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ABSTRACT

Using an example a system of two coupled generators of quasiperiodic oscillations,
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we study the occurrence of chaotic dynamics with one positive, two zero and several

negative Lyapunov exponents. It is shown that such dynamic arises as a result of a se-

quence of bifurcations of two-frequency torus doubling and involve saddle tori occurring at

their doublings. This transition is associated with typical structure of parameter plane, like

cross-road area and shrimp-shaped structures, based on the two-frequency quasiperiodic

dynamics. Using double Poincaré section we have shown destruction of three-frequency

torus.

Keywords: dynamical system, multi-frequency quasiperiodic oscillations, torus-doubling

bifurcation, chaos, Lyapunov exponents

INTRODUCTION

The dynamics of ensembles of interacting oscillators is very rich and diverse. Interaction in

ensembles initiates various phenomena such as: synchronization [1], [2], [3], clustering [4–6],

chimeras [7–10], nonlinear resonance [11, 12] etc. Quasiperiodic oscillations are typical for in-

teracting oscillators. In the minimal ensemble when only two self-oscillating systems interact,

the simplest quasiperiodic oscillations arise, characterized by two incommensurable frequencies.

Traditionally, there are two strategies for increasing the complexity of the type of quasiperiodic

oscillations: (i) increasing the number of interacting elements in the ensemble; (ii) increasing the

complexity of the dynamics of the base element. In both cases, it is possible to change the system

in such a way that quasiperiodic oscillations with a different number of incommensurate frequency

components can occur [13], [14].

An interesting and not fully studied issue is the destruction of multi-frequency quasiperiodic

oscillations and the emergence of chaos [15–20]. These problem have been studied for quite a

long time, for example, in this context we can talk about the scenario of turbulence in accordance

with the Landau-Hopf scenario [21–23]. Destroying of torus can lead to hyperchaos via secondary

Neimark-Sacker bifurcation [24–26]. But these issues are not fully explored.

The main indicator that can unambiguously distinguish and classify multi-frequency quasiperi-

odic oscillations is the spectrum of Lyapunov exponents [27]. When multi-frequency quasiperiodic
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oscillations are destroyed, situations may arise when in the spectrum, in addition to the positive

Lyapunov exponent, indicating the chaotic behavior of the observed dynamics, several zero expo-

nents can be present [15,16,19,28,29]. A recent work [29] showed the possibility of such a chaotic

behavior in a system of two coupled generators of quasiperiodic oscillations. In the frame of this

work, we will consider in detail the features of chaos occurrence with an additional zero Lyapunov

exponent via the destruction of the three-frequency and two-frequency quasiperiodic oscillations

using the example of this system.

The work is structured as follows. In Sect. 2, we describe the object of study, the model of

coupled generators of quasiperiodic oscillations, describe the structure of the parameter plane

and localize the domains where three dimensional torus is destroyed and the chaos forms with

one positive and two zero Lyapunov exponents. In Sect. 3, we present a detailed description of

the structure of the parameter plane near the domain where chaotic oscillations with an additional

zero Lyapunov exponent are observed. In Sect. 4, we discuss in detail the transition from two-

frequency torus to chaos with an additional zero Lyapunov exponent via a cascade of bifurcations

of torus doubling.

2. OBJECT OF STUDY: MODEL OF COUPLED GENERATORS. STRUCTURE OF THE PA-

RAMETER PLANE, ARNOLD RESONANCE WEB

A detailed study of the dynamics of two coupled generators of quasiperiodic oscillations was

presented in [29, 30]. The mathematical model, which was considered in [29, 30], can be written

as follows:

ẍ1 − (λ1 + z1 + x21 − βx41)ẋ1 + ω2
01x1 +MC(ẋ1 − ẋ2) = 0,

ż1 = b(ε− z1)− kẋ21,

ẍ2 − (λ2 + z2 + x22 − βx42)ẋ2 + ω2
02x2 +MC(ẋ2 − ẋ1) = 0,

ż2 = b(ε− z2)− kẋ22,

(1)
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Here x1, ẋ1 = y1, z1 are the dynamical variables describing the first generator, x2, ẋ2 = y2, z2

are the dynamical variables of the second generator, MC is the coefficient of dissipative coupling

strength. Frequencies of generators are determined by the parameters ω01, ω02, which have the

next ratio:

ω01 = ω0, ω02 = ω0 + ∆ (2)

∆ is the frequency detuning between the generators.

The model of single oscillator described by three first-order differential equations at MC = 0

was proposed in [31], where the system parameters are described. The single autonomous oscilla-

tor can undergo the Andronov-Hopf and Neimark-Sacker bifurcations with variation of parameters,

as a result of which a limit cycle occurs from a stable equilibrium point, and then a two-frequency

torus arises from limit cycle. This transformation can be observed by varying the parameters λ and

ε, which determine the condition for the loss of stability of the equilibrium state in the system by

the following equation: λ = −ε. One of the frequencies of the autonomous generator is controlled

by the parameter ω0.

