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A B S T R A C T

Mexican-hat dispersion of band electrons in two-dimensional materials attracts a lot of interest, mainly due
to the Van Hove singularity of the density of states near the band edge. In this paper, we show that there is
one more feature of such a dispersion, which also leads to nontrivial effects. It consists in the fact that the
sign of the effective mass in the momentum space near the central extremum is opposite to the sign of the
mass outside this region. For this reason, any localized potential that repels quasiparticles in the outer region
attracts quasiparticles in the central region and thereby creates quasi-bound states. We study these states in
the case when the Mexican-hat dispersion is formed due to the hybridization of the inverted electron and
hole bands, and the potential is created by a point defect. The energy and width of the resonance of the local
density of states corresponding to a quasi-bound state are found, and it is shown that, under certain conditions,
a quasi-bound state can transform into a bound state in a continuum of band states. The presence of quasi-
bound states leads to nontrivial effects in the spin-dependent scattering of electrons. Due to the quasi-bound
state, the skew scattering is strongly enhanced for electrons with energy near the resonance, and the skewness
angle varies over a wide range depending on the energy. In addition, in a certain energy range, a nontrivial
effect of scattering suppression appears in the direction opposite to the skewness angle.
1. Introduction

Mexican-hat shaped dispersion of electronic spectrum is a relatively
common property of many two-dimensional (2D) materials such as
topological insulators in which the Mexican-hat dispersion naturally ap-
pears as a consequence of the band inversion [1], bilayer graphene [2,
3], monolayers of group III–IV chalcogenides [4–6]. The main interest
to the Mexican-hat dispersion is usually attracted due to a Van Hove
singularity of density of states close to the band edge, which opens the
way for many striking effects caused by electron correlations, including
the formation of a stable ferromagnetic phase [7,8], stimulation of
electron pairing [9,10], and dramatic changes in the spectrum of the
bound state in the attractive potential [11,12]. Recent experiments
reveal sharp peaks in optical conductivity due to this feature of the
density of states [13].

In this paper, we show that there is another feature of the Mexican-
hat dispersion which also leads to nontrivial effects. This feature con-
sists in the fact that the sign of the effective mass in the momentum
space near the central extremum is opposite to the sign of the mass
outside this region. For definiteness, consider a Mexican-hat dispersion
in the conduction band. The effective mass of the electrons with the
wave vectors near the central maximum is negative, while outside this
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region the effective mass is positive. Therefore, it can be expected that
a negatively charged defect that normally repels band electrons will
attract electrons with momenta near the center of the Mexican hat
and thereby create a quasi-bound state against the background of a
continuum of band states. We show that these states do exist and study
their properties in the case when the Mexican-hat dispersion is due to
the hybridization of electron-like and hole-like band states described
within the frame of the Bernevig–Hughes–Zhang model [14].

The energy of quasi-bound states lies above the central maximum
of the Mexican hat, where they form resonances of the local density of
states. The key role in the mechanism of the formation of quasi-bound
states is played by the hybridization of the electron and hole bands. In
particular, the hybridization parameter largely determines the width of
the resonance. But besides this, the resonance width also depends on
some overlap integral of the localized component of the wave function
and the wave function of the continuum states near the defect. Because
of this, the quasi-bound states have an interesting feature: under certain
conditions, the resonance width can vanish and the quasi-bound state
turns into a bound state in a continuum.

An interesting question is about the possible manifestations of quasi-
bound states in the experiment. To this end, let us study how the
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quasi-bound state manifests itself in the process of scattering of band
electrons. It turns out that the quasi-bound state strongly enhances
the spin-dependent skew scattering of electrons with energies close to
resonance ones, and as the energy changes, the skewness angle changes
from 0 to 𝜋. In addition, in a certain energy range, a nontrivial effect of
spin-dependent scattering suppression occurs in the direction opposite
to the skewness angle for each spin.

