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Appearance of chaotic dynamics as a result of multi-frequency tori destruction is carried out on the ex- 

ample of a model of a multimode generator. Quasiperiodic bifurcations occurring with multi-frequency 

tori are discussed in the context of the Landau-Hopf scenario. Structure of the parameter space is stud- 

ied, areas with various chaotic dynamics, including chaos and hyperchaos, are revealed. Scenarios of the 

development of chaotic dynamics are described, the features of chaotic signals of various types are re- 

vealed. 
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. Introduction 

Quasiperiodic oscillations are typical attribute of the dynam- 

cs of non-autonomous systems and ensembles of coupled self- 

ustaining oscillators [1–5] . Quasiperiodic oscillations can be classi- 

ed according to the number of independent frequencies involved 

n the dynamics. In the simplest case, a system is characterized 

y two incommensurate frequencies; then attractor of the system 

s a two-frequency torus. An increase in the number of indepen- 

ent frequencies leads to an increase in the torus dimension and 

omplication of dynamics. The classic examples of the transition 

o chaos as a result of the destruction of the torus are the Landau-

opf scenario [ 6 , 7 ] and the Ruelle and Takens scenario [8] . As ap-

lied to turbulence, Landau assumed that the transition to chaos 

ccurs through an infinite sequence of the creation of new fre- 

uencies (modes), and in the limit a complex chaotic behavior is 

orn [ 6 , 7 ]. Later Ruelle and Takens [8] showed that the transition

o chaos can also occur in the case of a small number of inde-

endent modes: the torus breaks down even in the case of two 

ncommensurate frequencies and transforms into a strange chaotic 

ttractor. As a result, by now there are a large number of works de- 

oted to the study of the transition from a two-dimensional torus 

o chaos [9–11] . Later situations when tori with three or more fre- 
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uencies are preserved were shown. A logical step in this direc- 

ion is the study of the evolution of quasiperiodic oscillations of 

igher dimension. However, the study of the evolution of tori of 

imension three and more turned out to be a much more difficult 

ask, especially in experiment [12] . Professor Vadim Anishchenko 

as one of the first who study the destruction of a three-frequency 

orus [13–16] . 

Non-autonomous oscillators and ensembles of interacting os- 

illators are usually used as the simplest models demonstrating 

ulti-frequency quasiperiodic oscillations. In [17] , using the exam- 

le of a network of globally coupled van der Pol oscillators, the 

ossibility of implementing a sequence of quasiperiodic Hopf bi- 

urcations was shown. However, in such a model the chaos do- 

ains are very small in the parameter space, and arise during 

he destruction of two-frequency tori. In [18] , a model of a multi- 

ircuit generator was proposed, in which the possibility of multi- 

requency quasiperiodic oscillations, as well as the formation of 

haotic dynamics, was demonstrated. The aim of the current work 

s to study the formation of chaotic dynamics in a multi-circuit 

enerator [18] in the case when tori with different numbers of in- 

ommensurate frequencies are destroyed. 

The work is structured as follows. In Section 2 a mathemati- 

al model of a multi-circuit generator is presented, the structure 

f the parameter plane of a multi-circuit generator is analyzed, the 

omains of quasiperiodic oscillations with different numbers of in- 

ommensurable frequencies are localized, the types of chaotic dy- 
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amics are classified depending on the spectrum of Lyapunov ex- 

onents. Section 3 is devoted to the investigation of chaotic attrac- 

ors arising according to various scenarios: with the destruction of 

 two-frequency torus, as well as with the destruction of a four- 

nd three-frequency tori. The analysis of quasiperiodic bifurcations 

ith variation of the parameters of the system is carried out, the 

roperties of various types of chaotic attractors are investigated. 

. Multi-mode generator as an object of study of 

ulti-frequency quasiperiodic oscillations 

A multi-circuit generator can be used as the simplest self- 

ustained generator in which multi-frequency quasiperiodic oscilla- 

ions can be implemented. In [18] a model of a multi-circuit gen- 

rator was proposed, in which the possibility of multi-frequency 

uasiperiodic oscillations, as well as the formation of chaotic dy- 

amics was demonstrated. Such a generator consists of N oscilla- 

ory circuits coupled via a common positive feedback circuit. Each 

scillatory circuit has its own frequency, as well as a parameter re- 

ponsible for its excitation, i.e. for the excitation of each mode in 

he generator. 