In Fig. 1 a chart of Lyapunov exponents and the main bifurcation lines are presented for single

oscillator in the parameter plane (ω0, λ) for the values of remaining other parameters:

β = 1/25, b = 1, ε = 4, k = 0.02. (3)

The chart of Lyapunov exponents was constructed as follows: the parameter plane is scanned

using some small steps over parameters ω0 and λ and at each point of the scan the full spectrum

of Lyapunov exponents was calculated using the Benettin algorithm and Gram-Schmidt orthog-

onalization [32]. Depending on the values of the exponents, the point on the parameter plane

was painted in one color or another, in accordance with the palette shown in Fig. 1 and Table 1.

Bifurcation lines were obtained using the XPPAUT application software package [33]. In Fig. 1,
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the Andronov-Hopf bifurcation line corresponding to λ = −4 is marked in blue, and the Neimark-

Sacker bifurcation line is shown in green. For postcritical values of the parameter λ, when the equi-

librium is unstable, with a variation of the parameter ω0, a transition from periodic self-oscillations

to quasiperiodic oscillations through the Neimark-Sacker bifurcation is observed. However, the

quasiperiodic region in the parameter space is limited, and with a further increase in the param-

eter ω0, the system again goes over to periodic self-oscillations via the inverse Neimark-Sacker

bifurcation.

The coupled oscillator system (1) at MC 6= 0 is characterized by four independent frequen-

cies, which are determined by the parameters of each subsystem. We consider the both oscil-

lators identical in all parameters except the frequency parameter ω0, which will be changed in

the second oscillator using the frequency detuning ∆. The parameters are fixed in accordance

with (3) and λ = 1.4. Thus, the parameters of the first oscillator remain fixed and correspond to

stable two-frequency quasiperiodic oscillations. The second oscillator, when varying the ∆ param-

eter, demonstrates the transition from quasiperiodic to periodic oscillations through the inverse

Neimark-Sacker bifurcation at ω02 ≈ 8.3. The parameter λ in the model of coupled generators

plays the role of dissipation, and it is additive term to the dissipative coupling, thereafter, in cou-

pled generators, changing the parameter of coupling, we effectively change the parameter λ of an

individual subsystem, λeff = λ−MC .

A detailed description of the synchronization picture for model (1) was presented in [29, 30].

Here we shortly describe main results, which will be necessary for further analysis. It was shown

that for small values of the coupling strength and frequency detuning parameters, phase synchro-

nization of quasiperiodic oscillations is observed and on the parameter plane there is a tongue of

phase synchronization. Outside of this tongue the quasiperiodic oscillations with four and three

incommensurable frequencies with embedded tongues of two-frequency quasiperiodicity corre-

sponding to partial phase synchronization on subharmonics were observed. For larger coupling

strength, phase synchronization with an increase in the frequency detuning is replaced by the

complete synchronization mode and then the oscillation death occurred. With an increase in the

non-identity of the oscillators, a regime of the so-called broadband quasiperiodicity arises [29],
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which corresponds to the suppression of the dynamics of one subsystem by the other and may

correspond to partial synchronization via the suppression of intrinsic dynamics, we will describe

this mode in more detail below. The intersection of the partial synchronization bands forms the so-

called Arnold resonance web [34–36], the destruction of which leads to the appearance of chaotic

dynamics. In the frame of this work, we turn to a detailed study of chaotic attractors arising in this

system during the destruction of the Arnold resonance web and characterized by one positive, two

zero and three negative Lyapunov exponents.

For understanding and analyzing the scenario of formation of the complex behavior in the pre-

sented model we need a special tool which would allow us to distinguish and analyze quasiperiodic

and chaotic oscillations. Unfortunately, at the present moment there are no adequate methods for

analyzing quasiperiodic bifurcations, developed up to a comparable degree as those for bifurca-

tions of periodic regimes. In the present paper we use the following approaches: (i) analysis of the

full spectrum of Lyapunov exponents, method of charts of Lyapunov exponents; (ii) rigorous bifur-

cation analysis of quasiperiodic oscillations based on consideration of behavior of the Lyapunov

exponents near a bifurcation point. The first approach was mentioned and described above. In

accordance with a rigorous bifurcation analysis of tori suggested in [37], analyzing behavior of the

Lyapunov exponents near a bifurcation point one can distinguish three quasiperiodic bifurcations.

Quasiperiodic Hopf bifurcation: before the bifurcation point, two maximal negative Lyapunov ex-

ponents coincide: Λn = Λn+1. At the bifurcation point, both of them touch zero axis, then one

of them vanishes: Λn = 0, and the other Λn+1 becomes negative. Saddle-node quasiperiodic

bifurcations: before the bifurcation point, two negative Lyapunov exponents after zero are not the

same, Λn and Λn+1. At the bifurcation point, one of them vanishes: Λn = 0, and the other Λn+1

remains negative, and does not touch zero. Period-doubling of torus: before the bifurcation point,

two negative Lyapunov exponents after zero are not the same, Λn and Λn+1. At the bifurcation

point, one of them touches zero: Λn = 0, and the other Λn+1 remains negative. In our numeri-

cal simulations we use the 4th order Runge-Kutta method with step size 10−2. When calculating

Lyapunov exponents the length of averaging interval was equal 70000 time units.