2. Quasi-bound states in a repulsive potential

As a model of Mexican-hat dispersion we use four-band model of
Bernevig, Hughes, and Zhang (BHZ) in which such a dispersion arises
due to inversion and hybridization of the electron- and hole-like bands.
For simplicity the model is supposed to be symmetric with respect
to the electron and hole bands. The hybridization is conveniently de-
scribed by a dimensionless parameter 𝑎 = 𝐴(𝐵𝑀)−1∕2, where 𝐴, 𝐵, and
𝑀 are standard parameters of the BHZ model [14]. 𝑀 is the mass term,
𝐵 the parameter describing the electron and hole band dispersion, and
𝐴 is the dimensional hybridization parameter. A repulsive nonmagnetic
defect is described by a potential 𝑉 (𝑟) which is supposed to be axially
symmetric.

The system Hamiltonian splits into two 2 × 2 matrixes for spin-up
and spin-down states. To be specific, in what follows we will consider
the spin-up sector. In the dimensionless form the spin-up Hamiltonian
reads

𝐻↑ =
(

−1 + 𝐤̂2 𝑎𝑘̂+
𝑎𝑘̂− 1 − 𝐤̂2

)

+ 𝑣(𝑟) ⋅ I2×2, (1)

where the values of the energy dimension are normalized to |𝑀|. The
distance is normalized to

√

|𝐵∕𝑀|, the wave vector 𝑘 is normalized to
√

|𝑀∕𝐵|, and 𝑘± = 𝑘𝑥 ± 𝑖𝑘𝑦. The normalized potential is denoted by
𝑣(𝑟). The spinor wave function 𝛹 = (𝜓1, 𝜓2)𝑇 contains two components
one of which, 𝜓1, describes the contribution of the electron-like orbital
and the other, 𝜓2, the hole-like one.

The Mexican-hat dispersion arises when 𝑎 <
√

2, and the Mexican-
hat shape is the more pronounced the smaller 𝑎. Therefore it is interest-
ing to study the situation where 𝑎 ≪ 1. The energy of the Mexican hat
bottom is 𝐸𝑚𝑖𝑛 = |𝑎|

√

1 − 𝑎2∕4, and the central extremum is 𝐸𝑡𝑜𝑝 = 1.
Quantum states induced by a defect potential are not difficult to

tudy analytically when 𝑎2 ≪ 1. In the limiting case of 𝑎 = 0 the Hamil-
onian (1) is diagonal, and the Schrödinger equation 𝐻↑𝛹 = 𝐸𝛹 splits
nto two separate equations for the components of the spinor wave
unction 𝛹 (𝐫) = (𝜓(𝐫), 𝜙(𝐫))𝑇 which are easily analyzed. This opens up
he possibility to study the Mexican-hat situation by considering 𝑎 as a
mall parameter.

In such a way we present the Hamiltonian (1) as the sum of the
amiltonians of two subsystems, 𝐻𝑐 and 𝐻𝑏, weakly coupled to each
ther via the Hamiltonian 𝑊

↑ = 𝐻𝑐 +𝐻𝑏 +𝑊 , (2)

here

𝑐 =
(

𝐤̂2 − 1 + 𝑣(𝑟) 0
0 0

)

, 𝐻𝑏 =
(

0 0
0 −𝐤̂2 + 1 + 𝑣(𝑟)

)

, (3)

nd

= 𝑎
(

0 𝑘̂+
𝑘̂− 0

)

. (4)

he Hamiltonians 𝐻𝑐 and 𝐻𝑏 describe uncoupled electron-like and
ole-like subsystems.