Mathematical model of such a generator can be written with 

he following system of differential equations: 

¨
 i − (λk i − x i 

2 ) ̇ x i + �i x i + 

n ∑ 

i =1 

k i ̇ x i − k i ̇ x i = 0 (1) 

here i = (1 .. N ), the number of circuits in the generator, x i , ˙ x i are

he dynamic variables of each oscillatory circuit. Each oscillatory 

ircuit is a van der Pol type oscillator, in which the parameter λ
s responsible for the excitation of self-oscillations in the circuit. 

he parameters �i determine the frequencies of each oscillatory 

ircuit. 

Following [18] we will also consider the case of a five-circuit 

enerator, i.e. N = 5 with an irrational ratio of all natural frequen- 

ies distributed as: �1 = 1, �2 = 

√ 

3, �3 = 

√ 

11, �4 = 

√ 

41, �5 = 

√ 

153. 

The main tool for analyzing complex oscillatory modes, includ- 

ng chaotic and quasiperiodic, is the analysis of the full spectrum of 

yapunov exponents [19] . Analysis of the spectrum of Lyapunov ex- 

onents allows: to identify chaotic oscillations; diagnose quasiperi- 

dic oscillations with different numbers of incommensurate fre- 

uencies; determine the type of quasiperiodic bifurcation (Hopf 

r saddle-node) [ 4 , 20 , 21 ]; to classify different types of chaotic dy-
amics. 

ig. 1. Chart of Lyapunov exponents ( a. ) and it zoomed fragments ( b. and c. )for multi-cir

 3 = k 4 = 0.5. 

2 
A preliminary analysis of the five-circuit generator (1) showed 

18] that in such a system, quasiperiodic oscillations with a differ- 

nt number of frequency components from five to one are possi- 

le. Moreover with an increase in the parameters responsible for 

he gains of each mode, the system retains only two-frequency 

uasiperiodic oscillations and chaos resulting from the destruc- 

ion of a two-frequency torus with one positive and one zero Lya- 

unov exponents. At small values of the amplification coefficients 

uasiperiodic oscillations with a different number of incommensu- 

ate frequencies are preserved (for N = 5 with three, four, and five 

requencies), and when they are destroyed, not only chaotic oscil- 

ations, but also hyperchaotic ones are formed. 

Fig. 1 shows a chart of Lyapunov exponents and its enlarged 

ragments for a model of a five-circuit generator (1). These charts 

ere constructed as follows: for each point of the parameter plane, 

he full spectrum of Lyapunov exponents was calculated in accor- 

ance with the Benetin algorithm [22] , depending on the values 

f the exponents, a point on the parameter plane was colored in 

ne or another colors, in accordance with the palette shown in the 

ig. 1 . The spectrum signature and symbolic designation are also 

resented in Table 1 . As mentioned earlier, the circuit frequencies 

ere separated from each other, with each of the amplification co- 

fficient responsible for exciting each of the modes. Thus, the gain 

f each circuit introduces an additional oscillatory mode into the 

ynamics of the system. In our numerical experiments, we fixed 

he gains of the second, third, and fourth oscillatory circuits to be 

he same, rather small, and monitored the dynamics as the gains 

f the first and fifth circuits were varied. Fig. 1 shows charts for 

 2 = k 3 = k 4 = 0.5. 

In accordance with the spectrum of Lyapunov exponents, we 

dentified two types of chaotic dynamics that were found in the 

ystem under consideration: (i) chaos with one positive, one zero, 

nd eight negative Lyapunov exponents (black); (ii) hyperchaos 

ith two positive, one zero and seven negative Lyapunov expo- 

ents (white). In numerical experiments, when constructing charts 

f Lyapunov exponents, we fixed the threshold of equality of Lya- 

unov exponents to zero equal to 0.001, i.e. if | �i | < 0.001, then we

ssume that the exponent is zero. Moreover, in the case when we 

bserve several zero exponts (for quasiperiodic oscillations), they 

ill have a different order, but with an increase in the calcula- 

ion accuracy, they will approach zero. For one-parameter plots of 

yapunov exponents, we increased the accuracy of calculating Lya- 

unov exponents. 
cuit generator (1)at �1 = 1, �2 = 

√ 

3, �3 = 

√ 

11, �4 = 

√ 

41, �5 = 

√ 

153, λ= 1, k 0 = 1, k 2 = 
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Table 1 

Accordance of the dynamic regime, the signature of the spectrum of Lyapunov exponents and its symbolic notation. 

