figure 1). For the wave to increase along the propaga-
tion direction, we must assume that ℑ{k0}< 0 (upper crys-
tal, j= 1), and to attenuate the waveℑ{k0}> 0 (lower crystal,
j= 2). Since the media differ only in the sign of the imagin-
ary part of the total wave number, these media will be PT-
symmetric by condition (7). We will look for the solution of
equation (4) for the upper, and lower crystal, in the gap:
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u1 = U1 exp(iφ)exp(−s1(y− h))exp(αx),

u2 = U2 exp(iφ)exp(s2(y+ h))exp(−αx),

Φ1 = F1 exp(iφ)exp(−k(y− h))exp(αx)exp(iα(y− h)),

Φ2 = F2 exp(iφ)exp(k(y+ h))exp(−αx)exp(iα(y+ h)),

Φ0 = exp(iφ) [Aexp(−αx)exp(−k(y+ h))exp(−iα(y+ h))

+ Bexp(αx)exp(k(y− h))exp(−iα(y− h))]

φ = kx−ωt

(10)

where the quantities s1,2 are defined by the equalities:

s1 =

[
(k− iα)2 −

(
ω

c1

)2
]1/2

,

s2 =

[
(k+ iα)2 −

(
ω

c2

)2
]1/2

.

(11)

The sign of the magnitude α is the imaginary magnitude of
the longitudinal propagation vector k (component along the
x axis) . The sign and its value will be completely determ-
ined, according to the form of equation (5), by the imaginary
part ℑ{k0} of the total wave vector, which in turn depends
on the imaginary part of the modulus of elasticity. Since
the final form of the dispersion relation traditionally [30–33]
includes the dependence s1,2 on the longitudinal wave num-
ber, i.e. on the contrary, the longitudinal wave number is given
first, and all other quantities are calculated through it, due to
relations (8) and (11), we can supplement it with the following
expression for further convenience of calculation:

k
α
≈ ℜ{k0(ω,x,y)}

ℑ{k0(ω,x,y)}
≈

ℜ{c44}+
4π e( j)21,5

ϵj

ℑ{c44}
≡ αcoeff. (12)

Thus, setting the longitudinal wave number and determin-
ing the imaginary part according to (12) and relation (7):

k( j) = k± iα. (13)

where the minus sign is for the upper crystal (wave amplifica-
tion) j= 1, the plus sign is for the lower crystal (wave attenu-
ation) j= 2 (see figure 1). For a given dependence of the elec-
troacoustic wave on the x coordinate ∼exp(ik( j)x), we will
consider, according to the relations (7) and (13) PT-symmetric
system from two piezoelectrics (see figure 1).

The question remains how to excite electroacoustic waves
with the same amplification (attenuation) level in practice in
such a structure, assuming that the film is sufficiently thick
(much larger than the wavelength). One of the ways can be
using semiconductors with electric current with acoustic con-
tact with piezoelectric films [34, 35]. As a rule, the amplifica-
tion effect due to the charge carrier drift current is observed in
a thin boundary layer of the order of a wavelength. However, it
was shown in [36] that amplified electroacoustic waves could

have the character of volume propagation. A small difference
from the spectrum of electroacoustic waves at the free bound-
ary of the piezoelectric and a small propagation angle (sev-
eral degrees from the surface of the piezoelectric) can allow
this wave to be excited in the gap of two piezoelectrics, either
with amplification or attenuation, changing the direction of the
electric current in the semiconductor. In this case, it is neces-
sary to provide the same level of amplification and attenuation
of the waves, which is usually difficult to implement in prac-
tice since the curve of the dependence of amplification on the
drift velocity of charge carriers has an asymmetric shape when
the sign of the velocity changes. Our preliminary calculations
show that at different loss and gain levels the PT-symmetry
can be violated. More on this will be presented in a separate
future work.