Figure 2 shows a chart of Lyapunov exponents on the parameter plane of the frequency detun-
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ing ∆ and the coupling strength coefficient MC (Fig. 2a), its zoomed fragment for small values of

the coupling parameter (Fig. 2b) and its zoomed fragment, where a transition from four-frequency

to three-frequency quasiperiodic dynamics is observed (Fig. 2c). System (1) is characterized by

six Lyapunov exponents, depending on which six types of dynamic behavior can be classified: sta-

ble equilibrium point (oscillation death), periodic oscillations, three types of quasiperiodic regimes,

and chaotic oscillations; Fig. 2 shows the corresponding palette, Table 2 shows the according

signature of the spectrum of Lyapunov exponents. In accordance with the spectrum of Lyapunov

exponents, we also distinguished three types of chaotic dynamics: (i) chaos with one positive,

one zero, and four negative Lyapunov exponents (gray); (ii) chaos with one positive, two zero and

three negative Lyapunov exponents (black); (iii) hyperhaos with two positive, one zero and three

negative Lyapunov exponents (white color). Spectra of Lyapunov exponents were calculated with

a certain accuracy, and we must enter a threshold value to distinguish between zero and non-zero

exponents. In our numerical experiments, when constructing charts of Lyapunov exponents, we

fixed the threshold of equality of Lyapunov exponents to zero equal to 10−3, i.e. if | Λi |< 10−3,

then we assume that the exponent is zero. Moreover, in the case when we observe several zero

Lyapunov exponents in the spectrum (it can be both a case of quasiperiodic oscillations with differ-

ent incommeasure frequencies and a case of chaos with additional zero Lyapunov exponent), they

will be a little bit different, but with an increase in the calculation accuracy, they will approaching to

zero.

On the chart of Lyapunov exponents, the phase synchronization region is marked by PS, it

has a form of tongue with a base at the point of zero frequency detuning and coupling strength.

For a small coupling strength and not very large frequency detuning, four-frequency quasiperiodic

modes T4 are observed, inside which there are bands of three-frequency quasiperiodic modes

T3, such transitions correspond to partial synchronization when the second generator gets into

the synchronization tongues of autonomous generator. Tongues of two-frequency quasiperiodicity

are also visible on the chart of coupled oscillators, but they have a certain threshold in the coupling

strength. At ∆ = ∆NS ≈ 5.15, the second autonomous subsystem crosses the Neimark-Sacker

bifurcation line, which corresponds to the transition to three-frequency quasiperiodic oscillations
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in a system of coupled oscillators (1). With a frequency detuning larger than ∆NS , tongues of

two-frequency quasiperiodicity are observed at higher harmonics, which also represent partial

frequency locking, but in this case, as a result of locking, two-frequency quasiperiodic oscillations

are observed.

For large values of the parameters of the frequency detuning and coupling strength, a region of

oscillation death (E) is observed, which corresponds to the suppression of the intrinsic dynamics

of oscillators due to strong dissipation introduced into the system by a dissipative coupling. The

decrease in the coupling leads to the fact that, at MC = 5.4 = (1.4 − (−4)), the equilibrium state

loses stability (since λeff = λ−MC = −4 = −ε which corresponds to Andronov-Hopf bifurcation

in the individual subsystem), and as a result two-frequency quasiperiodic regime occurs. This do-

main of two-frequency quasiperiodic regime is the so-called broadband quasiperiodicity (BQ) [29].

In [29], the features of attractors in this area are described in detail. With a further decrease in the

coupling strength a three-frequency quasiperiodic regime is born as a result of quasiperiodic Hopf

bifurcation. Along the line of quasiperiodic Hopf bifurcation, there is a system of two-frequency

quasiperiodic tongues corresponding to partial synchronization. At further decreasing of the cou-

pling parameter MC , there is set of bands of two-frequency quasiperiodic regimes alternating with

bands of three-frequency or chaotic oscillations in the parameter plane. The boundaries of such

bands correspond to saddle-node quasiperiodic bifurcations (i.e., saddle-node bifurcations of in-

variant tori). Such bands of two-frequency quasiperiodic regimes form the Arnold resonance web.

At the intersections of the two-frequency quasiperiodic bands, resonances of higher order (peri-

odic regimes) are observed. In the vicinity of the intersections, a complex structure is observed,

consisting of tongues of two-frequency quasiperiodic regimes.