Dynamic regime Symbolic Notation Signature of the spectrum of Lyapunov exponents 

Periodic regime P (0, -, -, -, -, -, -, -, -, -) 

Two-frequency quasi- periodic regime T 2 (0, 0, -, -, -, -, -, -, -, -) 

Three-frequency quasi- periodic regime T 3 (0, 0, 0, -, -, -, -, -, -, -) 

Four-frequency quasi- periodic regime T 4 (0, 0, 0, 0, -, -, -, -, -, -) 

Five-frequency quasi- periodic regime T 5 (0, 0, 0, 0, 0, -, -, -, -, -) 

chaos C ( + , 0, -, -, -, -, -, -, -, -) 

Hyperchaos HC ( + , + , 0, -, -, -, -, -, -, -) 

p  

r

o

c

f

e

a

q

q

d

p

w

a

o

o

f

 

q

c

r  

i

t

r

i

s  

k

t

l

t  

A

w

k

b

c

c

a

a

p

s

c

w

t

a  

k

l  

o  

p

s

f

s

I

t

t

3

t

t

d

a

t

a

a

u

p

t

m

w

e

3

s

n  

r

p  

s

F  

fi

h

fi

w

F

i

s

F

S

a

t

o

7

w

s

o

t  

p

(

p  

fi

c

t

Let us turn to the description of the charts of Lyapunov ex- 

onents. Fig. 1 a shows a chart in wide ranges of variation of pa-

ameters and two of its enlarged fragments visualizing the regions 

f multi-frequency quasiperiodic regimes ( Fig. 1 b) and regions of 

haotic oscillations arising as a result of the destruction of multi- 

requency tori ( Fig. 1 c). 

As can be seen from Fig. 1 a, model (1) demonstrates a vari- 

ty of quasiperiodic and chaotic oscillations; periodic oscillations 

re also observed. At small values of the coefficients k 1 and k 5 , 

uasiperiodic oscillations are observed with more than two fre- 

uency components. The parameter plane can be conventionally 

ivided into rectangles with different numbers of frequency com- 

onents (in Fig. 1 b, we conventionally designated these rectangles 

ith dotted lines). An increase in the coefficient of the operational 

mplifier of each of the circuits leads to a decrease in the number 

f frequencies, which corresponds to partial locking or suppression 

f the frequencies of various circuits. This phenomenon is typical 

or multi-mode oscillators and represents mode competition. 

For small fixed k 1 ( k 1 < 0.47), an increase in k 5 leads to a se-

uence of bifurcations, as a result of which quasiperiodic regimes 

hange from four-frequency to two-frequency and then pass to pe- 

iodic oscillations. At 0.78 > k 1 > 0.47, as a result of varying k 5 ,

t becomes possible to excite five-frequency quasiperiodic oscilla- 

ions; however, the regions of five-frequency dynamics in the pa- 

ameter space are rather small. The formation of chaotic dynam- 

cs as a result of the destruction of high-frequency tori is also ob- 

erved. At 1.75 > k 1 > 0.78, with a change in k 5 , as well as at

 1 < 0.23, a transition from four-frequency tori to periodic oscilla- 

ions is observed. At k 1 ≈1.75, a transition to three-frequency oscil- 

ations is observed, which are transformed into two-frequency and 

hen periodic with an increase of k 5 in interval 2.68 > k 1 > 1.75.

t k 1 ≈2.68, a transition to two-frequency oscillations is observed, 

hich will again transform into periodic ones with an increase in 

 5 . Similar bands of multi-frequency tori and transformations can 

e observed at fixed values of the operational amplifier k 5 and in- 

reasing the parameter k 1 . The described transitions represent the 

ompetition between the modes of each oscillatory circuit. With 

n increase in the gain of one of the generators, its dominance 

nd suppression of other modes are observed. Thus, in the com- 

lete system, periodic oscillations are observed in the mode of the 

uppressing circuit. 

In the case when there is no dominance of only one oscillatory 

ircuit, and the gains of the two oscillators are sufficiently large, 

e can speak of the interaction of two modes, which corresponds 

o two-frequency quasiperiodic oscillations on the parameter plane 

t k 1 > 2.68 and k 5 > 3.52. With further increase in the parameters

 1 and k 5 , the development of chaotic dynamics is observed. 

Thus two domains of chaos can be distinguished: (i) arising at 

arge values of the coefficients k 1 and k 5 ; and (ii) for small values

f the coefficients k 1 and k 5 . Chaotic attractors of the first type ap-

ear as a result of the destruction of a two-frequency torus. In the 

econd area, chaotic dynamics is based on the destruction of multi- 

requency tori, while the dominant type of chaotic behavior in the 

econd case is hyperchaos with two positive Lyapunov exponents. 

n the next section, we will consider in more detail the features of 
3 
he formation and classification of chaotic attractors depending on 

he spectrum of Lyapunov exponents. 