In acoustoelectronics, as independent quantities that
determine the state of a piezoactive medium in the ferro-
electric phase, one usually chooses the elastic deformation
specified by the strain tensor:

uik =
1
2

(
∂ui
∂xk

+
∂uk
∂xi

)
(14)

and electric field Ej. If the deformation process is adiabatic,
then the equations of state take the form [37]:

Tik = ciklmulm− ej,ikEj,

Dp = ϵpqEq+ 4π ep,rmurm.
(15)

Here T ik—is the mechanical stress tensor, which, like the
strain tensor uik from (14), is a symmetric tensor of the second
rank; ciklm, ej,ik and ϵpq are, respectively, the tensor of the
elastic, piezoelectric and dielectric moduli of the crystal. In
equation (15), where the quantity Dp is the electric induction
vector, the summation is implied over repeated tensor indices.
The initial equations are the crystal motion equations:

ρ
∂2ui
∂t2

=
∂Tik
∂xk

(16)

and Maxwell’s equations in the quasi-static form:

Ei =− ∂ϕ

∂xi
,

∂Dk

∂xk
= 0. (17)

Here the differential operator ∂/∂xi is considered as a vec-
tor, ϕ is the electric potential, and ρ is the density of the crystal.

For the joint consideration of equations (14)–(17), we spe-
cify the type of crystal symmetry and the geometry of acoustic
wave propagation. Let us assume that a ferroelectric of class 6
mm (4, 6, 4 mm,∞m) has a crystallographic orientation such
that the sixth-order symmetry axis is parallel to the z, where z
is the axis of the laboratory reference frame x0yz. For a given
type of crystal symmetry, the initial equations (14)–(17) after
some transformations can be represented as:
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4π e1,5

(
∂2uz
∂x2

+
∂2uz
∂y2

)
+ 4π e3,3

∂2uz
∂z2

+ 4π(e1,5 + e3,1)
∂

∂z

(
∂ux
∂x

+
∂ux
∂x

)
= ϵ1

(
∂2ϕ

∂x2
+

∂2ϕ

∂y2

)
+ ϵ3

∂2ϕ

∂z2
(18)

ρ
∂2ux
∂t2

= c11
∂2ux
∂x2

+ c66
∂2ux
∂y2

+ c44
∂2ux
∂z2

+(c12 + c66)
∂2uy
∂x∂y

+(c13 + c44)
∂2uz
∂x∂z

+(e1,5 + e3,1)
∂2ϕ

∂x∂z
,

ρ
∂2uy
∂t2

= c66
∂2uy
∂x2

+ c11
∂2uy
∂y2

+ c44
∂2uy
∂z2

+(c12 + c66)
∂2ux
∂x∂y

+(c13 + c44)
∂2uz
∂y∂z

+(e1,5 + e3,1)
∂2ϕ

∂y∂z
,

ρ
∂2uz
∂t2

= c44

(
∂2uz
∂x2

+
∂2uz
∂y2

)
+ c33

∂2uz
∂z2

+(c13 + c44)

×
(
∂2ux
∂x∂z

+
∂2uy
∂y∂z

)
+ e1,5

(
∂2ϕ

∂x2
+

∂2ϕ

∂y2

)
+ e3,3

∂2ϕ

∂z2
.

(19)

The resulting system of equation (19) together with
equation (18) describes the dynamic behavior of a piezoelec-
tric class 6 mm (4, 6, 4 mm, ∞m) and is often called the sys-
tem of piezoacoustics equations. Let acoustic waves propagate
perpendicular to the symmetry axis of a higher-order crystal.
Under these conditions, the solution will not depend on the z
coordinate, and the equation (19) will split into two independ-
ent systems of equations. The first one:

ρ
∂2ux
∂t2

= c11
∂2ux
∂x2

+ c66
∂2ux
∂y2

+(c12 + c66)
∂2uy
∂x∂y

ρ
∂2uy
∂t2

= c66
∂2uy
∂x2

+ c11
∂2uy
∂y2

+(c12 + c66)
∂2ux
∂x∂y

, (20)

describes waves of vertical polarization: u⊥ z. The second
system, supplemented by equation (18):

ρ
∂2uz
∂t2

= c44

(
∂2uz
∂x2

+
∂2uz
∂y2

)
+ e1,5

(
∂2ϕ

∂x2
+

∂2ϕ

∂y2

)
× 4π e1,5

(
∂2uz
∂x2

+
∂2uz
∂y2

)
= ϵ1

(
∂2ϕ

∂x2
+

∂2ϕ

∂y2

), (21)

describes waves of horizontal polarization: u ∥ z.
Waves of horizontal and vertical polarization do not inter-

act with each other. In this case, elastic displacements in
vertical polarization waves are not coupled with an electric
field, and the crystal behaves concerning them as an ordin-
ary elastic medium without the piezoelectric effect. Due to the
absence of interlayer interaction, vertically polarized waves
are of no interest and are not considered further. Waves of
horizontal polarization with displacements of particles along
the z axis are piezoactive, and an electric field accompanies
them in the plane of propagation. Equation (21) can be given
the form:

[
1

c( j)∗44

∂2

∂t2
−∇2

]
uj = 0, ∇2Φj = 0. (22)

In equation (22) c∗44 = c44 + 4π e215/ϵ1, ∇2 = ∂2/∂x2 +
∂2/∂y2, Φj is the part of the total potential ϕj in the crystal
number j:

ϕj =Φj−
4π e( j)

ϵ1
uj (23)

which is an electric field induced from domain walls by piezo-
electric polarization charges [37].

The initial equations will be the same in the laboratory ref-
erence frame x0yz for the lower (y<−h) crystal and for the
upper (y> h) crystal. Taking into account the horizontal polar-
ization of electroacoustic waves and the fact that the mod-
ules e1,4 =−e2,5 added to the matrix of piezoelectric moduli
for class 6mm crystals will not change the equations of pie-
zoacoustics (22),6 due to the difference in the material para-
meters of the crystals in accordance with expressions (22)
and (23), we write:

∂2u1
∂t2

= c21∇
2u1, ∇2Φ1 = 0, ϕ1 =

4π e(1)1,5

ϵ1
u1 +Φ1,

∂2u2
∂t2

= c22∇
2u2, ∇2Φ2 = 0, ϕ2 =

4π e(1)1,5

ϵ2
u2 +Φ2

(24)

here cj =

[(
c( j)44 +

4π e( j)21,5
ϵj

)
ρ−1
j

]1/2
is the velocity of shear

horizontal waves in the jth piezocrystal with elastic mod-
ulus cj44, piezomodulus e( j)1,5, permittivity εj and density ρj.
Equation (24) should be solved together with the Laplace
equation:

∇2Φ0 = 0 (25)

for the potential Φ0 of the electric field arising in the gap (|y|<
h, 2h is the gap thickness)between the crystals. In addition,
at non-metallized crystal boundaries y=±h, the requirements
for the continuity of potentials and normal components Dy of
the electric induction vectors and the absence of shear stresses
Tyz must be observed.

From the equations of the piezoelectric effect (15) in the
case of shear waves with polarizations of displacements along
the higher-order symmetry axis, we have the following expres-
sions for class 6 mm crystals:

Dy = 4π

(
e1,5

∂u
∂y

− e1,4
∂u
∂x

)
− ϵ

∂ϕ

∂y
,

Tyz = c44
∂u
∂y

+

(
e1,5

∂ϕ

∂y
+ e1,4

∂ϕ

∂x

)
.

(26)

6 Piezoelectric moduli correspond to additional terms in the equations of the
piezoelectric effect (15) and, finally, will be reflected in the form of shear
stresses and normal components of electric induction included in the boundary
conditions.
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They do not contain time derivatives and therefore are valid
in any inertial reference frame. Consequently, they are suit-
able for representing the normal components of electric induc-
tion and shear stress in the laboratory reference frame for both
crystals. Note that the second terms in parentheses in expres-
sions (26) represent the piezoelectric contribution, which is
specific for class 6 mm crystals, the so-called—‘transverse
piezoelectric effect’ [30], which is usually weakly expressed.
For this reason, it is sometimes neglected [31] without making
a particular explanation.

Expressions (26), are necessary for the formulation of the
boundary conditions. To rewrite them, we use the last of equal-
ities (24). After simple transformations, we get:

Dy =−4π e1,4
∂u
∂x

− ϵ
∂Φ

∂y
,

Tyz = c∗44
∂u
∂y

+
4π e1,4e1,5

ϵ

∂u
∂x

+

(
e1,5

∂Φ

∂y
+ e1,4

∂Φ

∂x

)
.

(27)

Now, taking into account equalities (27), where it will
already be necessary to index the parameters and fields with
the number j = 1,2, the above-mentioned boundary conditions
can be written as follows:4π e( j)1,5

ϵj
uj+Φj

∣∣∣∣
y=(−1)j+1h

= Φ0

∣∣∣∣
y=(−1)j+1h

,

(
4π e( j)1,4

∂uj
∂x

+ ϵj
∂Φj

∂y

)∣∣∣∣
y=(−1)j+1h

=
∂Φ0

∂y

∣∣∣∣
y=(−1)j+1h

.