Figure 2 c shows an enlarged fragment of the chart in the vicinity of the island of periodic

oscillations. At the intersection of the regions of two-frequency quasiperiodic dynamics, com-

plete synchronization is observed. The fragment clearly shows the intersection of the regions of

two-frequency quasiperiodicity corresponding to different types of partial synchronization: phase

synchronization of quasiperiodic oscillations on subharmonics (the tip of tongue of such synchro-

nization extend from the axis of zero coupling strength) and broadband quasiperiodicity (horizontal
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bands).

Figure 3 shows the two-dimensional projections of phase portraits on the dynamic variables (x,

z) of each of the oscillators in the Poincaré section by the hypersurface y1 = 0 for tongues of two-

frequency quasiperiodic oscillations corresponding to different types of partial synchronization.

Phase portraits in Figs 3a - 3c correspond to the tongues of two-frequency tori arising on

subharmonics; points on the parameter plane are depicted in Fig. 2c by green dots and letters.

For a small coupling strength, a smooth invariant curve is observed in the projection onto the

variables of the first generator in the Poincaré section. The invariant curve in the projection onto

the variables of the second generator is different: it has the shape of a two-turn figure eight, but

it is also smooth and continuous. Increasing of the coupling strength in that way that one cross

the horizontal band of broadband quasiperiodicity on the parameter plane, but also stay inside the

synchronization tongue which contains the complete synchronization domain, then phase portraits

will retain their structure (examples in Fig. 3b, 3c). The invariant curve in the projection onto the

variables of the first generator remains almost unchanged for values of frequency detuning and

coupling strength corresponding to the region to the left of the domain of complete synchronization

(Fig. 3b). For the parameter values corresponding to the partial synchronization area to the right

from the tongue of complete synchronization, the bends of the invariant curve become sharper,

and some of them transform into loops (Fig. 3c). In the projection onto the dynamic variables of the

second generator, the invariant curve changes more, additional loops appear, and the figure-eight

is violated.

Figs. 3d - 3f show examples of phase portraits for a broadband quasiperiodicity band. In

this case an invariant curve projected onto the dynamic variables of the first generator has a

fundamentally different structure: five smooth closed invariant curves are observed in the Poincaré

section. Such form of invariant curve corresponds to the so-called multi-layered torus [38, 39]. In

the projection onto the dynamic variables of the second generator for frequency detunings to

the left from tongue of complete synchronization, the invariant curve has a rather complicated

structure. For larger values of frequency detunings, directly inside the broadband quasiperiodic

band, the invariant curve in the projection onto the dynamic variables of the second generator
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takes the form of a figure eight, however, the number of loops which the phase trajectory makes

in figure eight increases. It means that the winding number of torus is changing.

Figure 3g shows an example of a phase portrait for a two-frequency quasiperiodic tongue

located between the broadband quasiperiodic band and the main tongue in subharmonics. In this

case the invariant curve in the projection onto the variables of the first generator has one invariant

curve, but additional loops appear in that places, where several invariant curves for wideband

quasiperiodicity have place. The invariant curve in the projection onto the dynamic variables of the

second generator has the shape of a figure-eight, however, the number of loops increases.

3. THREE-FREQUENCY TORUS, ITS DESTRUCTION

Figure 4a shows an zoomed fragment of the Lyapunov exponent chart, which visualizes in de-

tail the structure of the two-frequency tori tongues set embedded into domain of three-frequency

quasiperiodic oscillations. The structure of the region is similar to the classical Arnold tongues

which is character for the circle map [40], but with additional incommensurable frequency. When

tongues overlap, chaos emerges. The chaos has a feature: the spectrum of Lyapunov exponents

contains one positive, two zero and three negative Lyapunov exponents. The tongues of two-

frequency tori have developed internal structures, bifurcations of torus doubling occur inside, and

the shape of the tongues looks like the ”Crossroad-area structures” which is typical for the trans-

formation of limit cycles in accordance with the Feigenbaum period-doubling scenario [42], [41].

As was mentioned above, this structure on the parameter plane is observed in the vicinity of

the intersection of the synchronization tongue at higher harmonics and broadband quasiperiodicity

band. Figures 3a - 3e show examples of two-dimensional projections of phase portraits in the

Poincaré section for each of the regions of two-frequency quasiperiodicity, between which a set

of tongues of two-frequency quasiperiodicity embedded into the three-frequency quasiperiodic

regimes is observed.

Figures 4b - 4d show two-dimensional projections of phase portraits in the Poincaré section

with the hypersurface y1 = 0 from various tongues of two-frequency tori, green letters mark the

corresponding points in Fig. 4a. Projections on the plane of the first (x1, z1) and second (x2,
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z2) generators in this case are also very different from each other. In the central tongue the

projection onto the plane of the variables of the first generator (x1, z1) is close to a one-turn

torus (Fig. 4b): one smooth closed invariant curve without self-intersections, however, there are 5

bends corresponding to the five-turn torus, which was observed inside the region of two-frequency

oscillations corresponding to broadband quasiperiodicity. In the projection onto the variables of

the second oscillator (x2, z2), the invariant curve has the shape of a figure of eight, consisting of 7

loops with self-intersections.