The electron-like subsystem is described by the spinor 𝛹 (𝑐)
𝐤 =

𝜓𝐤, 0)𝑇 , where 𝜓𝐤(𝐫) is defined by the equation

𝑘̂2 + 𝑣(𝑟)]𝜓𝐤 = (1 + 𝐸)𝜓𝐤 . (5)

t is clear that 𝛹 (𝑐)
𝐤 is a continuum of states generated by the electron or-

(𝑐)
2

itals |𝐸 ↑⟩ with the energy 𝐸 > −1. Because of the axial symmetry, 𝛹𝐤 S
Fig. 1. Schematic of the quasi-bound state formation due to coupling subsystems
described by 𝐻𝑏 and 𝐻𝑐 . Thin blue and red lines are the spectra of the electron-like
and hole-like states, with 𝜀0 being a bound state in the hole subsystem. The thick green
lines represent the band dispersion resulting from hybridization. The elongated ellipse
symbolically depicts a quasi-bound state with resonant energy 𝐸𝑟𝑒𝑠.

can be presented as a sum of angular harmonics: 𝛹 (𝑐)
𝐤 =

∑

𝑚 𝛹
(𝑐)
𝑘,𝑚𝑒

𝑖𝑚𝜑,
here 𝛹 (𝑐)

𝑘,𝑚 = (𝜓𝑘,𝑚, 0)𝑇 and 𝑘 =
√

1 + 𝐸 plays the role of the wave
number defined at 𝑟→ ∞. Asymptotically, as 𝑟 → ∞, the function 𝜓𝑘,𝑚
ehaves like ∼ 𝐶1𝐽𝑚(𝑘𝑟) + 𝐶2𝑌𝑚(𝑘𝑟). Close to the center, the amplitude
f 𝜓𝑘,𝑚 is suppressed by the repulsive potential 𝑣(𝑟).

The Hamiltonian 𝐻𝑏 describes the states 𝛷 = (0, 𝜙)𝑇 formed by the
ole orbitals |𝐻 ↑⟩, where 𝜙(𝐫) is a solution of the equation

𝑘̂2 − 𝑣(𝑟)]𝜙 = (1 − 𝐸)𝜙 . (6)

his equation has both discrete and continuous spectrum of eigenstates.
n the energy range 𝐸 < 1, the spectrum is continuous, 𝐸(𝑞), and
epends on one quantum number 𝑞 =

√

1 − 𝐸, which can be considered
as a wave vector defined only at 𝑟 → ∞. The discrete spectrum lies at
𝐸 > 1. The discrete levels 𝐸𝑛,𝑚 are determined by radial and angular
uantum numbers 𝑛 and 𝑚, and are written as 𝐸𝑛,𝑚 = 1 + 𝜀𝑛,𝑚. The
ound-state wave function has the form 𝜙𝑛,𝑚(𝑟)𝑒𝑖𝑚𝜑.

The Hamiltonian 𝑊 in Eq. (2) couples the electron and hole subsys-
ems. The situation is qualitatively illustrated in Fig. 1. The coupling of
he subsystems via 𝑊 leads to the formation of the resonant states and
voided crossing of the electron- and hole-like bands.

Thus, in the energy region 𝐸 > 1, the situation is similar to the
ano–Anderson problem of a localized state in a continuum. For sim-
licity, we assume here that the energy distance between the discrete
nergy levels is large enough and restrict ourselves to considering only
ne localized state with energy 1 + 𝜀0 and zero angular momentum.
ollowing to the method of the Fano–Anderson theory [15,16], the
ave function of the total system in the energy region 𝐸 > 1 can be

onstructed in the form

=
∑

𝑘,𝑚
𝐴𝑘,𝑚𝛹

(𝑐)
𝑘,𝑚𝑒

𝑖𝑚𝜑 + 𝐵𝛷 . (7)

ere we neglected also the 𝛷𝑞,𝑚 states of the continuous part of the
pectrum of the hole subsystem, since they are far from the considered
tate in energy, as are the excited states of the discrete spectrum.

ubstituting the wave function (7) into the Schrödinger equation we
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arrive at the following eigenfunctions of the Hamiltonian 𝐻↑:

𝛹 = 𝐵

[

𝛷 + 𝑎𝑍
∑

𝑚
⟨, 𝑚|𝑘̂+|𝛷⟩𝛹

(𝑐)
,𝑚

+ 𝑎
∑

𝑘,𝑚
 1
2 − 𝑘2

⟨𝑘, 𝑚|𝑘̂+|𝛷⟩𝛹
(𝑐)
𝑘,𝑚

]

, (8)

where  denotes the principal value. The wave functions are labeled
by the quantum number  which is related to the energy 𝐸 by  =
√

𝐸 + 1. The value 𝑍 is defined as

 =
2 − 2 − 𝜀0 − 𝛴

𝑎2
∑

𝑚 |⟨, 𝑚|𝑘̂+|𝛷⟩|2
, (9)

with 𝛴 being the self-energy function

𝛴 = 𝑎2
∑

𝑘,𝑚
 1
2 − 𝑘2

⟨𝑘, 𝑚|𝑘̂+|𝛷⟩ . (10)

The amplitude 𝐵 is

 = 1
√

(2 − 2 − 𝜀0 − 𝛴)2 + 𝛾2

, (11)

where

𝛾 = 𝑎2𝐿
2𝑣

∑

𝑚
|⟨, 𝑚|𝑘̂+|𝛷⟩|2 , (12)

with 𝐿 being the normalization length and 𝑣 = 𝑑𝐸∕𝑑 = 2.
Since the angular quantum number of the localized state 𝛷 we are

considering is zero, it is clear that the matrix element ⟨𝑘, 𝑚|𝑘̂+|𝛷⟩ in
nonzero only for 𝑚 = 1, and in the above equations the sum over 𝑚
reduces to only one term with 𝑚 = 1. Therefore

𝛴 = 𝑎2
∑

𝑘
 1
2−𝑘2

⟨𝑘, 1|𝑘̂+|𝛷⟩, (13)

𝛾 = 𝑎2𝐿
2𝑣

|⟨, 1|𝑘̂+|𝛷⟩|2. (14)

Eq. (11) clearly shows that the amplitude of the wave functions has
a resonance at the energy

𝐸𝑟𝑒𝑠 = 1 + 𝜀0 + 𝛴𝑟𝑒𝑠 , (15)

which lies above the central maximum of the Mexican-hat profile, and
the resonance width function is given by Eq. (14).

The resonance of the local density of states near the defect arises
at any repulsive potential that can create a bound state according to
Eq. (6). The resonance width is determined by two factors: the hy-
bridization of the electron and hole bands described by the parameter
𝑎, and the overlap of the localized and continuum wave functions which
is determined by the potential 𝑣(𝑟). The dependence of the resonance
width on the parameter 𝑎 is approximated as 𝛾 ∝ 𝑎2 for 𝑎2 ≪ 1.

The dependence on 𝑣(𝑟) is more complicated and can lead to non-
trivial consequences. The point is that the matrix element ⟨𝑟𝑒𝑠, 1|𝑘̂+|𝛷⟩
can vanish under certain conditions regarding the function 𝑣(𝑟). In
his case, the resonance width vanishes and the quasi-bound state
ransforms into a bound state in a continuum (BIC). The condition
nder which this occurs are determined by two equations. The first
s ⟨𝑟𝑒𝑠, 1|𝑘̂+|𝛷⟩ = 0 and the second is Eq. (15) that determines 𝑟𝑒𝑠.
oth equations contain 𝑣(𝑟). The BIC is formed if these equations are
ompatible and have a common root 𝑟𝑒𝑠.

We have explored this possibility for some specific forms of the
otential. In the case of a step-like form 𝑣(𝑟) = 𝑣0𝛩(𝑟0 − 𝑟), which

models a short-range interaction, the above equations are compatible
only for certain values of the pair of parameters 𝑟0 and 𝑣0. The BIC is
formed only at these values of the amplitude and radius of the potential.
In the case of the Coulomb potential 𝑣(𝑟) = 𝑍∕𝑟, the BIC cannot be
formed from the ground-state 𝜙0,0, however the first exited state 𝜙1,0
can give rise to the BIC. This mechanism of BIC formation corresponds
3

to the trend of recent years to consider resonant states as the basis
for the formation of BIC and quasi-BIC resonances in various physical
systems [17,18].

