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A B S T R A C T

Dynamic conductance and time-of-flight current instability in a quantum wire connected to electron reservoirs
under DC bias voltage are studied in the absence of a gate screening the Coulomb interaction of electrons. Due
to a strong electron–electron interaction, dramatic rearrangements of the charge density distribution and the
potential landscape in the wire occur at a sufficiently high DC bias voltage. The applied voltage is screened
mainly near the cathode contact, and an almost flat potential profile is established in the most of the wire.
Thus, the size of the region of a population inversion of electronic states greatly increases, and the band of
wave vectors that form unstable modes of electronic waves significantly reduces. As a result, the conditions
for the occurrence of the time-of-flight instability are greatly facilitated and the negative dynamic conductivity
increases.
1. Introduction

The idea of a time-of-flight instability dates back to the thirties
of the last century in the theory of space charge-limited currents in
vacuum it was shown that at a sufficiently large applied voltage, the
real part of the admittance becomes negative in certain frequency
intervals determined by the injected electrons time of flight in the gap
between electrodes [1]. However, the main impetus for the develop-
ment of this idea was given by W. Shockley [2], who showed that the
time-of-flight mechanism of negative dynamic conductance (NDC) can
be implemented in two-terminal semiconductor structures and created
the foundations of the theory of this effect. The development of this
direction has led to the creation of a wide family of devices based on
the time-of-flight effect, such as IMPATT, BARITT, etc. diodes [3].

A new surge of interest in time-of-flight effects was provoked by
studies of mesoscopic and low-dimensional structures with ballistic
transport, since in many situations it is these effects that determine
their high-frequency properties. In low-dimensional structures the role
of the electron–electron (e–e) interaction, as is known, greatly in-
creases. As a result of the interaction, not only the spectrum and
electronic structure of collective excitations change significantly, but
also the spatial distribution of the electron density and electric field in
finite systems are strongly rearranged, especially under conditions of
strong non-equilibrium that occurs at high applied voltage or current.
The e–e interaction leads to the strongest effects in a one-dimensional
(1D) or quasi-1D quantum wire (QWr) when metallic gates are lo-
cated far from the transport channel and therefore weakly screen the
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Coulomb interaction. Thanks to advances in technology, such struc-
tures are now being fabricated and there is considerable interest in
their research especially in the case of quantum ballistic or quasi-
ballistic regime of the electron transport [4]. In this work we study
the time-of-flight mechanism of NDC in QWrs of this kind.

The time-of-flight effect and NDC under conditions of a strong
inhomogeneity of the electric field, which is formed due to the e–e
interaction, was studied for classical three-dimensional semiconductor
structures in the ballistic regime of space charge limited current [5]. It
has been found that the space charge affects the width of the frequency
window in which the dynamic conductance is negative, and shown that
the NDC depends significantly on the conditions at the contacts which
essentially determines the inhomogeneity of the potential landscape.

In the case of two-dimensional systems, the time-of-flight instability,
as far as we know, has been studied only on gated structures in which
the potential landscape is controlled by the gate everywhere except for
the contact regions. The e–e interaction manifests itself in the formation
of plasma waves, the propagation of which determines the dynamic
conductivity and leads to specific plasma instabilities.

The most interesting one among them is an instability of a steady-
state electron flow in the transistor channel due to the plasma waves
reflection from the drain edge of the gated channel, the so-called
Dyakonov–Shur instability [6]. However, in structures of this type the
time-of-flight instability can also arise. This happens when there is
certain part of the structure in which the electrons move ballistically.
So, in GaAs HEMT structures, this is a portion of the two-dimensional
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Fig. 1. Schematic energy diagram of a QWr connected to electron reservoirs to which
a bias voltage 𝑉𝑑𝑐 is applied. The thin black line represents the energy diagram of
the unbiased QWr. The dotted line shows the potential landscape without the charge
accumulated in the QWr. 𝜇𝐿,𝑅 is the chemical potential in the left and right reservoirs,
𝐹 is the Fermi energy in the unbiased wire. Wavy lines indicate energy relaxation
rocesses in the reservoir.

hannel through which the electrons can pass and change the dynamic
onductance of the channel [7–9]. This can also be a region between
he gates in a two-dimensional structure with a periodic system of
nterdigitated gates [10].