In another tongues, which are observed with an increase of the frequency detuning (moving on

the parameter plane towards the domain of broadband quasiperiodicity, up and right in Fig. 4a), on

the invariant curve in the projection onto the variables of the first oscillator additional loops arise

in the vicinity of the invariant curves of the five-turn torus. Moreover, in the projection onto the

variables of the second generator, the number of loops in the figure-eight increases in accordance

with the number of additional loops around multi-turn invariant curves. Thus in Fig. 4c, 12 rotations

in the figure-eight are observed, in Fig. 4d - 17 rotations. In tongues, which are observed with an

decrease of the frequency detuning and approaching the partial synchronization region at higher

harmonics, the invariant curve transforms in another way (Fig. 4e): the basic invariant curve is

doubled in the projection onto the dynamic variables of the first oscillator, and in the projection onto

the variables of the second oscillator the number of loops around the figure-eight also increases, so

for the invariant curve in Fig. 4e there are 9 rotations. Thus, in this domain of the parameter plane,

we see the emergence of a complex picture of the partial synchronization tongues, corresponding

to two-frequency tori, on the surface of a three-frequency torus. Conventionally, for tongues of two-

frequency quasiperiodicity, one can introduce winding numbers in accordance with the number of

rotations of the invariant curve, which vary in different tongues of two-frequency tori.

It is well known that in the classical picture of synchronization, which can be observed, for

example, in circle map, with a change in the parameters the overlapping of the synchronization

tongues is possible, which lead to the destruction of quasiperiodic oscillations and emergence of

chaotic attractor. The same transformations observed for our model but the base dynamical mode

in our case is a three-frequency torus, the boundaries of the tongues of two-frequency quasiperi-
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odicity correspond to saddle-node quasiperiodic bifurcations, as a result of which a two-frequency

torus is born. When the tongues of two-frequency tori overlap, the three-frequency torus is de-

stroyed with the formation of a chaotic attractor. Usually such a destruction of the torus is associ-

ated with a loss of smoothness of the invariant curve. For our case, such a transformation should

be associated with the loss of smoothness and destruction of the three-frequency torus. In order

to visualize such a transformation, we use the multi-fold Poincaré section technique [43], [44]. In

order to visualize the invariant curve of a three-frequency quasiperiodic regime, it is necessary to

implement a double Poincaré section. We have to note that in Poincaré section the set of points is

discrete and we need to fix points inside some thin slice of phase space, in our numerical experi-

ments we take slice in accordance with the follow condition: (|y1| < 0.01) ∩ (|y2| < 0.01). Figure 5

shows examples of projections of phase portraits in a double Poincaré section with the hypersur-

face y1 = 0, y2 = 0. The portraits in Figs. 5a and 5b are constructed for parameters corresponding

to three-frequency quasiperiodic modes. The phase portrait in the double Poincaré section in this

case has the form of a smooth invariant curve. The shape of the invariant curve in projection onto

the variables of the first generator is very close to that which occurs for a two-frequency torus in a

single Poincaré section, it has the form of a doubled invariant curve. Projections on the variables

of the second oscillator have a more complex structure, but it is still smooth and continuous.

Figures 5c and 5d show examples of phase portraits in the double Poincaré section for de-

stroyed three-frequency tori. In this case the invariant curve in double Poincaré section loses

smoothness, and occurring chaotic attractors have some features: the spectrum of Lyapunov ex-

ponents includes an additional zero Lyapunov exponent. Table 3 presents the Lyapunov exponents

for the chaotic attractors shown in Fig. 5. Double Poincaré section in the Fig. 5c demonstrates the

banded structure of the arising attractor. Such attractors can be reached on the parameter plane

from the tongues of two-frequency quasiperiodicity through a cascade of bifurcations of invariant

curve doubling. The chaotic attractors arising in this way have the same specifics: the spectrum of

Lyapunov exponents contains one positive and two zero Lyapunov exponents. In the next Section,

we will consider in detail the formation of such chaotic attractor as a result of a cascade of invariant

curve doubling bifurcations.
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4. THE EMERGENCE OF CHAOS WITH AN ADDITIONAL ZERO LYAPUNOV EXPONENT AS

A RESULT OF A CASCADE OF TORUS DOUBLING BIFURCATIONS

Figure 4a shows that there are doubling bifurcations of two-frequency tori inside the tongues

of two-frequency quasiperiodicity. As a result of cascade of torus doubling bifurcations a chaos

with one positive, two zero and three negative Lyapunov exponents emerges. For a more detailed

analysis of the scenario of the appearance of such kind chaotic attractors, we construct a zoomed

fragment of the chart of Lyapunov exponents for coupled quasiperiodic generators (1) in the chaos

region.

