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The characteristics of an acousto-optic spatial frequency filter designed for processing of two-dimensional images
and operation in the intermediate region of acousto-optic diffraction are investigated. The advantage of such
filters over filters operating in a Bragg regime is the possibility of operation at significantly lower acoustic frequen-
cies, which allows the passband of spatial frequencies to be increased and the limiting resolution to be decreased.
Transfer functions of diffraction orders are obtained. The use of the first diffraction order is demonstrated to allow
selection of the two-dimensional image contour. The two-dimensional image edge enhancement of the image
transmitted by optical emission at a wavelength of 0.63 × 10−4 cm is experimentally demonstrated using a TeO2

spatial filter operating at a frequency of 15 MHz. ©2022Optica PublishingGroup
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1. INTRODUCTION

Optical Fourier methods are ubiquitous in image processing
owing to the simplicity of their practical implementation and
extremely high operation speed [1–3]. A spatial filter is a basic
element of Fourier processing that essentially determines the
properties of the processed images. Controllable acousto-optic
(AO) cells with a relatively high operation speed, low control
power, broad band of acoustic frequencies, reliability, and design
simplicity are often used as filters [4,5].

AO elements have become seamlessly integrated into the sys-
tems for optical image processing because they allow the ampli-
tude and phase structure of the optical field carrying the image
to be significantly changed [6,7]. AO elements operating in the
Bragg diffraction mode, when the Klein–Cook parameter Q ≈
q2L/K significantly exceeds unity, are most often used in prac-
tice [8,9], where q and K are the wave vectors of sound and light,
respectively, and L is the length of AO interaction.

Multiple variants of AO Bragg diffraction were proposed and
investigated for two-dimensional image processing. Variants
using tangential and collinear geometries of AO interaction
[4–7,10] appeared to be the most efficient among the variants of
diffraction into a single Bragg order. The application of multi-
ple diffraction modes opens wider possibilities [11–16]. For
example, the filtering properties of the 0th diffraction order in
the process of light diffraction into the +1st and −1st orders
were investigated in [11]. It is commonly known that this mode
[8] is characterized by the minimum consumption of acoustic

power. The possibility to form a two-dimensional filter in two
diffraction orders simultaneously in the course of triple AO
interaction was demonstrated in [12]. Filtering properties of
double diffraction in conjunction with an external polarizer
were considered in [13]. The contour formation was demon-
strated to be possible at different levels of acoustic power but at
different polarizer positions. Contour formation in the course of
polarization-independent diffraction was investigated in [14].
This variant, essentially, allows the use of a single AO cell instead
of two. Two-dimensional properties of Bragg diffraction orders
formed as a result of the combination of beams with similar
or different polarizations were considered in general in [15].
The formation of an optical field for two-dimensional image
processing based on “common” Bragg diffraction but with min-
imum contribution of diffraction into the additional side order
was investigated in [16]. A 20% contribution of the side order
into the total field ensured the selection of the two-dimensional
contour.

In practice, Bragg diffraction regimes are realized by an accu-
rate setting of diffraction to the Bragg resonance followed by
selection of the optimal area of the optical field allowing two-
dimensional image processing through scanning of the AO cell
across the optical radiation combined with variation in acoustic
power.

In the case of transition to the intermediate diffraction
regime, the resonant properties of AO interaction weaken and
changes in sound frequency and angular orientation of the AO
cell are possible. However, in this case, the portion of the optical
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radiation in the “operational” diffraction order used for the two-
dimensional processing decreases. In this regime, all radiation
cannot be concentrated in a single diffraction order. In terms of
the properties of the spatial filter, the intermediate diffraction
regime is more advantageous than the Bragg regime because it
allows the sound frequency and AO interaction length to be
significantly reduced, thus ensuring the increase in the passband
of spatial frequencies and reduction in limiting image resolution
[17]. In other words, identification of smaller image features
becomes possible.

Notably, the diffraction in the intermediate region was
investigated by many researchers [8,18–24]. We investigated,
for the first time to our knowledge, the filtering properties
of such diffraction in application to the two-dimensional
image processing. Parameters that determine the properties
of diffracted radiation distribution significantly depend on
the AO interaction model, i.e., curvature of the surfaces of the
crystal wave vectors, type of AO diffraction, and ellipticity of
the optical rays. All mentioned factors were considered in this
study. Two-dimensional distributions of optical fields in each
diffraction order were obtained. An area ensuring the selection
of a two-dimensional image contour was found in the first
diffraction order. The presence of such an area was confirmed
experimentally.