The results presented refer to spin-up states. For spin-down states, it
is possible not to carry out a separate calculation, but to use a unitary
transformation that relates the spin-up and spin-down Hamiltonians:
𝐻̂↓ = 𝑈̂𝐻̂↑𝑈̂−1 where 𝑈̂ = 𝐾𝜏𝑧, 𝐾 denotes the complex conjugation
operation and 𝜏𝑧 is Pauli matrix. The spin-down wave function is re-
lated to the spin-up one by 𝛹↓ = 𝑈̂𝛹↑. The general property of the BHZ
Hamiltonian is that the Kramers pair of the eigenstates corresponds to
opposite spins moving in opposite directions, in this sense the states are
helical.

In this way we find that the spectrum of spin-down quasi-bound
states is the same as that of spin-up states. But the wave functions
change in accordance with their helical nature and in the case of
a quasi-bound state correspond to rotation around the center in the
opposite direction. For this reason, one can expect that they lead to
nontrivial effects in spin-dependent scattering of electrons by defects
with quasi-bound states.

3. Electron scattering by defects with a resonant state

In this section we study the scattering of band electrons by a point-
like defect with a repulsive potential that creates a quasi-bound state.
Interest in this problem stems from our expectation that it is precisely
in scattering that the quasi-bound states under study can manifest
themselves most clearly.

The problem is solved on the basis of the Hamiltonian (1) for spin-
up states. According to the standard scattering theory [19], the wave
function should asymptotically, at 𝑟 → ∞, be the sum of an incident
wave propagating along the 𝑥 axis and a scattered outgoing wave. For
an ingoing particle in the conduction band with a wave vector 𝑘, this
can be written as

𝛹 = 𝐶𝑘

(

1
−𝛽𝑘

)

𝑒𝑖𝑘𝑥 + 𝑓 (𝑘, 𝜑) 𝑒
𝑖𝑘𝑟
√

𝑟
, (16)

where 𝛽𝑘 = −𝑎𝑘∕(𝜀𝑘 − 1 + 𝑘2), with 𝜀𝑘 being the band dispersion.
The scattering amplitude 𝑓 (𝑘, 𝜑) is a spinor, which is determined from
the Schrödinger equation with the Hamiltonian (1) and the boundary
condition at infinity given by Eq. (16).

It is clear that, in the general case, the scattering amplitude depends
on the shape of the potential, since it essentially determines the wave
functions and the spectrum of quasi-bound states. For definiteness,
we confine ourselves here to the simplest and most universal case of
a potential of zero radius, when the wave function is predominantly
outside the region of potential localization. However, even in this case
there is a well-known problem of processing 𝛿-potential in 2D space,
which requires some regularization procedure [20–22]. We overcome
this problem by considering the zero-radius potential as the limit of a
sequence of step potentials 𝑣(𝑟) = 𝑣0𝛩(𝑟0 − 𝑟) with decreasing radius
𝑟0 → 0 and scaling the amplitude as 𝑣0 ∼ 𝑟−20 .

It is convenient to use the polar coordinates (radius 𝑟 and angle 𝜑)
and represent the wave function in the form

𝛹 (𝐫) =
∑

𝑚

(

𝜓1,𝑚(𝑟)
𝑖𝜓2,𝑚(𝑟)𝑒−𝑖𝜑

)

𝑒𝑖𝑚𝜑 , (17)

where the functions 𝜓1,𝑚(𝑟) and 𝜓2,𝑚(𝑟) are defined by the following
equations which are obtained directly from Eq. (1):

[𝐸 + 1 − 𝑘̂2𝑚 − 𝑣(𝑟)]𝜓1,𝑚 − 𝑎
( 𝑑
𝑑𝑟

− 𝑚 − 1
𝑟

)

𝜓2,𝑚 = 0 (18)

𝑎
( 𝑑
𝑑𝑟

+ 𝑚
𝑟

)

𝜓1,𝑚 + [𝐸 − 1 + 𝑘̂2𝑚−1 − 𝑣(𝑟)]𝜓2,𝑚 = 0 , (19)

where 𝑘̂2𝑚 = − 1
𝑟
𝑑
𝑑𝑟

(

𝑟 𝑑𝑑𝑟
)

+ 𝑚2

𝑟2
and 𝐸 is the energy.