The tongues of two-frequency quasiperiodic dynamics have an internal structure: with a change

in parameters, several two-frequency torus doubling bifurcations are observed, and then a chaotic

attractor is formed containing an additional zero Lyapunov exponent in the spectrum. In Fig. 6a

there is a zoomed fragment of the Lyapunov exponent chart showing the internal structure of one

of the two-frequency quasiperiodic tongues. The Lyapunov exponents chart also shows lines cor-

responding to bifurcations of doubling of the two-frequency torus, shown in blue. The structure

of the tongue has characteristic features for the structure of the ”crossroad area”: the stability re-

gion of the two-torus is bounded by doubling lines, as well as two lines of folds forming the lower

border. The lines of folds extend into the stability region of the 2-torus and converge at a point,

which in catastrophe theory is called the cusp point. Inside the chaos region there are windows of

two-frequency quasiperiodicity, which are called Shrimp-Shaped Domains [42,45,46].

Let us consider in detail the transition from a two-frequency torus to chaos using the example

of projections of phase portraits in the Poincaré section. The parameter ∆ was fixed: ∆ = 5.35,

and the parameter of coupling strength gradually increased, so that torus doubling bifurcations

were observed. Figs. 6b - 6e show the first three bifurcations of the cascade in the projection

onto the dynamic variables of the first generator (we used this projection, since the invariant curve

is clearly visible on it). The shape of the attractor is quite complex, so it is very difficult to see

subsequent doublings or other transformations of the invariant curve in a full phase portrait. In

order to track further changes, we construct zoomed fragments that show the structure of the

attractor, in Figs. 6e, 6f and 6h, green rectangles indicate zoomed fragments. On the enlarged
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fragments, one can observe clearly another five doubling of the torus (Fig. 6f - 6i). Thus, we were

able to detect eight bifurcations of doubling of the two-frequency torus, i.e. birth of a 128-turn

two-frequency torus.

Figures 7a - 7e show the development of a chaotic attractor using the example of projections

of phase portraits in the Poincaré section at varying coupling strength. To check the chaoticity for

each point the full spectrum of Lyapunov exponents was calculated, which are shown in Table 4.

With an increase in the coupling parameter, the invariant curves expand, bands are formed, and

the attractor becomes chaotic, while in the spectrum of Lyapunov exponents there are one positive

and two zero exponents. The bands gradually expand, the space between them is filled. In this

case, the points uniformly fill the attractor. When passing through the windows of two-frequency

quasiperiodicity, the chaotic attractor becomes more uniform, the bands that are not filled with

phase points disappear, and bands of attractor are merged.

The formation of such chaotic attractor can be explained as follows. Each bifurcation of the

doubling of a torus occurs as a result of the loss of its stability. Before bifurcation, a stable torus

is observed in the phase space, after it a stable torus becomes a saddle torus which has two-

dimensional neutral manifold, and a new stable two-turn torus is born. As a result of the cascade of

bifurcations of torus doubling, the set of saddle tori accumulate that have a two-dimensional neutral

manifold. When the torus is finally destroyed, chaotic attractor absorbs saddle tori, which leads

to the fact that the spectrum of Lyapunov exponents contains two zero exponents characterizing

a two-dimensional neutral manifold. For the considered model, the invariant curves didn’t lose

smoothness, thus, we can assume that the cascade of torus doubling bifurcations is very long, if

not infinite. Additionally it may be assumed at the band merging points a homoclinic bifurcation

of the torus occurs in analogy with band merging mechanism for Feigenbaum period doubling

scenario [47, 48], as a result of which a countable set of saddle tori is born in its vicinity, this set

is also absorbed by the attractor. Fig. 7e shows an example of the eventually fully developed

one-band chaotic attractor, it has a dense uniform packing. We also note that the growing of the

attractor is accompanied by an increase in the largest positive Lyapunov exponent, while the two

next exponents are zero, and were diagnosed with accuracy of 10−6. In [49] such type of attractors

14



Insert ASME Journal Title in the Header Here

was called quasi-periodic Hénon-like.

As an additional illustration of this transition, one-parameter graphs of Lyapunov exponents can

be used. Figure 8 shows the dependence of the largest three Lyapunov exponents on the coupling

strength parameter for the transition from the central tongue of two-frequency quasiperiodicity to

chaos with two zero Lyapunov exponents. During the transition, the torus doubling bifurcations are

clearly distinguishable (DT 11, DT 12, DT 21, DT 31, DT 32 in Fig. 8a, here the first digit of the index

simply identificates the specific cascade and the second one denotes the serial number of the

bifurcation in the cascade), after which the largest Lyapunov exponent Λ1 becomes positive, and

the next two Λ2 and Λ3 are equal zero. Such transitions on the graph we observed three times,

i.e. they can be implemented for different two-frequency quasiperiodic tongues that correspond to

different Shrimp-Shaped Domains.

Figures 8b - 8d show zoomed fragments of Fig. 8a on which tori with the corresponding number

of doublings are signed. Thus, in a numerical experiment, we were able to observe 8 bifurcations

of the doubling of the torus, after which chaos is observed in the system. A further decrease in

the range of parameters leads to an increase in the numerical error in calculating the spectrum of

Lyapunov exponents.