(28)

In expressions (28), as in the previous sections, piezoelec-
trically hardened shear moduli of crystals are marked with an

upper asterisk: c( j)∗44 = c( j)44 +
4π e( j)21,5

ϵj
.

3. Dispersion relation

The solution of equation (24) is sought in the form of
waves propagating along the boundaries of the structure
y=±h. Because of this, we assume that uj, Φj and Φ0 ∼
exp[ik( j)x− iωt], where k( j) is the wave number determined
by expression (13), ω is the cyclic frequency of the gap elec-
troacoustic wave in the laboratory reference frame. It can
be seen that the replacement (13) leads to the appearance
of a wave ‘addition’ in the fields, which is directed from
the medium with attenuation ( j= 2) to the medium with
amplification ( j= 1).

To obtain rigorous dispersion relation we need to match
wave profiles from (10) at structure boundaries y=±h
(see figure 1). The complete derivation of the boundary
conditions is too complicated and is given in appendix. In
the absence of damping and amplification, the dispersion
equation (A.5) has the form:[

(K2 − ϵK2
⊥)− (1+ ϵ)

s
k

]
=±e−2ξ

[
(K2 + ϵK2

⊥)− (1− ϵ)
s
k

]
(29)

where the quantities K2
⊥ = 4π e21,4/(c

∗
44ϵ) and K2 =

4π e21,5/(c
∗
44ϵ), are the squares of the coefficients of the elec-

tromechanical coupling of crystals for the transverse and lon-
gitudinal piezoelectric effects, respectively, exp(ξ) = exp(kh).
Hence we get the possibility to express s explicitly:

s= k
(K2 − ϵK2

⊥)∓ (K2 + ϵK2
⊥)e−2ξ

(1+ ϵ)± (ϵ− 1)e−2ξ
. (30)

Compared with the result in [32], formula (30) has a more
straightforward form. There, hyperbolic functions were used
instead of exponentials, but apparently, a mistake was made
when writing s. The correct representations of the roots, as it
is easy to show based on (30), are as follows:

s+ = k
K2 − ϵK2

⊥cth(ξ)
1+ ϵ cth(ξ)

, s− = k
K2cth(ξ)− ϵK2

⊥
cth(ξ)+ ϵ

. (31)

In the particular case of piezoelectrics of the 6mm class,
when there is no transverse piezoactivity of the crystals (K⊥ =

0), expressions (31) turn, as expected, into the formulas
of [34].

In our case, as well as for optical systems, PT-symmetry
condition can be satisfied only for a discrete frequency set.
However, in the specific physical structure with fixed geo-
metrical and material parameters discrete set of frequencies is
strictly equal to a particular set of wavenumbers. In magnon-
ics wave properties can be easily tuned by changing the satura-
tion magnetic field. And frequency representation can be more
useful (see our recent paper [20]). Here we follow wavenum-
ber representation that is common in acoustoelectronics. An
essential advantage of the explicit representation of the spec-
trum of gap electroacoustic waves by formulas (30) and (31) is
the fact that when establishing their general dispersion proper-
ties, there is no need to solve transcendental equations numer-
ically. Thus, having determined by a simple calculation s for a
chosen value of k, and then using formulas (11) one can always
set the value ω corresponding to this k (and this s), and then
find the phase velocity of the wave. Another advantage of for-
mulas (30) and (31) is the explicit separation of the spectrum
into modes—symmetric (upper signs in (30) and s+ in (31))
and antisymmetric (lower signs in (30) and s− in (31)), named
following the nature of the distribution of the electric potential
across the gap [32, 33]. The general picture of themode spectra
of gap electroacoustic waves for identical hexagonal crystals
without damping and amplification is shown in figure 2.

The spectra of the symmetric and antisymmetric modes of
the gap electroacoustic waves are marked in figure 2 with plus
and minus signs, respectively. Dashed straight lines I and II
depict the linear spectra of an electroacoustic waves on the
metallized s= kK2 and non-metallized s= k(K2 − ϵK2

⊥)/(1+
ϵ) boundaries of a piezoelectric crystal [28]. As for the point
of origin of the symmetric mode ξ∗ = (kh)∗, then, according
to the first of expressions (31), it is easily established by the
condition s+ = 0 by the equality:

ξ∗ = artanh

(
ξ
K2
⊥
K2

)
. (32)

6
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Figure 2. Mode spectrum of gap electroacoustic waves with lead
germanate (Pb5Ge3O11, class 6 mm) parameters. (+) sign
corresponds to symmetric mode, (−) sign—antisymmetric.