. Features of chaotic dynamics 

In a multi-circuit generator, two main types of chaotic oscilla- 

ions can be distinguished, which are realized at large values of 

he parameters k 1 and k 5 , which are generated as a result of the 

estruction of a two-dimensional torus, as well as those which 

re implemented at small k 1 and k 5 are generated as a result of 

he destruction of multidimensional tori. At large k 1 and k 5 , chaos 

rises as a result of the destruction of the two-frequency torus in 

ccordance with the Afraimovich-Shilnikov scenario. For small val- 

es of the parameters, tori with a large number of frequency com- 

onents are destroyed; such attractors have their own peculiari- 

ies. For a more detailed analysis of scenarios for the destruction of 

ulti-frequency tori and the features of the attractors themselves, 

e turn to a one-parameter analysis of the spectrum of Lyapunov 

xponents, Poincaré maps, and Fourier spectra. 

.1. Chaos formation as a result of a two-frequency torus destruction 

Let us first consider a simpler and well-known situation of tran- 

ition to chaos in accordance with the Afraimovich-Shilnikov sce- 

ario [ 23 , 24 ]. We fixed the gain values large enough. To localize

egions of chaotic dynamics, we use one-parameter graphs of Lya- 

unov exponents, which are shown in Fig. 2 a, b. Fig. 2 a demon-

trates graphs depending on the gain of the first oscillatory circuit. 

ig. 2 b shows a graphs for the case of a change in the gain of the

fth oscillatory circuit. Fig. 2 c–g present the Poincaré maps by the 

ypersurface ˙ x 2 = 0 in projection onto the dynamic variables of the 

rst contour, demonstrating the development of chaotic dynamics 

ith an increase in the parameter k 1 . Similar Poincaré maps in 

ig 2 h–l show the development of chaotic dynamics with increas- 

ng parameter k 5 . 

With an increase in the parameter k 1 at k 5 = 6.0, on the ba- 

is of a cycle of period 1, a two-frequency torus is born (TR in 

ig. 2 a, c), which then collapses according to the Afraimovich- 

hilnikov scenario and transforms into a chaotic regime. A char- 

cteristic feature of this scenario is the presence of synchroniza- 

ion tongues arising via saddle-node bifurcations at the threshold 

f chaos. Fig. 2 d shows the Poincaré map for a cycle of period 

. This cycle undergoes a cascade of period-doubling bifurcations, 

hich results in the formation of a 7-component chaotic attractor 

hown in Fig. 2 f. As the parameter k 1 increases, the components 

f the attractor merge, forming a chaotic attractor corresponding 

o the destroyed base torus ( Fig. 2 f). With a further increase in the

arameter k 1 , the development of the chaotic attractor continues 

 Fig. 2 g). 

Fig. 2 b illustrates the transition to chaos with an increase in the 

arameter k 5 for k 1 = 7.0. In this case, for small values of the coef-

cient k 5 , there is a torus alternating with regions of periodic os- 

illations. However, the development of chaos on the basis of the 

orus is not observed. Fig. 2 h and j show the Poincaré maps for 
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Fig. 2. Graphs of the six largest Lyapunov exponents for model (1): a. k 5 = 6.0, b. k 1 = 7.0. Poincaré maps for model (1): c. k 1 = 3.0, k 5 = 6.0; d. k 1 = 3.5, k 5 = 6.0; e. k 1 = 3.8, 

k 5 = 6.0; f. k 1 = 4.0, k 5 = 6.0; g. k 1 = 4.7, k 5 = 6.0; h. k 1 = 7.0, k 5 = 7.0; i. k 1 = 7.0, k 5 = 7.6; j. k 1 = 7.0, k 5 = 7.9; k. k 1 = 7.0, k 5 = 8.0; l. k 1 = 7.0, k 5 = 8.3. Other parameters: �1 = 1, �2 = 

√ 

3, 

�3 = 

√ 

11, �4 = 

√ 

41, �5 = 

√ 

153, λ= 1, k 0 = 1, k 2 = k 3 = k 4 = 0.5. 
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eriod-3 and period-5 cycles. These cycles for sufficiently large val- 

es of the parameter k 5 ( k 5 > 7.5) alternate with chaotic regimes 

 Fig. 2 i, k). The structure of the Poincaré maps for the chaotic at- 

ractors under consideration preserves the shape of the destroyed 

ase torus; however, it is inhomogeneous; condensations of points 

n the vicinity of limit cycles are clearly visible. With an increase 

n the parameter k 5 , the chaotic attractor becomes more uniform 

 Fig. 2 l); such an attractor corresponds to the maximum positive 

yapunov exponent. For all the examples presented, the chaotic at- 

ractor is characterized by one positive, one zero, and eight nega- 

ive Lyapunov exponents. 