CONCLUSIONS

Thus, in the frame of this work, it was shown that in the system of two coupled generators

of quasiperiodic oscillations with a small coupling strength a specific type of chaotic dynamics

may arise, characterized by the presence of one positive and two zero Lyapunov exponents in

the spectrum. The mechanism of occurrence of such chaotic attractor can be associated with a

cascade of invariant curve doubling bifurcations. As a result of cascade the set of saddle tori with

two-dimensional neutral manifold occurs. Absorption of this set by chaotic attractor lead to forma-

tion of chaotic attractor with additional zero Lyapunov exponent in the spectrum. The structure of

the parameter plane was also described, where such chaotic attractors can arise. Appearance

of such chaotic dynamics is associated with destruction of Arnold resonance web, and compe-

tition between different type of partial synchronization for the model with several incommeasure
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frequencies. The possibility of the appearance of typical structures such as Cross-Road Area and

Shrimp-Shaped Domains, but based on two-frequency quasiperiodic modes, the transformation

of which leads to chaos with one positive, two zero and three negative Lyapunov exponents is

shown.

ACKNOWLEDGEMENTS

The reported study was funded by Russian Foundation of Basic Research, project number

19-31-60030 (Introduction, Sects. 3, 4, Conclusion) and the grant of the President of the Rus-

sian Federation MK-31.2019.8 (Sect.2). The work of A.P.K. and I.R.S. was carried out within the

framework of the state task of Kotel’nikov’s IRE RAS

REFERENCES

[1] Pikovsky, A., Kurths, J., Rosenblum, M., and Kurths, J., 2003. Synchronization: a universal

concept in nonlinear sciences, Vol. 12. Cambridge university press.

[2] Anishchenko, V. S., Vadivasova, T. E., and Strelkova, G. I., 2014. “Synchronization of periodic

self-sustained oscillations”. In Deterministic Nonlinear Systems. Springer, pp. 217–243.

[3] Shilnikov, A., Shilnikov, L., and Turaev, D., 2004. “On some mathematical topics in clas-

sical synchronization.: A tutorial”. International Journal of Bifurcation and Chaos, 14(07),

pp. 2143–2160.

[4] Belykh, V. N., Belykh, I. V., Hasler, M., and Nevidin, K. V., 2003. “Cluster synchronization in

three-dimensional lattices of diffusively coupled oscillators”. International Journal of Bifurca-

tion and Chaos, 13(04), pp. 755–779.

[5] McGraw, P. N., and Menzinger, M., 2005. “Clustering and the synchronization of oscillator

networks”. Physical Review E, 72(1), p. 015101.

[6] Czolczynski, K., Perlikowski, P., Stefanski, A., and Kapitaniak, T., 2009. “Clustering and

synchronization of n huygens clocks”. Physica A: Statistical Mechanics and its Applications,

388(24), pp. 5013–5023.

[7] Abrams, D. M., and Strogatz, S. H., 2006. “Chimera states in a ring of nonlocally coupled

16



Insert ASME Journal Title in the Header Here

oscillators”. International Journal of Bifurcation and Chaos, 16(01), pp. 21–37.

[8] Bordyugov, G., Pikovsky, A., and Rosenblum, M., 2010. “Self-emerging and turbulent

chimeras in oscillator chains”. Physical Review E, 82(3), p. 035205.
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[47] Simó, C., 1979. “On the hénon-pomeau attractor”. Journal of Statistical Physics, 21(4),

pp. 465–494.
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Fig. 1. Chart of Lyapunov exponents and the main bifurcation lines of autonomous generator of quasiperiodic oscillations, system

(1) with parameters (3) andMC = 0, ∆ = 0. HB is line of Andronov-Hopf bifurcation, NS is line of Neimark-Sacker bifurcation.

Fig. 2. Chart of Lyapunov exponents and its enlarged fragments for the system of coupled quasiperiodic generators (1) with param-

eters β = 1/25, b = 1, ε = 4, k = 0.02, λ = 1.4, ω0 = 2π.
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Fig. 3. Two-dimensional projections of phase portraits in the Poincaré section by hypersurface y1 = 0 for coupled quasiperiodic

generators (1) with (3) and λ = 1.4, ω0 = 2π. a) ∆ = 5.24, MC = 0.12; b) ∆ = 4.96, MC = 0.37; c) ∆ = 5.24,

MC = 0.39; d) ∆ = 4.89, MC = 0.22; e) ∆ = 5.61, MC = 0.19; f) ∆ = 5.38, MC = 0.26; g) ∆ = 5.53,

MC = 0.39.
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Fig. 4. Zoomed fragment of the chart of Lyapunov exponents (a) and two-dimensional projections of phase portraits in the Poincaré

section by hypersurface y1 = 0 for coupled quasiperiodic generators (1) with (3) and λ = 1.4, ω0 = 2π. b) ∆ = 5.4,

MC = 0.127; c) ∆ = 5.5,MC = 0.14; d) ∆ = 5.55,MC = 0.146; e) ∆ = 5.37,MC = 0.112.

