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INTRODUCTION

Extensive development of composite media has
stimulated the consideration of artificial dielectrics
characterized by effective permittivity, artificial mag�
netics with effective permeability, chiral media with
the chirality tensor, and bianisotropic media with all of
these parameters [1, 2]. The investigation of meta�
structures that are combinations of artificial media
with both each other and artificial materials is of inter�
est. In this study, the propagation of microwaves in a
metastructure containing a bianisotropic plane layer
and a ferrite plane layer is analyzed.

The necessity of investigating the propagation of
microwaves in bianisotropic�ferrite metastructures is
additionally stimulated by the experimental discovery
of the nonreciprocal propagation of microwaves in lat�
tice of resonance elements–magnetized ferrite struc�
tures that are placed in a waveguide [3, 4] (where the
revealed nonreciprocity hundredfold exceeds that in
the absence of a lattice) and in free space [4]. The non�
reciprocity of the microwave propagation in a ferrite
placed in free space in the absence of a lattice is not
observed. In [4], it is supposed that the observed non�
rciprocal effects can be attributed to the lattice�
induced formation of surface waves (or plasmon
polaritons) with the rotating magnetic field and differ�
ent ferrite absorption factors of the waves such that the
direction of the magnetic field rotation coincides with
and is opposite to the direction of spin precession in
the ferrite. In [5, 6], surface waves formed by a
bianisotropic layer (without a ferrite) in a rectangular

waveguide and in free space are studied. Here, we con�
sider waves in a bianisotropic layer–dielectric–ferrite
plate structure (Fig. 1)

Bianisotropic media, as numerous other artificial
media, are often realized in the form of wire media or
regular structures consisting of small conducting reso�
nance elements (Ω�shaped particles, planar double
split rings (PDSRs), short rods or strips, etc.) [7].
Therefore, with the help of a bianisotropic layer, we
simulate the influence of a lattice of resonance ele�
ments just as a magnetic metamaterial layer simulates
a PDSR lattice in [8]. Assume that effective permittiv�
ity ε and permeability μ of the bianisotropic medium
are diagonal tensors. The elements εjj = εj, as well as
μjj = μj, are nonzero and, generally, are different for
different j. Generally, the nonzero elements of the

chirality tensor are κyz =  = κ. Permittivity of the
ferrite εf is a scalar, and the elements of its permeability
tensor are μ and ±iμа as usual [9]. The expressions for
these quantities used in the calculation are presented
below. Imaginary parts μ and μа describe the absorp�
tion of waves by the ferrite, and the real parts describe
the effect of the ferrite (having a finite thickness) on
the structure and the wave propagation constant. In
the case when the permittivity of the dielectric layer
εd is 1, this layer simulates the air gap between the fer�
rite and lattice. The dispersion equation derived below
can also be applied to study structures containing an
active layer (SPASER [10]). In the latter case, the
intrinsic permittivity of the active layer with a positive
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(for fields of the form Eexp(iωt)) imaginary part is
used as εd.

Note that waves in a ferrite–dielectric plate were
studied earlier, and these studies were necessitated by
the development of resonance strip isolators [11]. The
situation we consider here differs from that described in
[11] primarily by the presence of the dispersion of the
refractive index. This dispersion is due to the resonances
of elements forming the bianisotropic medium. The
second difference is the possibility of attaining the
refractive index values substantially exceeding those of
natural dielectrics.

1. FIELD DISTRIBUTIONS

Consider harmonic waves of frequency ω that
propagate along the X axis

(1)

Here, k0 =  is the wave number in free space
and nx = n' + in'' is the effective refractive index or the
slowing factor. The electric field of waves is polarized
in the same way as it is in the experiments on the obser�
vation of the nonreciprocal wave transmission [3, 4] in
parallel to external magnetic field H0, i.e., along the
Y axis. By analogy with the study of problems with a
ferrite plate in [11], we restrict the consideration to
waves whose amplitudes are independent of the coor�
dinate measured in the direction of magnetostatic
field H0.

The investigation of nonreciprocity necessitates
the dispersion equation for our metastructure and its
solutions obtained with allowance for the dispersion
properties of the materials of the layers forming the
structure.

