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Anishchenko-Astakhov quasiperiodic generator excited by external

harmonic force
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A harmonic effect on a modified Anishchenko-Astakhov generator capable of demonstrating two-frequency quasi-

periodic oscillations in the autonomous mode is considered. The possibility of doubling the three-frequency tori

in a non-autonomous system is shown. The possibility of the effect of chaos suppression by an external signal is

demonstrated, which leads not only to periodic, but also to quasi-periodic modes when the influence amplitude

exceeds a certain threshold.
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A radiophysical generator proposed by Anishchenko and

Astakhov may be considered as one of the basic models

manifesting deterministic chaos [1]. This generator is a

three-dimensional dynamic system and has been thoroughly

examined both theoretically and experimentally (see mono-

graphs [2,3] and references therein). Its modification sup-

porting autonomous quasi-periodic oscillations in addition

to periodic and chaotic regimes has been proposed in [4].
An oscillation circuit in the feedback loop, which provides

a new additional frequency, is used for this purpose. The

end result is an autonomous four-dimensional model that

is convenient for the study of quasi-periodic oscillations.

This generator has been studied in [5], and the possibility

of doubling of a two-frequency torus upon an increase

in the excitation parameter has been demonstrated. The

problem of synchronization of a resonance limit cycle

on a torus, the emergence of resonance two- and three-

frequency tori on the surface of a four-frequency torus, the

influence of noise on a four-frequency torus, and other

problems arising in the case of two coupled generators

have been discussed [5–7]. The emergence of hyperchaos

via secondary Neimark−Sacker bifurcation has also been

examined [8,9]. At the same time, the influence of a

harmonic signal on the modified generator has remained

understudied. This problem appears significant in the

context of formulating a sufficiently complete description

of synchronization of quasi-periodic oscillations.

The equations of the modified Anishchenko−Astakhov

generator are as follows [4]:

ẋ = mx + y − xϕ − dx3,

ẏ = −x ,

ż = ϕ,

ϕ̇ = −γϕ + γ8(x) − gz , (1)

where

8(x) = I(x)x2, I(x) =

{

1, x > 0,

0, x 6 0.
(2)

Here, m is the generator excitation parameter, d is the non-

linear dissipation parameter, γ is the attenuation parameter,

and g is the inertia parameter of a filter providing the second

independent frequency. We use the following parameter

values: d = 0.001, γ = 0.2, and g = 0.5.

Let us now add an external harmonic influence:

ẋ = mx + y − xϕ − dx3 + a cosωt,

ẏ = −x ,

ż = ϕ,

ϕ̇ = −γϕ + γ8(x) − gz , (3)

where a and ω are its amplitude and frequency.

When excitation parameter m increases, doubling of a

three-frequency torus (instead of a two-frequency one)
may be observed in this case. This is illustrated by

Fig. 1. Portraits of attractors in a double Poincaré

section are shown in the insets of this figure. Let us

explain how such a section is plotted. The result of a

common Poincaré section for a system subjected to external

harmonic influence is a set of points obtained by way of a

stroboscopic section. In order to plot a double section, we

considered only those points from the mentioned set that

fall within a certain thin phase-space layer defined, e.g.,

by condition |x | 6 0.005. The result of a double section

(i.e., stroboscopic section and section by plane x = 0) of

the phase space of system (3) is presented in Fig. 1. In

a double section, a three-frequency torus looks like two

smooth ovals. When m increases, doubling of this torus
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Figure 1. Portraits of three-frequency tori 3T in a double Poincaré section (insets) and dependences of Lyapunov exponents 3i of system

(3) on excitation parameter m. a = 0.03, ω = 4. DT is the point of doubling of a three-frequency torus.
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Figure 2. Portrait of system (3) in a stroboscopic section (inset)
and plots of its Lyapunov exponents 3i . m = 0.07, ω = 6. P is the

region of periodic regimes, 2T is the region of two-frequency tori,

C is the chaos region, and NS is the Neimark−Sacker bifurcation

point.

occurs at point DT ; as m grows further, the torus gets

destroyed.

The main part of Fig. 1 shows the dependences of

the three largest Lyapunov exponents of system (3) on

excitation parameter m. Note that one exponent is always

equal to zero in flow systems. Since we calculate the

exponents in a stroboscopic section, this zero exponent is

dropped. Thus, zero values of two exponents 31 = 32 = 0

correspond to a three-frequency torus (a similar pattern

is seen for discrete maps [10]). The presented plots also

confirm the nature of bifurcation: exponent 33 goes to zero

at the bifurcation point and remains negative in its vicinity.

This is the sign of torus-doubling bifurcation [11,12].

Let us now consider the changes in behavior of the

system induced by the variation of input amplitude a (note
that chaos is observed at a = 0). We fix the value of

parameter m = 0.07 corresponding to the destruction of a

torus. The dependences of Lyapunov exponents on input

amplitude a are shown in Fig. 2. It can be seen that,

as expected, chaotic or hyperchaotic regimes with one or

two positive Lyapunov exponents are established at low

amplitudes. Periodic regime P with all the exponents being

negative, however, emerges at large amplitudes. Thus, the

effect of suppression of chaos by an external periodic force

is observed in the system [13]. Two Lyapunov exponents

are equal in this case (31 = 32) and go to zero at point

NS. This is the point of Neimark−Sacker bifurcation

that induces two-frequency quasi-periodic regime 2T with

31 = 32 = 0. The corresponding attractor in a stroboscopic
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Figure 3. Bifurcation tree of system (3) plotted using a

stroboscopic map. m = 0.07, ω = 6.

section is presented in the inset of Fig. 2. This attractor is

a closed invariant curve. Thus, owing to the suppression

of chaos, a quasi-periodic regime, which occupies an

extensive area in terms of the input amplitude, emerges

in this system in addition to a periodic regime similar

to the one reported in [13]. As the input amplitude

decreases further, the torus undergoes doubling and then

gets destroyed.

The bifurcation tree for ω = 6 is presented in Fig. 3.

Neimark−Sacker bifurcation point NS and two-frequency

quasi-periodic regime 2T are seen.

Thus, new effects may be observed if a quasi-periodic

Anishchenko−Astakhov generator is subjected to the in-

fluence of a harmonic signal. At small input amplitudes,

this new effect is the doubling of a three-frequency torus.

At large amplitudes, the effect of chaos suppression, which

induces both periodic and quasi-periodic regimes, manifests

itself.
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