The time-of-flight mechanism of NDC in 1D QWrs connected to
assive electron reservoirs was studied only in the absence of an e–e

nteraction, when the electric field in the gap between the contacts was
ssumed to be the same as the field created by the voltage applied to
he electrodes and the charges in the QWr were ignored [11,12]. This
ssumption is too rough for 1D systems, especially when the applied
oltage is comparable to the kinetic energy, as happens when NDC
ppears in the ballistic regime. It is known that when an applied voltage
s comparable to or exceeds the Fermi energy in an ungated QWr,

strong rearrangement of the spatial distribution of the charge and
lectric field occurs, which results in the formation of an almost flat
otential landscape in most of the wire [13,14]. Our study [15,16]
howed that this is a result of the development of a specific instability
f the charge density distribution, which leads to a screening of the
pplied voltage near the cathode by a positive charge accumulated in
he QWr. As a result, a potential barrier for electrons is formed near
he cathode, and an almost flat potential landscape is established in the
est of the wire, as shown in Fig. 1. Theory of ballistic currents limited
y space charge in nanostructures of different dimensionalities, [17]
howed that this form of potential landscape is a specific and rather
eneral feature of 1D systems. Obviously, the formation of such a
andscape leads to a significant increase in the size of the region with
n inverse population of electronic states, which is necessary for self-
xcitation of electron density oscillations. In addition, the set of wave
ectors of electrons in the wire is strongly narrowed and, therefore, the
mplitude of modes close to resonance increases. Therefore, one can
xpect a significant easing of the conditions for the emergence of the
ime-of-flight instability and a notable change in the magnitude of the
DC.

In this paper, we find out how the rearrangement of the potential
andscape of a QWr due to the strong interaction of electrons affects
he conditions for the excitation of the time-of-flight instability and
he magnitude of NDC. The theory presented here is based on a self-
onsistent calculation of the potential in the QWr and its contacts to
lectron reservoirs. We show that the formation of a potential with a
elatively narrow barrier and an extended region with an almost flat
otential landscape leads to a significant increase in the NDC value and
small decrease in the threshold voltage. At high voltages, the NDC
agnitude decreases, and with an increase in the length of the wire,
2

he NDC increases if the length is not too large. d
2. The model of an ungated QWr with leads

The QWr connected to the leads is considered as a 1D conductor of
a diameter d and a length of 2a, smoothly expanding at the ends, thus
providing an adiabatic transition of electrons to the electron 2D or 3D
highly conductive reservoirs located at a distance 𝐿 from each other.
The QWr diameter as a function of the coordinate along the QWr is
approximated as 𝑑(𝑥) = 𝑑[1 +𝛩(|𝑥|− 𝑎)(|𝑥|− 𝑎)2∕𝑅2], with 𝑅 being the
haracteristic size of the near-contact region and 𝑥 = 0 in the middle of
he QWr. In this paper, we study the linear response of this structure to
n AC voltage 𝑉𝑎𝑐 cos(𝜔𝑡) applied between the reservoirs in the presence
f a DC bias 𝑉𝑑𝑐 , due to which the charge and potential distribution in
he QWr is strongly rearranged.

The key role is played by the e–e interaction potential which is
nown to be the strongest in the QWr. Therefore we neglect the
nteraction in the reservoirs (|𝑥| > 𝐿∕2). The e–e interaction in the
Wr is inhomogeneous due to screening by massive reservoirs. The

nteraction potential is determined not only by direct Coulomb in-
eraction of electrons but also by the interaction mediated by image
harges induced by the interacting electrons on the reservoirs [18]. This
otential was used to calculate the dynamic conductance of an unbiased
Wr [18,19] of finite length and non-linear DC conductivity in the
resence of a finite bias voltage, including the regime of space-charge
imited current [15,16].