Expression (32) shows that the relative contribution of the
transverse piezoelectric effect to the total piezoelectric activ-
ity of the crystal determines the value of ξ∗. For piezoelec-
trics of class 6mm (4mm, ∞m) there is no transverse pie-
zoactivity and, therefore, ξ∗ = 0, which ensures the existence
of a symmetric mode on par with an antisymmetric one
in the entire spectral range. On the contrary, for class 622
(422), piezoelectrics, which have only transverse piezoactiv-
ity, equality (32) (K2 = 0) is also not realized, but already
because of the negative coefficient of the boundary oscillation
localization: s− < 0.

For crystals with mixed-type piezoactivity, along with the
condition ξ > ξ∗ for the symmetric mode, it is necessary, gen-
erally speaking, to consider the condition for the existence of
the antisymmetric mode s− ⩾ 0. The equal sign here corres-
ponds to the point ξ∗∗, defined by a formula of the form (32),
but with an inverted argument for the function of the hyper-
bolic arc tangent. However, for admissible values of ξ: 1⩽
tanh(ξ)⩽ K2/(ϵK2

⊥, the restriction ξ ⩽ ξ∗∗ is equivalent to the
requirement ξ <∞ (ξ∗∗ →∞), so that the qualitative picture
of the spectrum in figure 2 will remain unchanged. The only
caveat will be that with an increase in the transverse piezo-
activity of the crystal against the background of its predomin-
ant longitudinal piezoactivity, asymptote II has a greater slope,
merging with the horizontal axis in the limit of balanced piezo-
activity ϵK2

⊥ → K2. According to (32) ξ∗ →∞, i.e. symmetric
mode does not exist in the latter case.

4. Results and discussion

Figure 3(a) (Pb5Ge3O11) and (b) (BaTiO3) show the numer-
ical calculation of the dispersion equation (A.5) for various
values of the coefficient αcoeff. The first material, the spec-
trum of which is shown in figure 3(a), is lead germanate

Figure 3. Spectra of gap electroacoustic waves.

Pb5Ge3O11 of symmetry class 6mm (non-zero transverse pie-
zoactivity) with parameters: K2 = 0.3,K2

⊥ = 0.001, ϵ= 22 [38].
In calculating the spectrum for this material, for reasons

7
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of clarity, we used the value of the parameter K2
⊥ = 0.01,

which is ten times greater than the tabulated value. On the
whole, this replacement slightly changes the form of the spec-
trum, but in this case, we can distinguish the point of ori-
gin of the symmetric mode from zero on the wavenumber
axis. Figure 3(b) shows the spectrum for the second mater-
ial, BaTiO3 of the 4 mm symmetry class with the parameters:
K2 = 0.27,K2

⊥ = 0, ϵ= 2000 [38]. Figure 3(c) shows a spec-
trum fragment in figure 3(b) in the region of small wavenum-
bers. Thin dashed curves I and II represent the mode spec-
trum of gap electroacoustic waves without attenuation and
amplification (see figure 2). They in figure 3(a) almost coin-
cide with the curves. Dashed curves S and A (symmetric and
antisymmetric modes) represent the spectrum of gap elec-
troacoustic waves without attenuation and amplification. It
should be noted here that s quantities depend on ξ = k · h vari-
able (see equation (31)). Due to this fact mode spectrum is not
changed qualitatively by changing h parameter. It is just scaled
inversely proportional to h.