.2. Chaos formation as a result of a multi-frequency torus 

estruction 

As mentioned above for small values of the gains of the cir- 

uits in the generator, multi-frequency tori with three, four, and 

ve incommensurate frequencies are observed. The destruction of 

ulti-frequency tori is a complex multidimensional task that in- 

olves many different problems, most of which are still open. It is 

learly seen on the chart of Lyapunov exponents ( Fig. 1 ) that in a

ulti-circuit generator (1) at low amplification coefficients, multi- 

requency tori are destroyed, forming chaotic attractors. Fig. 1 c 

hows an enlarged fragment of the chart in which we classified 

arious types of chaotic behavior depending on the spectrum of 

yapunov exponents. The first feature that is characteristic of the 

haos resulting from the destruction of multi-frequency tori is the 

resence of two positive Lyapunov exponents, the so-called hy- 

erchaos. For a more detailed analysis, we again turn to one- 

arameter plots of Lyapunov exponents and Poincaré maps. 

Fig. 3 shows a graphs of the six largest Lyapunov exponents 

epending on the gain k 1 at k 5 = 0.65, k 2 = k 3 = k 4 = 0.5. At

mall values of the coefficient k 1 , a four-frequency quasiperiodic 

egime is observed; it corresponds to the equality of the four 
4 
argest Lyapunov exponents to zero. In this case, the next two neg- 

tive exponents ( �5 , �6 ) are the same in their absolute value. At 

 1 ≈0.236, the indicators �5 and �6 approach zero, after which 

he fifth indicator remains zero, and the sixth again becomes neg- 

tive. Such a change in the Lyapunov exponents indicates that a 

ve-dimensional torus has arisen in the system as a result of the 

uasiperiodic Hopf bifurcation (QH) [ 4 , 20 , 21 ]. The five-dimensional 

orus remains stable up to k 1 ≈0.34, at which, as a result of the 

addle-node quasiperiodic bifurcation (QSN1), it is transformed 

gain into a four-frequency torus. In the interval k 1 (0.55-1), the 

ormation of chaotic dynamics is observed, which we will consider 

n more detail below ( Fig. 4 ). 

An interesting dynamics of the Lyapunov exponents is observed 

n the interval of the parameter k 1 (1.68-1.76), see Fig. 3 b. At 

 1 = 2, a three-frequency quasiperiodic regime is implemented 

ith three zero Lyapunov exponents, the fourth and fifth are neg- 

tive and are equal to each other in absolute value. In the vicin- 

ty of k 1 ≈ 1.736 ( Fig. 3 b), the fourth and fifth indicators become 

ifferent, the fourth approaches zero, but then becomes negative 

QD). Such dynamics of the Lyapunov exponents is characteristic 

f the torus doubling bifurcation. However, the fourth exponent 

oes not become zero. Fig. 3 c-d shows the Poincaré maps in a sin- 

le Poincaré section with a hypersurface ˙ x 1 = 0 (fragments 1. ) and 

wo projections of the map in a double section with hypersurfaces: 

˙  1 = 0 , x 4 = 0 (fragments 2. and 3. ) for two values of the param-

ter k 1 : before ( k 1 = 1.78, Fig. 3 c) and after ( k 1 = 1.71, Fig. 3 d)

oint QD. As can be seen from the projections onto the plane of 

he first contour, both attractors correspond to a three-frequency 

nvariant torus, the invariant curve in a double section is clearly 

isible ( Fig. 3 c1). The invariant curve has a discontinuity, this fea- 

ure is associated with the choice of the section plane. As the pa- 

ameter k 1 decreases, we pass through the point QD, and Fig. 3 d 

hows similar illustrations for the point k 1 = 1.71. The invariant 

urve in the double section has become more complicated, but at 
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Fig. 3. Graphs of the six largest Lyapunov exponents for model (1): a., b. k 5 = 0.65. Poincaré maps for model (1): c. k 1 = 1.78; d. k 1 = 1.71. Other parameters: �1 = 1, �2 = 

√ 

3, 

�3 = 

√ 

11, �4 = 

√ 

41, �5 = 

√ 

153, λ= 1, k 0 = 1, k 2 = k 3 = k 4 = 0.5, k 5 = 0.65. c1., d1 . - cross-section hypersurface ˙ x 1 = 0 ; c2., c3., d2., d3 . - double Poincaré section with hypersurface 

˙ x 1 = 0 , x 4 = 0 . 