The approach used here to study the dynamic response in the
resence of a large enough bias voltage is based on the self-consistent
ield approximation and the reduction of the Schrödinger equation to
n effective one-dimensional equation by integrating over transverse
oordinates. We suppose that the QWr is sufficiently long and narrow
o that 𝐿𝑘𝐹 ≫ 1 and 𝑑 𝑘𝐹 ≪ 1, with 𝑘𝐹 being the Fermi wave
ector in the middle of the QWr. Thus only the lower subband of the
ransverse quantization can be considered in the middle part of the
hannel, though in the near-contact regions several subbands are taken
nto account.

Following to the procedure described in Ref. [16], we reduce the
roblem to an effective 1D Schrödinger equation for the wave functions
(𝑥, 𝑡):

ℏ𝜕𝛹
𝜕𝑡

+ ℏ2

2𝑚
𝜕2𝛹
𝜕2𝑥

− 𝑈 (𝑥)𝛹 −𝐻𝑎𝑐 (𝑥, 𝑡)𝛹 = 0. (1)

ere 𝑈 (𝑥) is the effective potential, composed of a transverse quan-
ization energy in the channel and the electrostatic potential of all
harges in the system averaged over the transverse wave functions.
hese are the external charges induced on conducting electrodes by
he applied voltage, a positive background charge density and the
harge of the electrons distributed in the channel, which is calculated
elf-consistently with the potential.

𝐻𝑎𝑐 is the Hamiltonian of the electron interaction with the electric
ield 𝐸(𝑥, 𝑡) that appears due to the applied AC voltage. We represent
t in terms of the vector potential:

𝑎𝑐 (𝑥, 𝑡) =
𝑒ℏ𝑉𝑎𝑐

2𝑚(𝜔 + 𝑖𝜂)

[

𝐹 (𝑥) 𝜕
𝜕𝑥

+ 1
2
𝜕𝐹 (𝑥)
𝜕𝑥

]

𝑒−𝑖𝜔𝑡 + 𝑐.𝑐., (2)

where 𝜂 → +0 is standard regularizing factor. In what follows we sup-
pose for simplicity that 𝐹 (𝑥) is determined mainly by the electric field
𝐹 (𝑥) = 𝐸(𝑥)∕𝑉𝑎𝑐 created by external charges induced by an AC voltage
n the electrodes, and ignore the AC electric field due to polarization
f an electron system in the QWr. This assumption is justified by results
f our study of the electron charge density appearing in the QWr due
o an AC voltage in the absence of the DC bias. The calculations in the
rame of the Luttinger liquid approach [18,19] clearly show that at the
requency comparable or higher than the inverse transit time of bosonic
xcitations in the QWr, the screening of the external AC electric field is
egligible.1 Of course, by writing the Hamiltonian 𝐻𝑎𝑐 in the form of

1 See Fig. 4 in Ref. [18] where the AC charge density distribution in the
Wr is shown for a set of the frequencies. The charge density significantly
ecreases with the frequency and almost disappears when 𝜔𝐿∕𝑣 ∼ 1.
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Eq. (2) we somewhat underestimate the renormalization of the charge
wave velocity 𝑣 due to the e–e interaction. However, as can be seen
from Fig. 5 in Ref. [18] this effect does not change qualitatively the
frequency dependence of the dynamic conductance in the range of the
order of and below the frequency of the first resonance of plasmons.

Eq. (1) is solved perturbatively. First, we find the wave functions
and the potential landscape that are formed under the action of a finite
DC bias voltage. The AC response is then calculated by treating 𝐻𝑎𝑐
as a perturbation. As will be seen, due to the strong rearrangement of
the potential landscape with the formation of a barrier near the cathode
and almost flat in the rest of the wire, the NDC value and the conditions
for its appearance change significantly.