Proceeding from the Maxwell equations and taking
into account the requirement of the absence of fields
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at infinity, we find the field amplitudes depending on
transverse coordinate z:
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Fig. 1. Considered metastructure: (H0) the external magnetostatic field; (k, E, and H) the wave, electric, and magnetic vectors of
the wave; (1) bianisotropic layer; (2) dielectric; and (3) ferrite.
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Formulas (2)–(6) contain parameters p, q, r, and s
determined from the relationships

(7)

(8)

(9)

(10)
Here, µx, and µz are the elements of the permeabil�

ity of the bianisotropic material, nbm is its effective
refractive index,

(11)

µ⊥ = µ –  is the effective the permeability of the
ferrite for the transverse electromagnetic wave.

2. THE DISPERSION EQUATION

The continuity conditions for the tangential com�
ponents of the electric and magnetic fields on the
vacuum–bianisotropic material (at z = –b), bianiso�
tropic material–dielectric (at z = 0), dielectric–fer�
rite (at z = d), and ferrite–vacuum (at z = d + f) inter�
faces yield the following equations coupling ampli�

tudes A±,  , and  in the planes with
coordinates z indicated below:
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The set of relationships (12)–(19) form a system of
simultaneous equations when its determinant D is
zero, i.e., the dispersion equation

(20)

is satisfied. The nonzero elements of this eighth�order
determinant are

 

(21)

Below, the obtained dispersion equation is used for
investigating the dependences of the nonreciprocity of
propagation of microwaves in the considered meta�
structure on their frequency, the direction and magni�
tude of the external magnetic field, and the distance
between the ferrite and bianisotropic layers.

3. THE NONRECIPROCITY 
OF WAVE PROPAGATION

Let us specify the terms. The bianisotropic material
may prove to be a so�called negative (double negative)
medium at the frequencies such that its effective per�
mittivity and permeability are simultaneously negative
[12]. Waves in such media (and in metastructures con�
taining them) can be forward and backward. For for�
ward waves, the direction of phase shift coincides with
the direction energy (power) flux propagation (and,
hence, attenuation). For backward waves, these direc�
tions are opposite. Therefore, for forward (backward)
waves, n' and n'' have opposite (identical) signs [13]. In
the studies dealing with the nonreciprocity of wave
propagation, another meaning of forward and back�
ward waves is considered: it is assumed that a forward
wave propagates from the source, and the backward
wave moves toward it, i.e., moves in the direction
opposite to the direction of the forward wave propaga�
tion [11]. In such situations, it is reasonable to speak

( )( ) 0xD n d
αβ

ω = =

( ) ( )

( ) ( )
11 12 0 13 0

21 22 0 23 0

32 34

1, cos , sin ,

, sin , cos ,

1, 1,
x

d d k qb d k qb

d p d q k qb d q k qb

d d

= = =

= µ = = −

= =

( ) ( )

( ) ( )

43 45

54 0 55 0

56 0 57 0

, ,

cosh , sinh ,

cos , sin ,

xd q d s

d k sd d k sd

d k rd d k rd

= − = µ

= =

= − = −

( ) ( )

( ) ( )

( ) ( )

2 2
64 0

2 2
65 0

66 0 0

sinh ,

cosh ,

cos sin ,

a

a

a x

d s k sd

d s k sd

d n k rd r k rd

= µ − µ

= µ − µ

= µ + µ

( ) ( )

( )[ ]

( )[ ]

67 0 0

76 0

77 0 78

sin cos ,

cos ,

sin , 1,

a xd n k rd r k rd

d k r d f

d k r d f d

= µ − µ

= +

= + =

( )[ ] ( )[ ]

( )[ ] ( )[ ]
86 0 0

87 0 0

2 2
88

cos sin ,

sin cos ,

( ).

a x

a x

a

d n k r d f r k r d f

d n k r d f r k r d f

d p

= µ + + µ +

= µ + − µ +

= µ − µ



546

JOURNAL OF CJOURNAL OF COMMUNICATIONS TECHNOLOGY AND ELECTRONICS Vol. 58  No. 6  2013

BUTYLKIN et al.

about transmitted and counterpropagting waves rather
than forward and backward waves. It is necessary to
indicate where a wave is transmitted from and specify
the direction of its propagation. It is important that the
directions of propagation of the energies (and attenu�
ation of the amplitudes) of the transmitted and coun�
terpropagating waves are opposite: the signs of n'' are
opposite for these waves. The directions of the phase

shift are of no importance. Below, we use notation 
and  for the wave whose energy is transported (and
decreases) in the direction of the X axis and notation

 and  for the wave whose energy is transported in
the opposite direction of the X axis. It follows from (1)
that  < 0 and  > 0. For the metastructure shown in
Fig. 1, we consider two terminal planes: the near plane
with x = 0 and the far plane with x = L. For the near
terminal, the wave with  < 0 is a transmitted one, and
the wave with  > 0 is a counterpropagating one. For
the far terminal, the wave with  > 0 is a transmitted
one, and the wave with  < 0 is a counterpropagating
one. The energy of the wave that is transmitted from the
near terminal and covers a path of length L in the interior
of the metastructure is attenuated by the factor