Fig. 4. Graphs of the six largest Lyapunov exponents for model (1) in the domain of hyperchaos. Parameters: �1 = 1, �2 = 

√ 

3, �3 = 

√ 

11, �4 = 

√ 

41, �5 = 

√ 

153, λ= 1, k 0 = 1, k 2 = 

k 3 = k 4 = 0.5, k 5 = 0.65. 
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z

he same time it retained its smooth continuous shape. However, 

n projection onto other variables, the invariant curve in the dou- 

le section has changed, thus we can conclude that the winding 

umber of the three-frequency torus has changed. With a further 

ecrease in the gain k 1 , we observe a transition to a four-frequency 

orus via a saddle-node bifurcation at k 1 ≈ 1.69 (QSN2). 

Let us consider in more detail the features of the formation of 

omplex dynamics in the interval (0.55-1). We construct an en- 

arged fragment of the graphs of Lyapunov exponents, shown in 

ig. 4 a, b with different scales along the ordinate axis. On the en-

arged fragment, two regions of chaos are detected, the first arises 
5 
rom a four-frequency torus, the second from a three-frequency 

ne ( Fig. 4 c, d). 

A feature of the chaos resulting from the destruction of multi- 

requency tori is that the largest Lyapunov exponent is rather 

mall. The maximum value of the largest Lyapunov exponent in 

he considered interval reaches 0.03. If we compare with the chaos 

tudied in Section 3.1 , then these numbers differ by a factor of 10.

n Fig. 4 a, it can also be noted that the second, third and fourth

xponents ( �2 , �3 , �4 ) are close to zero. To refine these expo- 

ents, Fig. 4 b shows an enlarged fragment in the vicinity of the 

ero value of the Lyapunov exponent. It is clearly seen that the 
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Fig. 5. Poincaré maps for model (1): a. k 1 = 0.58; b. k 1 = 0.6; c. k 1 = 0.7; d. k 1 = 0.85; e. k 1 = 0.89; f. k 1 = 0.9; g. k 1 = 0.92. Other parameters: �1 = 1, �2 = 

√ 

3, �3 = 

√ 

11, �4 = 

√ 

41, 

�5 = 

√ 

153, λ= 1, k 0 = 1, k 2 = k 3 = k 4 = 0.5, k 5 = 0.65. Cross-section hypersurface ˙ x 1 = 0 . 
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econd Lyapuniv exponent ( �2 ) is weakly positive, the third ( �3 ) 

s zero, and the fourth ( �4 ) is weakly negative. The second posi- 

ive Lyapunov exponent reaches the maximum value of 0.002, in a 

airly large interval of the parameter, the value of the exponent is 

ess than 0.001, while it is still well distinguishable from zero. The 

alues of the weakly negative fourth exponent ( �4 ) are slightly 

igher in absolute value, while still at most points of the parame- 

er interval they are less than 0.003. This feature can be explained 

y the fact that during the development of chaotic dynamics, var- 

ous bifurcations of multi-frequency tori are observed, which are 

ssociated with the appearance of saddle tori with different num- 

ers of frequency components, which will have multi-dimensional 

eutral manifolds. For example, this is possible with a saddle-node 

uasiperiodic bifurcation of a three-frequency torus. Neutral mani- 

olds will contribute to chaotic behavior, which will give Lyapunov 

xponents close to zero. 

Fig. 4 c, d show a fragment of the plots of Lyapunov exponents 

or the second region of chaos, where a transition to chaos from 

he three-frequency quasiperiodicity regime is observed. As in the 

revious case, the largest Lyapunov exponent is of the order of 

0 −2 , and the second, third and fourth are difficult to distinguish 

rom zero. An increase in scale ( Fig. 4 d) allows us to diagnose an

eak hyperchaos in this case. 