3. Potential landscape of the biased QWr

The DC problem is solved in the same way as in Ref. [16] so we
drop details. The main idea follows from the expression for the effective
potential in the 1D equation:

𝑈 (𝑥) = 𝜉(𝑥) + ∫ 𝑑𝑥′𝐺(𝑥, 𝑥′)[𝜌[𝑈 (𝑥′)] − 𝜌𝑏(𝑥′)] + 𝜑(𝑥) , (3)

where 𝜉(𝑥) is the transverse quantization energy, 𝜑(𝑥) is the potential
of external charges induced on the conducting electrodes, 𝐺(𝑥; 𝑥′) is an
effective 1D Green function which determines the potential created by
the positive background charge and the charge of electrons. The specific
form of 𝐺(𝑥; 𝑥′) is found as a result of the integration over the transverse
coordinates and in general case is determined by the geometry of the
reservoirs and nearby gates. The positive background charge density
𝜌𝑏(𝑥) is geometry dependent, for |𝑥| < 𝑎 it is a constant. The electron
charge density 𝜌[𝑈 (𝑥)] is a functional of the 1D potential 𝑈 (𝑥). We
define 𝜌[𝑈 (𝑥)] in the frame of the quasi-classic approximation assuming
that 𝑈 (𝑥) is a sufficiently smooth function.

Within this approach the electron density is evidently formed on the
basis of right- and left-moving states,

𝛹 𝑟,𝑙
0 (𝑥,𝐸) =

√

𝑘0(𝐸)
𝑘(𝑥,𝐸)

exp
[

±𝑖∫

𝑥

−𝐿∕2
𝑑𝑥′𝑘(𝑥′)

]

, (4)

where 𝑘0(𝐸) =
√

2𝑚𝐸∕ℏ, 𝑘(𝑥,𝐸) =
√

2𝑚(𝐸 − 𝑈 (𝑥))∕ℏ, and 𝐸 is the
energy of the corresponding state.

The self-consistent charge and potential distribution in the QWr
under the applied DC voltage are determined from Eq. (3) numerically
for electrodes in the form of two equipotential planes perpendicular to
the QWr. In the transition regions between reservoirs and one-mode
part of the QWr we take into account the electron charge of several
modes of the electron transverse motion. The self-consistent potential
𝑈 (𝑥) in the QWr and contact regions is shown in Fig. 2 for a specific
set of parameters and a variety of DC bias voltages.

The potential landscape 𝑈 (𝑥) depends strongly on the e–e interac-
tion parameter which can be estimated as 𝑔 ≈ 2𝑟𝑠 ln(𝐿∕𝑑), where 𝑟𝑠 is
the standard parameter for an electron gas in an infinite 1D QWr. If
𝑔 ≫ 1 the main features of the potential landscape can be described
analytically [16]. The general features of the evolution of the potential
landscape with the bias voltage are as follows.

At low voltages, the charge density in the QWr remains nearly
constant and equal to the equilibrium one. This is a result of the large
potential energy associated with a charge imbalance due to a high
interaction parameter 𝑔. At voltages smaller than the Fermi energy
in the QWr the potential landscape in the QWr remains flat (see line
labeled 0.2 in Fig. 2) shifting down in half of the applied voltage. There
are two potential steps at the contact regions where an applied voltage
drops equally.

As the bias voltage exceeds a critical value 𝑉1, a potential barrier is
formed near the cathode contact while the potential landscape in the
QWr remains nearly flat. The critical voltage is estimated as 𝑒𝑉1∕𝜇𝐿 ≈
𝑑2𝑘2𝐹 ∕4. In this regime, only the electrons injected from the cathode
pass through the QWr, while the electrons coming from the anode
3

m

Fig. 2. Effective 1D potential in a QWr coupled to reservoirs for various bias voltages.
The parameters used in the calculations are: 𝐿=5 μm, 𝑑=20 nm, 𝑎=1.25 μm, 𝑅=0.75 μm,
𝑘𝐹 = 100, 𝑔 ≈ 30. The applied voltage normalized to the Fermi energy in the reservoirs,
= 𝑉𝑑𝑐∕𝜇𝐿, (𝜇𝐿 = 5.5 m𝑒V) is shown below each line.

re blocked by the barrier (see lines labeled 0.6 and 1.0 in Fig. 2).
evertheless, the electrons coming from the anode play an important

ole, since they participate in the maintenance of the nearly flat form
f the potential landscape. It is interesting that the main part of the
pplied voltage drops across the barrier. Under these conditions, the
lectron energy distribution function is strongly inverted in the large
art of the gap between the reservoirs. The electrons injected by the
athode occupy the energy interval 𝑈𝑚 < 𝐸 < 𝜇𝐿, where 𝑈𝑚 is the top
f the barrier. The electrons coming from the anode occupy a relatively
arrow interval of energy between the bottom of the conduction band
n the QWr and the chemical potential of the anode reservoir.