= exp(–2k0 L), and the energy of the wave trans�
mitted from the far terminal is attenuated by the factor

 = exp(2k0 L). The ratio of these attenuation factors

 

can serve as a measure of the nonreciprocity of wave
propagation. When  = – , the propagation is recip�
rocal. The quantity

(22)

is the specific transmission nonreciprocity parameter
per unit path length.

4. THE SPECTRA OF THE SLOWING FACTOR 
AND SPECIFIC NONRECIPROCITY 

PARAMETER OF WAVE PROPAGATION

The frequency dependences of the slowing factor
nx = n' + in'' and the nonreciprocity parameter of wave
propagation along the metastructure are determined
by the ferromagnetic resonance (FMR) of the ferrite
and the resonance of bianisotropic material elements
(RBME, the resonance of the lattice in the experi�
ments). The dependences of dielectric and ferrite per�
mittivities εd and εf, respectively, on frequency are
practically unnoticeable against these resonances.
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The FMR�induced dispersion of the components
of the ferrite permeability tensor is described by the
formulas
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where ωH = γ|H0| is the FMR frequency in free ferrite,
the frequency ωM = 4πγM0 is determined by saturation
magnetization M0 of the ferrite, γ is the gyromagnetic
ratio, and τ is the transverse relaxation time.

The characteristics of the bianisotropic material
(its refractive index nbm and permeability elements μx
and μz) are involved in parameter q determined by
relationship (9) and, therefore, enter the dispersion
equation.

As an example, let us consider a bianisotropic
material consisting of PDSRs with a negligible loss.
According to [14], the parameters of this material are
as follows:
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Here, εy(0) is the low�frequency limit of the y element
of the permittivity tensor; ωn, ωµ, and ωb are the fre�
quencies of the reversals of the signs of effective refrac�
tive index nbm and corresponding permeability μz.

Figure 2 depicts the frequency dependences (spec�
tra) of the imaginary and real parts of the wave slowing
factors in this structure. The results are obtained from
the solution of the dispersion equation with allowance
for dependences (23)–(25) for the positive direction of
magnetostatic field H0. Quantity H0 corresponds to the
FMR frequency ωH = 0.3ω0. In the calculation, the
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intersection of the boundary with the region where
there are no propagating modes.

Figure 3 shows the spectra of the imaginary and
real parts of the wave slowing factors for the positive
(aligned with the Y axis) magnetostatic field corre�
sponding to the FMR frequency ωH = 1.4ω0.

The same calculation is performed for the inverted
magnetostatic field.

Note certain features of the calculated spectra.
(i) In each of the figures like Figs. 2a and 3a, we can

separate two ranges where quantity |n''| substantially
exceeds its values in the remaining segment of the
spectrum. One range is related with the FMR; how�
ever, it does not coincide with FMR frequency ωH but
is tuned as this frequency changes. The other range is

adjacent to the resonance frequency of the wire struc�
ture elements. As the external field intensity changes,
this range shifts within a bounded interval around the
RBME frequency.

(ii) In Fig. 2, marked is the region where the signs
of n' and n'' are identical for the counterpropagating
wave (  < 0 and  < 0), i.e., the counterpropagating
wave is backward. In the case of the inverted magneto�
static field (H0 < 0), the transmitted wave is backward
(  > 0 and  > 0) in the same region.

(iii) In Fig. 3, there is a region with no propagating
waves.

(iv) In Figs. 2b and 3b, the regions of slowed (with
| | > 1) and accelerated (with | | < 1) waves are
observed.
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(v) The aforementioned region of backward waves
and the region without propagating waves do not coin�
cide with such regions obtained in [6] for a bianisotro�
pic plate with the same parameters of the bianisotropic
medium. This circumstance indicates that the ferrite
layer substantially affects the modes formed by the
structure as a whole.

(vi) The frequency dependences of the slowing fac�
tors for transmitted (n+) and counterpropagating
waves (n–) are nonsymmetric with respect to the zero
point, which indicates the nonreciprocal wave propa�
gation.