2. THEORY

In the intermediate regime of AO diffraction, the radiation
diffracts into several diffraction orders besides the first princi-
pal order. We assume that the −1st and +2nd orders are the
additional diffraction orders. Events of diffraction into higher
orders are considered insignificant and are disregarded. All
considered diffraction events are shown in the vector diagram
in Fig. 1. The AO interaction is assumed to occur in a uniaxial
gyrotropic crystal such as TeO2 crystal. In a strict consideration,

Fig. 1. Vector diagram of the AO diffraction into four orders. K is
the wave vector of the emission incident on the optical facet OX of the
crystal at angle α; K0 is the wave vector of the incident radiation inside
the crystal; K−1, K1, and K2 are the wave vectors of the−1st,+1st, and
+2nd diffraction orders, respectively; q is the sound wave vector; η0,
η1, and η2 are the vectors of Bragg synchronism detunings; and OZ is
the optical axis of the crystal.

the vector diagram is three-dimensional [25]. We present a
two-dimensional diagram even though its three-dimensionality
is implied. The initial optical radiation with a wave vector K
is incident at an angle α on the optical facet OX of the crystal
oriented orthogonally to its optical axis OZ. The wave vector
of incident radiation inside the crystal is represented by the
vector K0. Diffraction of light occurs on the acoustic wave with
a wave vector q. All diffraction events are anisotropic. Radiation
diffracting into the first order is represented with a wave vector
K1. Moreover, besides the first order, diffraction also occurs into
the −1st and +2nd diffraction orders with wave vectors K−1

and K2, respectively. Phase detuning vectors of the diffraction
orders are denoted as η0, η1, and η2. The amplitudes of the
diffracted rays are searched based on the coupled-wave theory
[8], according to which the diffraction presented in Fig. 1 is
described by the following system of differential equations:

dC0

dz
=−A1C−1 exp(−iη0z)− A2C1 exp(−iη1z),

dC−1

dz
= A1C0 exp(iη0z),

dC1

dz
= A2C0 exp(iη1z)− A3C2 exp(−iη2z),

dC2

dz
= A3C1 exp(iη2z), (1)

where C0, C−1, C1, and C2 are the amplitudes of rays K0, K−1,
K1, and K2, respectively; z is the coordinate along which the AO
interaction occurs;η0,η1, andη2 are the phase detuning vectors;

A1 =
v

4
f0,−1, A2 =

v

4
f0,1, A3 =

v

4
f2,1, (2)

where f0,−1, f0,1, and f2,1 are the coefficients considering the
ellipticity of the interacting rays [13]:

f0,−1 = (1+ ρ0ρ−1)
[(

1+ ρ2
0

) (
1+ ρ2

−1

)]−0.5
,

f0,1 = (1+ ρ0ρ1)
[(

1+ ρ2
0

) (
1+ ρ2

1

)]−0.5
,

f2,1 = (1+ ρ2ρ1)
[(

1+ ρ2
2

) (
1+ ρ2

1

)]−0.5
,

whereρk is the ellipticity of the kth ray (k =−1, 0, 1, 2) equal to

ρk = 0.5G−1
33

(√
T2 + 4G2

33 − T
)

. (3)

The parameter G33 in Eq. (3) is the component of the
gyration pseudotensor:

T =
tan2θ

(
n2

e − n2
0

)
n2

0n2
e (1+ tan2θ)

,

where θ is the angle between the light wave vector and optical
axis of the crystal, and no and ne are the principal refractive
indices of the crystal. The coefficient ν in Eq. (2) is the Raman–
Nath parameter considering the AO properties of the medium
and acoustic power:
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v =
2π

λ

√
M2 Pa

2LH
,

where λ is the radiation wavelength, M2 is the coefficient of
material AO quality, Pa is the acoustic power, L is the length
of AO interaction, and H is the height of the acoustic column.
Therefore, A1, A2, and A3 in Eq. (1) depend on the acoustic
power and ray ellipticity.