Another characteristic voltage is 𝑉2 ≈ 𝑔𝑉1∕3. At 𝑉𝑑𝑐 > 𝑉2, the
lectrochemical potential level in the anode reservoir lies too low and
he anode cannot supply enough electrons to screen the electric field
n the QWr (line marked 1.8 in Fig. 2). As a result, the electric field in
he central part of the QWr increases considerably.

Thus, the main conclusion is that the potential profile of the QWr
s strongly rearranged under the large dc bias voltage. The significant
art of the applied voltage drops near the cathode contact, while the
otential profile over most of the QWr length remains almost flat.
his finding is consistent with other results on narrow wires or atomic
trings in the presence of high source–drain voltages obtained using
arious approaches and calculation methods, for a review see Ref. [20].

. Admittance and NDC

The AC current and the admittance are studied using the approach
escribed in Ref. [12]. The AC electron current in the QWr is calculated
onsidering the electron interaction with the AC field as a perturbation.
n the first order of the perturbation theory, the electron wave function
eads:

𝜆(𝑥, 𝑡) = 𝛹𝜆
0 (𝑥, 𝑡) +

[

𝛹𝜆
+(𝑥)𝑒

−𝑖𝜔𝑡 + 𝛹𝜆
−(𝑥)𝑒

𝑖𝜔𝑡] 𝑒−𝑖𝐸𝑡∕ℏ, (5)

here 𝛹𝜆 is the unperturbed wave function of electrons coming from
he cathode (𝜆 = 𝑅) or anode (𝜆 = 𝐿); ± marks components with an
nergy 𝐸 ± ℏ𝜔.

Of greatest interest is the situation 𝑉𝑑𝑐 > 𝑉1 when and the electrons
oming from the anode are blocked by the barrier in the considered
requency range. In the quasiclassic approximation, the wave function
f electrons injected from the cathode 𝛹𝑅(𝑥, 𝑡) is formed by the right-

𝑟
oving components 𝛹0 defined by Eq. (4). The AC electron current
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with the frequency 𝜔 reads:

𝑅(𝑥, 𝑡) = 𝑖𝑒ℏ
2𝑚

(

𝛹 𝑟∗
0

𝑑𝛹𝑅
+

𝑑𝑥
− 𝛹𝑅

+

𝑑𝛹 𝑟∗
0

𝑑𝑥
− 𝛹 𝑟

0
𝑑𝛹𝑅∗

−
𝑑𝑥

+ 𝛹𝑅∗
−

𝑑𝛹 𝑟
0

𝑑𝑥

−
𝑒𝑉𝑎𝑐
ℏ𝜔

𝛹 𝑟∗
0 𝛹 𝑟

0𝐹 (𝑥)

)

𝑒−𝑖𝜔𝑡 + c.c.

(6)

The wave function of electrons coming from the anode 𝛹𝐿(𝑥, 𝑡) is
formed by both components 𝛹 𝑟

0 and 𝛹 𝑙
0. These electrons also contribute

to the AC current in external circuit though they are blocked by the
barrier. The effect is due to AC polarization of these electrons. However,
in the considered system this component of the current turns out to be
negligibly small since the density of electrons coming from the anode
is small in the voltage range of interest for us.