It can be seen that considering damping and amplification
in neighboring piezoelectrics leads to the fact that the larger
the value of αcoeff, the steeper the curve of the ‘symmetric’
mode becomes. The curves of the ‘symmetric and antisym-
metric’ modes move towards each other so that at specific val-
ues αcoeff (at αcoeff > 10−6) they intersect. At αcoeff > 10−3 the
curve of the symmetric mode becomes straight and already
lies higher in the values s1 of the curve of the ‘antisymmetric’
mode. It can be assumed that beyond the point of intersection
of the modes of the gap structure, by analogy with optical and
magnetic systems [14], there is a violation of the purely sym-
metric (antisymmetric) distribution of fields over the thick-
ness of the structure. The intersection point has received the
name in the literature of an EP, which has several interesting
properties for PT-symmetric structures. An essential charac-
teristic of EPs is that not only eigenvalues degenerate at them
but also the corresponding eigenvectors [12]. In Hermitian
systems, the eigenvalue space has a double cone topology with
degeneracy points at the vertices of the cones. In contrast, in
non-Hermitian systems, the eigenvalue space is a Riemannian
sheet centered near the EPs [26]. This unique characteristic
makes it possible to create ultrasensitive sensors based on PT-
symmetric physical structures [39]. These structures, indeed,
have a strikingly narrow resonance curve. At the end of the art-
icle, we will demonstrate this by calculating the dependence of
the amplitude on the frequency.

According to figure 3, one can go to the EP by select-
ing the appropriate wavenumber or increasing the amplifica-
tion (attenuation) level. When αcoeff < αPcoeff, consideration of
the amplification and attenuation, leads to the symmetricity
of the profile, while at αcoeff > αPcoeff the symmetric mode dis-
appears completely, degenerating into a quasi-antisymmetric
mode. Such a threshold behavior of the symmetry of wave
fields depending on the level of losses (gain) is typical for PT-
symmetric systems [14]. It can be seen from figure 3(a) that if
we fix the wavenumber at the level of the EP for αcoeff = 2.12 ·

Figure 4.
√

ℜ{s1}ℑ{s1}/αcoeff dependence on αcoeff. It can be
seen that if αcoeff ≪ αpcoeff’ (α

p
coeff ≈ 2.1 · 10−5) then k≈ 9.36 · 104

cm−1 and decreases abruptly with αcoeff > αcoeff.

10−5, which is equal to k= 93600 and denoted by a triangle
on the axis of the wavenumbers, then as we increase αcoeff

from zero to a value greater than αcoeff = 2.12 · 10−5 we get a
threshold symmetry breaking at the point αcoeff = 2.12 · 10−5.
This assumption must be confirmed by calculating the mode
field profile.

To build the dependencies of the total potential (the sum of
the elastic and electric parts):

φ1 = (gKu1 +Φ1)
∣∣∣
y<h

, φ2 = (gKu2 +Φ2)
∣∣∣
−h<y

,

φ0 =Φ0

∣∣∣
−h<y<h

(33)

on the coordinate y, taking into account expressions (10), it
is necessary to find the condition under which the ‘symmet-
ric’ mode becomes completely symmetric. Based on the type
of solutions (10) we can assume that this point corresponds
to the condition of PT-symmetry of the solution for the shear
displacement, i.e.:

ℜ{s1}= ℜ{s2}, ℑ{s1}=−ℑ{s2} (34)

where ℜ{} and ℑ{} correspond to real and imaginary parts.
From relation (11) we find:

k−
√

ℜ{s1}ℑ{s1}
αcoeff

= 0. (35)

Figure 4 shows the dependence of the second part of the
expression (35) for a fixed wavenumber (shown in figure 3 by
a green triangle).

It can be seen that at αcoeff < αPcoeff (αPcoeff ≈ 2.1 · 10−5)
expression (35) is equal to zero and increases abruptly at

8
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Figure 5. Dependence of amplitude difference of electric potential on the gap boundaries |Φ0(h)−Φ0(−h)| (see (10)) on αcoeff.

Figure 6. Total potential profile (33) for symmetric and
antisymmetric modes at αcoeff = 10−6 for the wave vector
k= 93600 cm−1. The dashed curves are the mode profile for
αcoeff = 0.

αcoeff > αPcoeff. Thus, one can indirectly observe the threshold
disappearance of the symmetry of the distribution of fields
due to the difference in the coefficients of boundary localiz-
ation since condition (34) is not satisfied. The threshold beha-
vior of the spectral characteristics on the magnitude of losses
and amplification is also confirmed by the calculation of the
difference in the amplitudes of the electric potential in the
gap Φ0 at y=±h, which is shown in figure 5. At αcoeff <

αPcoeff this difference is zero, and at αcoeff > αPcoeff it increases
abruptly.