Fig. 5 shows typical attractors in the Poincaré section with the 

ypersurface ˙ x 1 = 0 in the projection onto the variables of the first 

ircuit for multi-frequency tori and hyperchaotic attractors devel- 

ped on their basis. Fig. 5 a shows an example of a four-frequency 

orus, 5b - 5d - chaos born on the basis of T 4 with an increase

n the parameter k 1 and its development with an increase in the 

argest Lyapunov exponent. As a result of the transition to chaos, 

he Poincaré map becomes blurred. This feature indicates the pres- 

nce of neutral manifolds in a chaotic attractor. With an increase 

n the coefficient k 1 , an increase of the two largest Lyapunov ex- 

onents is observed; in this case, points of the map don’t visit a 

egion in the vicinity of zero. 

An example of a three-frequency torus is shown in Fig. 5 e. The 

hase portrait is blurred, while keeping the boundaries of the two- 

imensional torus. Chaotic attractors resulting from the destruction 

f a three-dimensional torus are shown in Fig. 5 f, g. As can be seen

n this case, the points in the Poincaré map do not visit the vicin- 

ty of zero. The development of chaos vanishes its structure, but 

he attractor itself remains in the vicinity of the three-dimensional 

orus. 
6 
.3. Comparative analysis of the spectral properties of chaotic 

ttractors 

Let us consider the features of chaotic attractors of each type. 

s a signal analysis tool, we will use the projections of attractors in 

he Poincaré section and the Fourier spectra. Fig. 6 shows these il- 

ustrations for four different chaotic attractors. For each case, frag- 

ent 1 demonstrates the projection of the Poincaré map onto the 

lane of dynamic variables of the first contour. Fragments 2, 3, 4, 5 

how projections onto dynamic variables of various contours: first- 

econd, first-third, first-fourth and first-fifth. Such cross projections 

re somewhat analogous to Lissajous figures and allow conclusions 

o be drawn about synchronization between oscillatory circuits. In 

he case of full in-phase synchronization, the Lissajous figure is a 

iagonal line. Fragment 6 shows the Fourier spectrum of the signal, 

hich was calculated for the summary signal from all contours. 

able 2 shows the values of the six largest Lyapunov exponents 

nd the Kaplan-Yorke dimension for the attractors under consider- 

tion. 

The first two examples ( Fig. 6 a and b) relate to the chaos that

rose at large values of the gain, respectively, via the destruction 

f the two-frequency torus. The two remaining ones are for small 

alues of the amplification coefficients and via the destruction of 

ultifrequency tori, accordingly. 

During the destruction of a two-frequency torus, we observed 

wo types of chaotic attractors. Fig. 6 a shows an example of an 

ttractor that arose as a result of a cascade of bifurcations of 

eriod-doubling of a cycle of period-7. As a result of a cascade 

f period-doubling bifurcations, a 7-component chaotic attractor 

rises. This attractor has a thin linear structure, which indicates 

hat there is only one unstable manifold. The Fourier spectrum 

ontains a spectral component at the frequency of the base mode 

f self-oscillation. This frequency corresponds to the frequency of 

he first mode, which suppressed all others as a result of com- 

etition. Discrete components in the oscillator spectrum are the 

ighest multiples of the frequency components. The power spec- 

rum has a typical form for a chaotic attractor born in accordance 

ith the Feigenbaum scenario [25] . Fig. 6 b illustrates the devel- 

ped chaos upon the destruction of a two-frequency torus. As a 

esult of the homoclinic bifurcation, 7 components of the chaotic 

ttractor merged and the attractor corresponds to the destroyed 

wo-frequency torus. The attractor in the Poincaré section has the 

hape of blurred regions, which in turn indicates the presence of 
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Fig. 6. Poincaré maps for model (1) and Fourier spectrums: a. k 1 = 3.8, k 5 = 6.0; b. k 1 = 4.7, k 5 = 6.0; c. k 1 = 0.7, k 5 = 0.65; d. k 1 = 0.85, k 5 = 0.65. Other parameters: �1 = 1, �2 = 

√ 

3, 

�3 = 

√ 

11, �4 = 

√ 

41, �5 = 

√ 

153, λ= 1, k 0 = 1, k 2 = k 3 = k 4 = 0.5, k 5 = 0.65. Cross-section hypersurface ˙ x 1 = 0 . 