The electric current in the external circuit is found in accordance
with the Shockley theorem and has the form:

𝑗(𝑡) = 1
𝐿 ∫

𝐿∕2

−𝐿∕2
𝑑𝑥𝐹 (𝑥)∫

∞

𝑈𝑚

𝑑𝐸𝑔(𝐸) 𝑓 (𝐸)𝑗𝑅(𝑥, 𝑡) + 𝐶
𝑑𝑉𝑎𝑐 (𝑡)

𝑑𝑡
, (7)

where 𝐶 is interelectrode capacitance, 𝑔(𝐸) is the density of states
and 𝑓 (𝐸) is the Fermi distribution functions in the cathode reservoir,
𝑓 (𝐸) = [1 + 𝑒(𝐸−𝜇𝐿)∕𝑘𝑇 ]−1. The current calculated in this way is used
to determine the admittance. For simplicity, further calculations are
carried out for 𝑇 → 0.

The final expression for the admittance 𝑌 (𝜔) normalized to the
conductance quantum 𝑒2∕ℎ has the following form:

𝑌 (𝜔) = 𝑌+(𝜔) + 𝑌−(𝜔) − 𝑖 ℎ𝜔𝐶
𝑒2

, (8)

here 𝑌± corresponds to the higher and lower energy sideband. They
re given by

+(𝜔) =
1
ℏ𝜔 ∫

𝐿∕2

−𝐿∕2
𝑑𝑥𝐹 (𝑥)∫

∞

𝑈𝑚

𝑑𝐸

{

[𝑓 (𝐸) − 𝑓 (𝐸 + ℏ𝜔)]
𝑘+ + 𝑘
√

𝑘𝑘+
𝑒𝑖(𝑆+−𝑆)

× ∫

𝑥

−𝐿∕2
𝑑𝑥′𝐹 (𝑥′)𝑒−𝑖(𝑆+−𝑆)

+
𝑘+ − 𝑘
√

𝑘𝑘+

[

𝑓 (𝐸)𝑒−𝑖(𝑆++𝑆)
∫

𝐿∕2

𝑥
𝑑𝑥′𝐹 (𝑥′)

𝑘+ − 𝑘
√

𝑘𝑘+
𝑒𝑖(𝑆++𝑆)

−𝑓 (𝐸 + ℏ𝜔)𝑒𝑖(𝑆++𝑆)
∫

𝐿∕2

𝑥
𝑑𝑥′𝐹 (𝑥′)

𝑘+ − 𝑘
√

𝑘𝑘+
𝑒−𝑖(𝑆++𝑆)

]}

,

(9)

𝑌−(𝜔) = − 1
ℏ𝜔 ∫

𝑈𝑚+ℏ𝜔

𝑈𝑚

𝑑𝐸𝑓 (𝐸)

{

∫

𝐿∕2

𝑥−
𝑑𝑥𝐹 (𝑥)

[

𝑘 + 𝑘−
√

𝑘𝑘−
𝑒𝑖(𝑆−𝑆̃−)

× ∫

𝐿∕2

𝑥−
𝑑𝑥′𝐹 (𝑥′)

{

𝑘− + 𝑘
√

𝑘𝑘−
𝑒−𝑖(𝑆−𝑆̃−) +

𝑘 − 𝑘−
√

𝑘𝑘−
𝑒−𝑖(𝑆+𝑆̃−)

}

+
𝑘 − 𝑘−
√

𝑘𝑘−
𝑒−𝑖(𝑆−+𝑆)

∫

𝑥

𝑥−
𝑑𝑥′𝐹 (𝑥′)

𝑘 − 𝑘−
√

𝑘𝑘−
𝑒−𝑖(𝑆−+𝑆)

−4𝐹 (𝑥)
(

cos 𝑆̃−
𝑘−

+
sin 𝑆̃−
𝑘−

)]}

,

(10)

here 𝑘± =
√

2𝑚(𝐸 − 𝑈 (𝑥) ± ℏ𝜔), 𝑆(𝑥) = ∫ 𝑥
−𝐿∕2 𝑑𝑥

′𝑘(𝑥′), 𝑆+(𝑥) =
∫ 𝑥
−𝐿∕2 𝑑𝑥

′𝑘+(𝑥′), 𝑆̃−(𝑥) = ∫ 𝑥
𝑥−

𝑑𝑥′𝑘−(𝑥′) − 𝜋∕4. The lower sideband has
a classical turning point 𝑥 = 𝑥− for 𝐸 < 𝑈𝑚 + ℏ𝜔, to the left of which
the quantity 𝑘−(𝑥) becomes imaginary; 𝑥− is a root of the equation

𝐸 + ℏ𝜔 − 𝑈 (𝑥−) = 0.