Figures 6 and 7 shows the profiles of the fields of the
total potential (33) at the point k= 93600 cm−1 (shown
in figure 3 by a green triangle) for the ‘symmetric’ mode
and the antisymmetric mode at x= 0. The calculation tak-
ing into account the dependence of the amplitudes on the
coordinate x , must be accompanied by the calculation of the

Figure 7. Total potential profile (33) for symmetric and
antisymmetric modes at αcoeff = 10−4 for the wave vector
k= 93600 cm−1. The dashed curves are the mode profile for
αcoeff = 0.

acoustic Poynting vector since the fields (A.1) have wave com-
ponents of the type exp(±iαy). This will allow us to calcu-
late the total energy flow, considering all the field compon-
ents. The dashed curves are the field profile for αcoeff = 10−4.
It can be seen that at αcoeff < αPcoeff the field profile of the
electroacoustic wave is symmetric, while at αcoeff > αPcoeff the
field symmetry is violated. Thus, our assumption about the
threshold behavior of the symmetric mode profile distribu-
tion is clearly confirmed by calculations. As shown in [25],
with increasing losses, the energy flow becomes asymmetric,
and the propagation of waves occurs predominantly in one of
the media.

Figures 8(a) and (b) shows the dependence of the amplitude
of the electric potential of the symmetric mode at y= 0 (middle
of the gap) on the wave number and frequency for αcoeff =

2.12 · 10−5. As expected at the EP k= 93600 cm−1 (νR = 4.47

9
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Figure 8. Dependence of the amplitude of the electric potential of the symmetric mode at y= 0 (the middle of the gap) for
αcoeff = 2.12 · 10−5 on (a) wavenumber and (b) frequency.

GHz). This dependence has a narrow resonance peak. The res-
onant linewidth of a PT-symmetric structure is approximately
0.33 the resonant frequency of νR = 4.47 GHz. As mentioned
earlier, this characteristic of singular points allows the cre-
ation of ultrasensitive sensors based on PT-symmetric phys-
ical structures [39].

5. Conclusion

The present work theoretically investigates the spectral prop-
erties of electroacoustic waves in a PT-symmetric struc-
ture of piezoelectrics of symmetry class 6 mm separated
by a gap. The spectra (dependence of the boundary local-
ization coefficient on the wave number) are calculated for

lead germanate (symmetry class 6 mm—non-zero transverse
piezoactivity) and barium titanate (symmetry class 4mm- zero
transverse piezoactivity). It has been established that the sym-
metric and antisymmetric modes intersect for a particular
wavenumber and at a certain level of losses and gain in piezo-
electrics. The intersection point determines the EP of the PT-
symmetric structure. Beyond this point, there is a violation
of the symmetric and antisymmetric distribution of electric
fields in the gap between of two identical piezoelectrics. This
is confirmed by the calculation of the electric field profiles
of the gap structure modes. Furthermore, it is shown that the
dependence of the amplitude on the frequency at an EP has an
extremely narrow resonance peak, which opens up the possib-
ility of creating supersensitive sensors based on PT-symmetric
physical structures.

10
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Appendix. Boundary conditions

We assume that the material parameters of themedia are equal.
This is one of the conditions for the PT-symmetry of media.
Substitution of expressions (10) into boundary conditions (28)
leads to the following system of six homogeneous algebraic
equations for the amplitudes U1,2, F1,2, A and B:

gKU1 +F1 = Aexp(−2αx− 2kh− 2iαh)+B,

gKU2 +F2 = Ae−ξ +Bexp(2αx− 2kh+ 2iαh),

gK⊥(i+α/k)U1 + ϵ(−1+ iα/k)F1 = (−iα/k+ 1)

×Aexp(−2αx− 2kh− 2iαh)+B(−iα/k+ 1),

gK⊥(i−αk)U− 2+ ϵ(1+αk)F1 = (−iα/k− 1)A

+B(−iα/k+ 1)exp(2αx− 2kh+ 2iαh),

g(KK⊥(ik+α)− s1)U1 +((ik+α)K⊥

+(−k+ iα)K)F1 = 0,

g(KK⊥(ik−α)+ s2)U2

+((ik−α)K⊥ +(k+ iα)K)F2 = 0. (A.1)

Here, the quantities K2
⊥ = 4π e21,4/(c

∗
44ϵ) and K2 =

4π e21,5/(c
∗
44ϵ), are the squares of the coefficients of the

electromechanical coupling of crystals for the transverse
and longitudinal piezoelectric effects, respectively, g=