Fig. 5. Two-dimensional projections of phase portraits in the double Poincaré section by hypersurface y1 ≈ 0 and y2 ≈ 0 for

coupled quasiperiodic generators (1) with (3),λ = 1.4,ω0 = 2π. a) ∆ = 5.66,MC = 0.123; b) ∆ = 5.5,MC = 0.086;

c) ∆ = 5.341,MC = 0.143; d) ∆ = 5.377,MC = 0.145.
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Fig. 6. Zoomed fragment of the chart of Lyapunov exponents (a) and two-dimensional projections of phase portraits in the Poincaré

section by hypersurface y1 = 0 for coupled quasiperiodic generators (1) with (3) and λ = 1.4, ω0 = 2π, ∆ = 5.35. b)

MC = 0.133; c) MC = 0.1386; d) MC = 0.1396; e) MC = 0.14; f) MC = 0.14013; g) MC = 0.14014; h)

MC = 0.140147; e)MC = 0.140148.

Fig. 7. Two-dimensional projections of phase portraits in the Poincaré section by hypersurface y1 = 0 for coupled quasiperiodic

generators (1) with (3) and λ = 1.4, ω0 = 2π; a) ∆ = 5.35,MC = 0.1401481; b) ∆ = 5.35,MC = 0.1401483; c)

∆ = 5.35,MC = 0.1403; d) ∆ = 5.35,MC = 0.142; e) ∆ = 5.34,MC = 0.148.

Table 1. Accordance between signature of the Lyapunov exponents spectrum of observed regimes and symbols used for the charts

of Lyapunov exponents for 3D system of autonomous quasiperiodic generator

Regime Signature of the spectrum of Lyapunov exponents Symbol

stable equilibrium point 0 > Λ1 > Λ2 > Λ3 E

periodic Λ1 = 0, 0 > Λ2 > Λ3 P

two-frequency quasiperiodic Λ1 = 0,Λ2 = 0, 0 > Λ3 T2

chaotic Λ1 > 0,Λ2 = 0, 0 > Λ3 C
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Fig. 8. Dependence of the largest three Lyapunov exponents on the parameterMC and its zoomed fragments for (3) and λ = 1.4,

ω0 = 2π, MC = 5.3778. DTnm are bifurcations of torus doubling, n is periodicity window index, m is doubling number, Tk
2

is two-frequency quasiperiodic regime with k-turn invariant curve.

Table 2. Accordance between signature of the Lyapunov exponents spectrum of observed regimes and symbols used for the charts

of Lyapunov exponents for 6D system of coupled generators

Regime Signature of the spectrum of Lyapunov exponents Symbol

stable equilibrium point 0 > Λ1 > Λ2 > Λ3 > Λ4 > Λ5 > Λ6 E

periodic Λ1 = 0, 0 > Λ2 > Λ3 > Λ4 > Λ5 > Λ6 P

two-frequency quasiperiodic Λ1 = 0,Λ2 = 0, 0 > Λ3 > Λ4 > Λ5 > Λ6 T2

three-frequency quasiperiodic Λ1 = 0,Λ2 = 0,Λ3 = 0, 0 > Λ4 > Λ5 > Λ6 T3

four-frequency quasiperiodic Λ1 = 0,Λ2 = 0,Λ3 = 0,Λ4 = 0, 0 > Λ5 > Λ6 T2

chaotic Λ1 > 0,Λ2 = 0, 0 > Λ3 > Λ4 > Λ5 > Λ6 C

chaotic (hyperchaos) Λ1 > Λ2 > 0,Λ3 = 0, 0 > Λ4 > Λ5 > Λ6 HC

chaotic (with additional zero LE) Λ1 > 0,Λ2 = 0,Λ3 = 0, 0 > Λ4 > Λ5 > Λ6 C00
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Table 3. Signature of the spectrum of the Lyapunov exponents for attractors at transition to chaos via three-torus destruction, param-

eters (3) and λ = 1.4, ω0 = 2π

∆ MC Λ1 Λ2 Λ3 Λ4

5.660 0.123 0.0 0.0 0.0 -0.04623

5.500 0.086 0.0 0.0 0.0 -0.03237

5.341 0.143 0.01390 0.0 0.0 -0.02479

5.377 0.145 0.01865 0.0 0.0 -0.02757

Table 4. Signature of the spectrum of the Lyapunov exponents for attractors at transition to chaos via two-torus doubling bifurcations,

parameters (3) and λ = 1.4, ω0 = 2π

∆ MC Λ1 Λ2 Λ3 Λ4

5.35 0.1401481 0.00012 0.0 0.0 -0.02523

5.35 0.1401483 0.00017 0.0 0.0 -0.02519

5.35 0.1403000 0.00310 0.0 0.0 -0.02525

5.35 0.1420000 0.00837 0.0 0.0 -0.02538

5.35 0.1480000 0.01847 0.0 0.0 -0.02507
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