(vii) The inversion of the direction of the external
magnetic field leads to the interchange of the trans�
mitted and counterpropagating waves (n+  n–). This
means that the change of the direction of the signal
transmission is equivalent to the inversion of the direc�
tion of the magnetic field, a circumstance that is typi�
cal of all known experiments on the nonreciprocity of
wave transmission.

The frequency dependences of the specific nonrec�
iprocity parameter that are found with the use of the
dependences from Figs. 2, 3 and similar dependences
calculated for other values of air gap d between the fer�
rite and bianisotropic layer are depicted in Fig. 4.

�

Figure 5 shows the same dependences of the non�
reciprocity parameter for inverted field H0 and d =
0.15 mm.

In these figures, we can see frequency bands of
nonreciprocal microwave transmission that are related
with the FMR and RBME. We can also notice that,
when FMR frequency ωH passes frequency ω0 of the
resonance of metamaterial elements in the case of the
constant direction of the magnetostatic field, the sign of
the nonreciprocity parameter is reversed in both the
region related with the FMR (see, e.g., the passage from
Fig. 4a to Fig. 4c) and the RBME region (curves 1–3
and 4–6 from Fig. 4b).

The reduction of the air gap leads, as a rule, to the
increase of the absolute peak values of the nonreci�
procity parameter of wave transmission and to small
shifts of the maximum nonreciprocity frequency. The
curves for d = 0.15 mm and d = 0 practically coincide,
therefore, the latter are not presented in the figures.
Curve 6 from Fig. 4c is an odd one among other
dependences, apparently, because it refers to a special
mode whose radiation concentrates, as in a waveguide,
in the region between the bianisotropic and ferrite lay�
ers, which is possible at high frequencies when the gap
is rather large. The inversion of the external magnetic
field causes the reversal of the nonreciprocity sign (cf.
the curves from Fig. 5 and Fig. 4 for d = 0.15). Let us

1.0

0.5

0

–0.5

1.61.41.21.00.80.60.4 ω/ω0

δ, mm–1

Fig. 5. Frequency dependences of the specific nonreciprocity parameter for H0 < 0 and d = 0.15 mm. Resonance regions are not
marked. The solid and dashed curves are obtained for ωH/ω0 = 0.3 and 1.4, respectively. The rectangle marks the region where
the backward wave exists at ωH/ω0 = 0.3.
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compare some more conclusions from study [6] with
the results illustrated in Figs. 4 and 5. We note the
reversal of the sign of the nonreciprocity parameter at
the boundary between the regions of forward and
backward wave propagation. In addition, we see that
the frequency of the maximal nonreciprocity in the
RBME region for small d (see Fig. 4b) is close to fre�
quency ωdeg ≈ 1.17ω0 of local degeneration (corre�
sponding to ξdeg ≈ 1.37 in Fig. 2 from [6]), at which the
polarization of the magnetic field is the closest to cir�
cular.

CONCLUSIONS

Thus, in the study, we have revealed the following:
(i) The transmission of microwaves along bianiso�

tropic�ferrite metastructures is nonreciprocal;
(ii) There are two frequency bands of microwave

transmission nonreciprocity: one is related with the
resonance of structure elements, and the other is
related with the FMR and tuned under the variation of
the external magnetic field;

(iii) The sign of the microwave transmission non�
reciprocity is reversed when the positional relationship
of the aforementioned resonances changes;

(iv) The decrease of the thickness of the air gap
between the ferrite and bianisotropic layers increases
the nonreciprocity of wave transmission.

In addition, in study [15], the following conclusion
has been drawn: the sign of the microwave transmis�
sion nonreciprocity is reversed when the ferrite and
bianisotropic layers are interchanged in the structure
without an air gap.

These features have been found in the experiments
[3–6] with a ferrite plate and lattices of resonance ele�
ments. Hence, the developed theoretical approach
makes it possible to explain (qualitatively at the cur�
rent stage) the observed phenomena and experimental
facts.

We should specially note that the nonreciprocal
transmission of signals can be provided at frequencies
substantially exceeding (by a factor greater than 3 in
the above example with ωH = 0.3ω0) the FMR fre�
quency reachable with the available magnet (or the
available power supply of an electromagnet). The use
of hexaferrites and nanotechnologies can ensure the
application of nonreciprocal structures of the consid�
ered types in the terahertz band.
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