According to the method proposed in [26], a particular solu-
tion to system (1) can be found in the following form:

C0 = a exp(iαz),C−1 = b exp(iβz),

C1 = c exp(iγ z),C2 = d exp(iδz), (4)

where a , b, c , d , α, β, γ , and δ are the parameters independent
of z, which should be determined. After substitution of Eqs. (4)
into system (1), we obtain the following system of equations:

iaα exp(iαz)=−A1b exp[i(β − η0)z]

− A2c exp[i(γ − η1)z],

ibβ exp(iβz)= A1a exp[i(α + η0)z],

i cγ exp(iγ z)= A2a exp[i(α + η1)z]

− A3d exp[i(δ − η2)z],

idδ exp(iδz)= A3c exp[i(γ + η2)z]. (5)

For each of the equations of system (5) to be valid at any z, the
coefficients in the exponents of each equation should be equal:

α = β − η0 = γ − η1, β = α + η0,

γ = α + η1 = δ − η2, δ = γ + η2. (6)

We expressβ,γ , and δ throughα:

β = α + η0, γ = α + η1, δ = α + η0 + η1. (7)

If conditions (6) are fulfilled, system of equations (5) is sim-
plified and has the following form:

iaα =−A1b − A2c ,

ibβ = A1a ,

i cγ = A2a − A3d ,

idδ = A3c . (8)

The equations of system (8) can be expressed as a system
of homogeneous equations with unknown a , b, c , and d .
Considering Eq. (7), the principal determinant of system (8) is
equal to

D=

∣∣∣∣∣∣∣
iα A1 A2 0
A1 −i(α + η0) 0 0
A2 0 −i(α + η1) −A3

0 0 A3 −i(α + η1 + η2)

∣∣∣∣∣∣∣ . (9)

System (8) has a nontrivial solution only when D= 0. By
expanding D, we obtain a fourth-order secular equation with

respect toα:

α4
+ B3α

3
+ B2α

2
+ B1α + B0 = 0, (10)

where

B3 = η0 + 2η1 + η2,

B2 = η0(η1 + η2)

+ η1(η0 + η1 + η2)− (A2
1 + A2

2 + A2
3),

B1 = η0η1(η1 + η2)− A2
1(2η1 + η2)

− A2
2(η0 + η1 + η2)− A2

3η0,

B0 = A2
1 A2

3 − A2
1η1(η1 + η2)− A2

2η0(η1 + η2). (11)

We express coefficients b, c , and d through coefficient a
according to Eqs. (8):

b =−
i A1a
α + η0

, c =−
i

A2

[
α −

A2
1

(α + η0)

]
a ,

d =−
A3

A2

[
α −

A2
1

(α + η0)

]
a

α + η1 + η2
. (12)

Considering Eq. (7), the general solution for the amplitudes is

C0 =

4∑
k=1

ak exp(iαk z),

C−1 =

4∑
k=1

bk exp[i(αk + η0)z],

C1 =

4∑
k=1

c k exp[i(αk + η1)z],

C2 =

4∑
k=1

dk exp[i(αk + η1 + η2)z], (13)

where αk are the roots of Eq. (10) and coefficients bk , c k , and dk

are associated with ak by Eqs. (12). k has values of 1, 2, 3, and 4.
Under the boundary conditions,

4∑
k=1

ak = 1,

4∑
k=1

bk =

4∑
k=1

c k =

4∑
k=1

dk = 0 when z= 0, (14)

Eqs. (13) transform into a system of linear inhomogeneous
equations with respect to a1, a2, a3, and a4:
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a1 + a2 + a3 + a4 = 1,

a1

α1 + η0
+

a2

α2 + η0
+

a3

α3 + η0
+

a4

α4 + η0
= 0,

(
α1 −

A2
1

α1 + η0

)
a1 +

(
α2 −

A2
1

α2 + η0

)
a2

+

(
α3 −

A2
1

α3 + η0

)
a3 +

(
α4 −

A2
1

α4 + η0

)
a4 = 0,

(
α1 −

A2
1

α1 + η0

)
a1

α1 + η1 + η2
+ · · ·

+

(
α4 −

A2
1

α4 + η0

)
a4

α4 + η1 + η2
= 0. (15)

By solving system of equations (15), we obtain coefficients ak

and identify amplitudes C0, C−1, C1, and C2 using Eqs. (13).
Finally, we obtain

C0 = a1 exp(iα1L)+ a2 exp(iα2L)

+ a3 exp(iα3L)+ a4 exp(iα4L),

C−1 = b1 exp[i(α1 + η0)L]

+ b2 exp[i(α2 + η0)L]

+ b3 exp[i(α3 + η0)L]

+ b4 exp[i(α4 + η0)L],

C1 = c 1 exp[i(α1 + η1)L]

+ c 2 exp[i(α2 + η1)L]

+ c 3 exp[i(α3 + η1)L]

+ c 4 exp[i(α4 + η1)L],

C2 = d1 exp[i(α1 + η1 + η2)L]

+ d2 exp[i(α2 + η1 + η2)L]

+ d3 exp[i(α3 + η1 + η2)L]

+ d4 exp[i(α4 + η1 + η2)L]. (16)

The amplitudes depend on the values of the synchronism
detuning η0, η1, and η2 and parameters A1, A2, and A3, which,
in turn, depend on the AO properties of the medium and sound
power.