Table 2 

Values of the six largest Lyapunov exponents and the Kaplan-Yorke dimension for various 

chaotic attractors. 

k 1 k 5 �1 �2 �3 �4 �5 �6 D_KY 

3.8 6.0 0.0809 0.0 -0.2552 -0.8771 -2.1468 -2.7364 2.32 

4.7 6.0 0.5847 0.0 -0.2143 -0.7175 -2.3459 -3.5741 3.52 

0.7 0.65 0.0041 0.0001 0.0 -0.0004 -0.0049 -0.4858 4.78 

0.85 0.65 0.0262 0.0019 0.0 -0.0001 -0.0063 -0.3065 5.07 
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n unstable two-dimensional manifold. The fact that the attractor 

n Fig. 6 b2 is compressed in the transverse direction indicates the 

ffect of synchronization between the first and second modes of 

he oscillator. At the same time, the Fourier spectrum contains an 

xpressed harmonic corresponding to the base mode that survived 

s a result of competition. However, the rest of the discrete compo- 

ents disappeared, the spectrum became more uniform and broad- 

and. The spectrum of Lyapunov exponents contains one positive 

xponent. With the development of chaotic dynamics, the largest 

xponent grows and can reach values of the order of unity. It is 

lso worth noting that the fifth and sixth indicators have negative 

alues, rather large in absolute value, which indicates the presence 

f strongly dissipative directions. The transition from a thin lin- 

ar structure seven-component attractor to one attractor leads to 

n increase in the Kaplan-Yorke dimension by one, which confirms 

he presence of two-dimensional unstable manifolds in the attrac- 

or shown in Fig. 6 b. 

Next, let us analyze the chaotic attractors resulting from the 

estruction of multi-frequency tori at small values of the ampli- 

cation coefficients of the circuits. Fig. 6 c shows a chaotic attrac- 

or that appears as a result of the destruction of a four-frequency 

orus, in Fig. 6 d destroyed three-frequency torus is presented. The 

hape of the attractor in the Poincaré section in the projection onto 
7 
he plane of the dynamic variables of the first circuit is clearly dif- 

erent from the case of the destruction of the two-frequency torus, 

he phase points are not concentrated in the vicinity of the in- 

ariant curve of the two-frequency torus. The projections of the 

hase portraits show less synchronization between the first and 

econd oscillatory circuits and a lack of synchronization between 

he first and all the others. Fourier spectra for destroyed multi- 

requency tori contain independent spectral components of multi- 

requency tori. Five frequency components are diagnosed in the 

pectrum of a chaotic attractor born as a result of the destruc- 

ion of a four-frequency torus ( Fig. 6 c). Four components are ob- 

erved in the spectrum for chaos based on a three-frequency torus 

 Fig. 6 d). High-frequency components for chaos based on multi- 

requency tori are suppressed. 

The values of positive Lyapunov exponents for chaos result- 

ng from the destruction of multi-frequency tori are much smaller, 

hich indicates weak chaos, but the calculation confirms two pos- 

tive Lyapunov exponents. It is also clearly seen that the fifth and 

ixth indicators are also small, which indicates that strong dissi- 

ation has not yet appeared in these directions. Such a spectrum 

s characteristic of multi-dimensional chaos, as a result of which 

e see an increase in the Kaplan-Yorke dimension of the chaotic 

ttractor, and it can exceed 5. 
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. Conclusion 

An example of a multi-mode self-oscillator containing five 

igen-modes is used to study the features of the formation of 

haotic dynamics upon destruction of quasiperiodic oscillations 

ith different number of incommensurate frequencies. Two types 

f chaotic attractors are illustrated. 

The first type arises at large values of the parameters responsi- 

le for the gains of the circuits in the generator and corresponds 

o the regime when one of the modes dominates as a result of 

ompetition between the oscillatory modes of the circuits. This 

ype of chaos develops as a result of the destruction of the two- 

requency torus according to the Afraimovich-Shilnikov scenario, 

ncluding the sequence of period-doubling bifurcations of the limit 

ycle formed as a result of synchronization on the two-frequency 

orus, which in turn corresponds to the synchronization of all 

igenmodes of the oscillator. A developed chaotic attractor has one 

ositive Lyapunov exponent, the value of which is enough large 

more then 10 −1 ). The Kaplan-York dimension of such a chaotic at- 

ractor can vary from 2 to 4. 

The second type of chaos arises at small values of the param- 

ters responsible for the gains of the circuits in the generator and 

orresponds to the regime when all eigenmodes are independent, 

hich leads to the formation of four and five-dimensional tori. This 

ype of chaos develops as a result of the destruction of multi- 

requency tori. The Fourier spectrum of such a chaotic attractor 

ontains discrete components corresponding to the modes of the 

ontours. Chaotic dynamics in this case is characterized by two 

ositive Lyapunov exponents (so-called hyperchaos), while the sec- 

nd positive exponent is significantly less than the first. Despite 

he fact that chaos is weak, it is multi-dimensional chaos, as evi- 

enced by the Kaplan-York attractor dimension of more than 5. 
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