The electron flow from the cathode to the anode with emission and
absorption of photons gives the main contribution to the AC current.
The maximum of the potential barrier 𝑈𝑚 is in the single-mode part
of the wire at some distance from the cathode reservoir. The electrons
moving from the cathode with an energy 𝐸 < 𝑈 are returned. Their
4

𝑚

Fig. 3. Real part of the admittance as a function of frequency calculated for parameters
of Fig. 2 for two voltages 𝑉𝑑𝑐 = 1.0𝜇𝐿 and 𝑉𝑑𝑐 = 1.4𝜇𝐿. Inset shows the frequency
dependency of the real parts of 𝑌+ and 𝑌− for 𝑉𝑑𝑐 = 1.4𝜇𝐿.

contribution to the admittance is small when the virtual cathode 𝑈𝑚 is
located near the cathode reservoir.

Of most interest is the real part of the admittance and its depen-
dence on the frequency, the bias voltage, and the QWr length. As a
function of the frequency, Re𝑌 (𝜔) exhibits an oscillatory behavior with
amplitude decreasing with the frequency and changing the sign, as
expected in the theory of the time-of-flight instability. Fig. 3 shows
an example of such a dependence calculated for the same parameters
as in Fig. 2 and two values of the bias voltage in the regime, when
𝑉1 < 𝑉𝑑𝑐 < 𝑉2 and the potential landscape is practically flat over most
of the QWr. The dynamic conductance becomes negative in frequency
ranges associated with the transit time of electrons.

It is interesting to consider the contributions of both components
𝑌+ and 𝑌− corresponding to the upper and lower sidebands into the
admittance. They describe respectively processes with absorption and
emission of quanta ℏ𝜔. Fig. 3 clearly shows that both components are
oscillating functions of 𝜔 with different periods. This can be interpreted
as a result of the difference between the electron velocities in the upper
and lower side bands. Thus, along with the presence of population
inversion, the realization of NDC requires a difference in effective
velocities of the electron density waves in the upper and lower side
bands.

In the large voltage regime 𝑉𝑑𝑐 ≫ 𝑉2, the applied voltage drops
mainly in the QWr and the electric field in the QWr becomes large (see
curve 1.8 in Fig. 2). We considered this case separately, approximating
the QWr potential profile with a linear function, and found that the
value of the real part oscillates with frequency similar to that in Fig. 3,
with decreasing amplitude.

The calculations we carried out make it possible to find out how
the rearrangement of the potential landscape with the formation of
a barrier and an almost flat section in the QWr manifests itself in a
high-frequency response and the formation of NDC. To this end, we
compared our results for a realistic model, which takes into account
the rearrangement of the potential landscape, with the results of cal-
culations for an idealized model, in which the potential landscape
is approximated by a linear function. We omit the details of this
calculation.

The most interesting and practically important quantity character-
izing the time-of-flight effect is the maximum value of the NDC and the
frequency at which this maximum is reached. The results of the study
of these quantities are presented below.

Fig. 4 shows the dependence of the maximal value of the NDC,
max[−Re𝑌 ], on the bias voltage for the realistic potential landscape
and the linear approximation for the same parameters of the electronic
system of the QWr. It is clearly seen that in the situation when the
potential landscape of the QWr is rearranged, the NDC appears at a
lower bias voltage, than in case of the potential approximated by a
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Fig. 4. Maximum NDC as a function of the DC bias voltage for the realistic potential
andscape of the QWr (red line) and the linear potential approximation. The calculations
ere carried out for parameters of Fig. 2.