The two-dimensionality of the optical field distribution in
every diffraction order is determined by the two-dimensionality
of the synchronism detunings η0, η1, and η2 present in the
expressions for the amplitudes [Eqs. (16)]. The search for
the distribution of the detuning values is a separate task that
depends on the chosen model for the surfaces of crystal wave
vectors. To find η0, η1, and η2, we use a model where the refrac-
tive indices of a uniaxial gyrotropic crystal are determined from
the following equations [27]:

Fig. 2. Distribution C1 × C ∗1 of the 1st diffraction order under the
variation of angles α and β. α is the angle between wave vector K of
the radiation incident on the crystal and the OZ axis in the diffraction
plane, while β is the angle between vector K and the diffraction plane.
M and O are the maxima and minima of the distribution, respectively.

n2
1,2 = 1+ tan2θ

/(
1

n2
0

+
tan2θ

2

(
1

n2
0

+
1

n2
e

)

±
1

2

√
tan4θ

(
1

n2
0

−
1

n2
e

)
+ 4G2

33

)
, (17)

where θ , no , ne , and G33 are the same parameters as in Eq. (3).
The two-dimensionality of the processed image is described
by angles α and β of the tilt of vector K, where α is the angle
between K and the OZ axis in the diffraction plane and β is the
angle between vector K and the diffraction plane. Only angle
α is shown in Fig. 1. In the calculations, angle θ was expressed
through anglesα andβ.

The calculations were performed using the following values
of the parameters in Eqs. (1)–(17) [28,29]:

λ= 0.63× 10−4 cm, no = 2.26, ne = 2.41,

G33 = 2.62× 10−5, L = H = 0.2 cm,

M2 = 1200× 10−18 s3/g, V = 0.617× 105 cm/s.

The acoustic power and sound frequency were Pa = 0.1 W
and f = 15 MHz, respectively (L , H, and f correspond to the
experiment conditions). For these parameters, Q ≈ 2.07. By
calculating the amplitudes of diffraction maxima Ck , we can
determine the intensity distributions Ck × C∗k , which are real
values and represent the behavior of the transfer functions. The
filtering properties of the +1st diffraction order were investi-
gated in our experiments. The angular distribution of C1 × C∗1
under the variation of angles α and β in the vicinity of the area
ensuring the selection of the two-dimensional contour is shown
in Fig. 2. The angular size of the distribution is approximately
4◦ × 4◦. The distribution is strongly nonuniform. It comprises
an assembly of maxima and minima with arbitrary mutual
orientation. Distribution maxima and minima are denoted as
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(a) (b)

Fig. 3. Images (a) before and (b) after the FFT processing.

“M” and “O,” respectively. An area ensuring the image differ-
entiation is indicated in the distribution. The peculiarity of
the indicated area is that it is located in a “valley” between three
maxima. According to calculations, this area allows selection of
a two-dimensional contour. A result of fast Fourier transform
(FFT) processing of the image in the form of a rectangle with
a distribution shown in Fig. 2 acting as a transfer function is
shown in Fig. 3. Images before and after processing are shown
in Figs. 3(a) and 3(b), respectively. Figure 3(b) is a well-defined
two-dimensional contour of Fig. 3(a). In other words, the
obtained transfer function acts as a two-dimensional spatial
filter, which allows selection of the image contour.