(4π c(1)∗44 /ϵ)1/2, ϵ is the permittivity.
To find the dispersion equation describing electroacous-

tic waves in a PT-symmetric gap structure, we introduce the
relation:

α= αcoeffk (A.2)

where αcoeff = α/k≪ 1. According to this replacement and
equations in section 2 we can obtain the following substitutes
for the quantities included in the dispersion equation (A.1):

c∗44 = c∗44(1±αcoeff), K
2 → K2(1∓αcoeff),

K⊥ → K2
⊥(1∓αcoeff), g= g(1±αcoeff)

1/2.
(A.3)

The upper sign is for a medium with amplification and the
lower one with attenuation.

A solvability requirement, expressed by the equality to zero
of the determinant of the system of equation (A.1), gives the
desired dispersion relation for gap electroacoustic waves in a
layered structure of class 6mm piezoelectrics with a vacuum
gap. The determinant of the system of equations has the form
taking into account that α2

coeff = (α/k)2 ≪ 1:

(1+ iαcoeff)
3/2k(K+ iK⊥)

[
i(1− iαcoeff)

3/2k(−K+ iK⊥)

×{(Eexp(4hk)− 1)(K2 − 4αcoeffϵKK⊥ + ϵK2
⊥}

+(1+ iαcoeff)
1/2((i+αcoeff)

2kKK⊥ − i s1)

×{iEexp(4hk)(ϵ+ 1)(K+ iϵK⊥)

+(K(1− iαcoeff − iϵK⊥(1+ iαcoeff))(−i+αcoeff

+ϵ(i+αcoeff))}] + (1− iαcoeff)
1/2(−ik(−i+αcoeff)

2KK⊥ + s2)

×
[
(1− iαcoeff)

3/2k(K− iK⊥){exp(4hk)(ϵ+ 1)(K− iϵK⊥)

+ (−1+ ϵ+ iαcoeff(1+ ϵ)+ iϵK⊥(1− iαcoeff))}

+(1− iα1/2
coeff{−(−1+ ϵ)2 + exp(4hk)(1+ ϵ)2

+α2
coeff)(exp(4hk)− 1)((1+ ϵ)2(−ik(i+αcoeff)

2KK⊥ − s1))}
]
= 0.

(A.4)

To calculate the field profile, we solve five equations of the
system (A.1). The results of solving this system are:

F1 =−g
(−iKK⊥α−KK⊥k+ is∗1 )

(K− iK⊥)(ik+α)
U1,

A= g
((−iα+ k)(K2 − ϵK2

⊥)− (1+ ϵ)s∗1 )

2k(K− iK⊥)
exp[2(iα+ k)h+ 2αx]U1,

B= ig
((α2 + k2)K2 − ϵ(α+ ik)2K2

⊥)+ [−iα(1+ ϵ)− (ϵ− 1)k]s∗1 )

2k(α+ ik)(K− iK⊥)
U1,

F2 = g(−iϵkcosh(2hk){α2KK⊥(K− iK⊥)+ k(K+ iK⊥)(kKK⊥ + i s∗1 )

+α(kKK2
⊥ +(K− iK⊥)s∗1 )}+ sinh(2hk){(α+ ik)2(iα+ k)K3−

−αϵ(α2 + k2)K2K⊥ − iαϵ(α+ ik)2KK2
⊥ + ϵ2(α− ik)(α+ ik)2K3

⊥

× s∗1 (αkϵ(iK+K⊥)+α2(ϵ+ 1)(K+ iϵK⊥)+ k2(K+ iϵ2K⊥))})

× exp[2iαh+ 2αx](ϵk(α2 + k2)(K− iK⊥)2)−1U1,

U2 = (−ϵexp(2hk)(α2 + k2)i(α+ ik)(K2 − ϵK2
⊥)+ s∗1 (1+ ϵ)

+ (iα(1+ ϵ)+ k(ϵ− 1)){(α2 + k2)K2 − ϵ(α+ ik)2K2
⊥

+ s∗1 (−iα(1+ ϵ)+ k(ϵ− 1))})exp[2iαh− 2hk+ 2αx](2ϵk(α2 + k2)

× (K− iK⊥)2)−1U1. (A.5)

where s∗1 = s1(1+ iαcoeff).
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