Fig. 5. Maximum NDC as a function of the QWr length in the regime of the rebuilt
otential landscape. The calculations were carried out for parameters of Fig. 2 and the
ias voltage 𝑉𝑑𝑐∕𝜇𝐿 = 1.4.

linear function. Then, as the voltage increases in the range 𝑉1 < 𝑉𝑑𝑐 <
𝑉2 when the restructuring of the potential landscape takes place, the
NDC in the realistic model becomes several times larger.

The dependence of the maximum NDC on the QWr length is shown
in Fig. 5 for a given bias voltage in the range where the potential
landscape is rearranged. The increase in NDC with an increase in the
QWr length at a short length seems to be due to an increase in the size
of the volume where the electrons interact with the AC electric field.
Further saturation of this dependence with increasing 𝐿 is associated
with the flat potential landscape of most of the QWr.

5. Discussion and concluding remarks

We have studied the dynamic conductivity and the time-of-flight
instability of the current in an ungated QWr at a sufficiently high bias
voltage, when the potential landscape in the wire is rearranged due
to the strong e–e interaction and charge redistribution. The resulting
potential landscape is characterized by the presence of a barrier near
the cathode contact and an extended almost flat area. It is this potential
landscape that is realized in real ungated QWrs. Owing to this poten-
tial distribution in the wire, the flow of electrons injected from the
cathode is formed in the energy band that lies much higher than the
energy of the states filled with electrons coming from the anode. The
presence of such a flow was found in experiments on the scattering
of electrons in normally pinched-off QWr formed in GaAs/AlGaAs
heterostructures [21]. Thus, a situation arises when the population
of electronic states in the QWr is strongly inverted and the injected
electron flow is formed by a set of wave functions with a relatively
5

small dispersion of wave vectors. We have found that in this case the
conditions for the emergence of the time-of-flight instability are greatly
facilitated and the value of the NDC increases.

Within the framework of the quasi-classical approach used in here,
the mechanism of a formation of the NDC is as follows. Under the action
of an AC electric field, a traveling wave of electron density is formed in
the QWr. Due to the inertia of the movement of particles, only a part
of the electrons moves against the AC electric field, receiving energy
from it. Other electrons move along the field, transferring their energy
to it. Accordingly, two components of the electron current are formed,
one due to the absorption of a quanta ℏ𝜔, and the other due to the
emission of a quanta ℏ𝜔. The first makes a positive contribution to the
conductivity, and the second makes a negative one, as described by
Eqs. (6) and (9),(10). We have found that both components oscillate
with frequency, Fig. 3, with different periods due to electron dispersion
and inhomogeneity of the potential landscape. As a result, in some
frequency intervals, the total conductance becomes negative.

Our calculations have shown that, due to the rearrangement of the
potential landscape, the maximum value of NDC increases by several
times. At the same time, the frequency of the NDC maximum also
increases.

The effects of the potential rearrangement in an ungated wire found
here arise really at a low bias voltage. The potential rearrangement
begins at a voltage 𝑉1 ∼ 𝜇𝐹 (𝑑 𝑘𝐹 )2∕4, which is estimated at the level
𝑉1 ∼ 1–2 mV for structures of the GaAs/AlGaAs type. The strongest
effects appear at 𝑉 ≲ 𝑉2, which exceeds 𝑉1 by a factor of about
2𝑟𝑠 ln(𝐿∕𝑑). Thus, instability can manifest itself at voltages of the order
of several mV.

The instability of the electronic system that occurs in a QWr at a
sufficiently large bias can, of course, lead to generation of a microwave
radiation of low power. But there is another aspect of the manifestation
of the instability associated with its influence on the nonlinear transport
due to the rectification of the alternating current. These effects require
a further nonlinear analysis.

The idea of strong rearrangement of the potential landscape of
the QWr and possible generation of a high-frequency signal can be
useful to understand transport anomalies observed in many studies:
see Refs. [22,23] and references therein. New prospects for the man-
ifestation of the processes of the rearrangement of potential relief and
their effects on time-dependent processes in nanostructures open up in
connection with growth of interests in space charge-limited currents in
such systems in recent years [24].
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