3. EXPERIMENT AND DISCUSSION OF
EXPERIMENTAL RESULTS

An experiment was carried out according to the optical
scheme for Fourier processing (Fig. 4), which is described
in detail in [16]. A He–Ne laser emitting at a wavelength of
0.63× 10−4 cm acted as a radiation source. The AO cell acting
as a spatial filter was fabricated from a TeO2 monocrystal, in
which the optical radiation diffracted on the slow acoustic wave
with a frequency of 15 MHz. A hole in the form of a square with
a side size of 0.3 mm acted as an input image. When the electric
signal was applied to the AO cell, five images in the −1st, 0th,
+1st, +2nd, and +3rd diffraction orders were observed on
the output screen. The image intensity in the +3rd diffraction
order did not exceed 2% of the incident radiation intensity. We
investigated the contour formation in the +1st order. To this
end, we attained the situation where a two-dimensional image
contour was formed in the +1st order by angular adjustment
of the AO cell, translation of the cell along the vertical axis, and
tuning of the sound power. At the same time, the contour did
not appear in other orders. Notably, a slight angular adjustment
of the AO cell weakly affected the change in the effectiveness
of the +1st order, which indicated the absence of sharp Bragg
resonance. Figure 5 shows photographs of an image obtained
in the 0th Bragg order in the absence of voltage applied to the
transducer [Fig. 5(a)] and in the +1st order when a voltage of
7.05 V was applied to the transducer [Fig. 5(b)]. A well-defined
two-dimensional contour is observed in the latter figure. In
other words, the possibility to obtain a two-dimensional con-
tour of an optical image using an AO spatial filter operating in
an intermediate region of AO diffraction was experimentally
confirmed.

Fig. 4. Optical scheme of the experimental setup. I0—incident
optical radiation; 1—quarter-wave plate; 2—screen that forms the
input image; 3, 4—lenses that perform the Fourier processing of the
image; 5—AO filter; f —signal fed to the filter; 6 —screen at which
the result of Fourier processing is observed;−1, 0,+1,+2—images of
the−1st, 0th,+1st, and+2nd diffraction orders.

(a) (b)

Fig. 5. Experimental Fourier processing of the image in the form of
a square. (a) Image in the 0th order in the absence of signal at the AO
filter and (b) image in the+1st order when the signal is applied to the
AO filter.

In a strict consideration, events of not only anisotropic but
also isotropic diffraction should be considered to describe the
process of multiple diffraction in the geometry presented in
Fig. 1. As shown in [8], the effectiveness of isotropic diffraction
in TeO2 is approximately only twice lower than the effectiveness
of anisotropic diffraction. Basically, the radiation in our case
will diffract not into three but into six diffraction orders and the
diffraction process in this case should be described by a system
of seven differential equations. Such a task can be solved only
numerically. Notably, a process of diffraction in an intermediate
region described by a system of 15 equations was investigated
in [19], where the problem was solved numerically. In such an
event, specific effects were discovered, such as the presence of
three and five maxima in the 2nd and 3rd diffraction orders,
respectively. However, these effects can be essentially referred to
as the fine structure of AO interaction because they are observed
only in the case of diffraction of plane waves and are strongly
smoothened in the case of diverging optical and acoustic rays. In
our case, all rays are definitely diverging. Therefore, we assumed
that the consideration of higher diffraction orders would not
significantly change the pattern of AO interaction in the inter-
mediate region. Essentially, a simplified model was used when
diffraction into only the three most effective orders was con-
sidered, yet it provided a qualitatively correct result. We believe
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that the model describes the distribution of diffractive fields
sufficiently well and demonstrates the presence of the areas that
allow two-dimensional image processing, which is confirmed
experimentally.

The obtained results significantly enhance the possibilities
to apply AO elements in various devices. In particular, they can
be used as two-dimensional spatial filters in image processing
systems.

4. CONCLUSION

The following conclusions can be made based on the obtained
results.

An AO spatial filter operating in an intermediate region
of AO interaction was proposed for two-dimensional image
processing. In comparison to the filters operating using the
Bragg diffraction regime, the proposed filters operate at lower
sound frequencies, which allows broadening of the band of the
processed spatial frequencies and an increase in the limiting
resolution of the image elements, thus allowing identification of
smaller image features.

A simplified model based on the light diffraction into four
orders including the 0th diffraction order was proposed to
describe the filter operation. Transfer functions of the diffrac-
tion orders involved in the diffraction process were obtained
based on the coupled-wave theory. The proposed model demon-
strated a qualitatively correct result. It described the distribution
of diffractive fields relatively well and demonstrated the presence
of the areas that allow two-dimensional image processing. Based
on this model, the transfer function of the first diffraction order
allows the selection of a two-dimensional contour in the image
in the course of its Fourier processing.

The obtained result was experimentally confirmed by optical
Fourier processing of the image transmitted by the optical radia-
tion at the wavelength of 0.63× 10−4 cm. The AO cell of TeO2

operating at the sound frequency of 15 MHz was used as a spatial
filter. The length of AO interaction was 0.2 cm. The parameters
of AO interaction corresponded to Q = 2.07.
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