In the case of the step-like potential, Eqs (18) and (19) are solved
exactly using the method described in detail in Ref. [23]. The solution
is presented in terms of the Bessel functions. In each of the regions,
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0 < 𝑟 < 𝑟0 and 𝑟 > 𝑟0, where the potential is constant, 𝑣 = 𝑣0 and
𝑣 = 0, the wave functions are constructed on two basis functions, which
are selected from a set of Bessel functions 𝐽𝑚, 𝑌𝑚,𝐻

(1)
𝑚 ,𝐻 (2)

𝑚 , 𝐼𝑚, 𝐾𝑚 in
accordance with the boundary conditions at 𝑟→ 0 and 𝑟 → ∞.

In the region 0 < 𝑟 < 𝑟0, the wave function is expressed in terms of
the Bessel functions 𝐽𝑚 and 𝐼𝑚1

𝜓1,𝑚(𝑟) =𝐴1,𝑚𝐽𝑚(𝑞𝑟) + 𝐴2,𝑚𝐼𝑚(𝜆𝑟) , (20)

𝜓2,𝑚(𝑟) =𝐴1,𝑚𝛽𝐽 ,𝑞𝐽𝑚−1(𝑞𝑟) + 𝐴2,𝑚𝛽𝐼𝐼𝑚−1(𝜆𝑟) , (21)

where

𝑞 =

√

√

√

√1 − 𝑎2
2

+

√

(𝐸 − 𝑣0)2 − 𝑎2
(

1 − 𝑎2
4

)

, (22)

𝜆 =

√

√

√

√−1 + 𝑎2
2

+

√

(𝐸 − 𝑣0)2 − 𝑎2
(

1 − 𝑎2
4

)

, (23)

and

𝛽𝐽 ,𝑞 =
−𝑎𝑞

𝐸 − 𝑣0 − 1 + 𝑞2
, 𝛽𝐼 = −𝑎𝜆

𝐸 − 𝑣0 − 1 − 𝜆2
. (24)

In the outer region 𝑟 > 𝑟0, the wave function is constructed on the
asis of three Bessel functions. Two functions are taken from the set
𝑚, 𝑌𝑚, 𝐻 (1)

𝑚 , and 𝐻 (2)
𝑚 , and the third is the modified Bessel function

f the second kind 𝐾𝑚. The asymptotic behavior corresponding to the
cattering theory requirement given by Eq. (16) is provided by using
he functions 𝐽𝑚, 𝐻 (1)

𝑚 , and 𝐾𝑚.
Indeed, the incoming wave, having been expanded in the angular

armonics, is expressed in terms of the Bessel functions 𝐽𝑚:

𝑖𝑛 = 𝐶𝑘

(

1
−𝛽𝑘

)

∑

𝑚
𝑖𝑚𝐽𝑚(𝑘𝑟)𝑒𝑖𝑚𝜑 . (25)

The asymptotic behavior of the scattered wave is described by the
ankel functions 𝐻 (1)

𝑚 (𝑘𝑟), and the modified Bessel functions 𝐾𝑚(𝜅𝑟)
epresent a component decreasing with increasing distance from the
efect.

Thus, in the region 𝑟 > 𝑟0 the wave function has the form:

1,𝑚(𝑟)=𝐵𝑚𝐽𝑚(𝑘𝑟) + 𝐶𝑚𝐻 (1)
𝑚 (𝑘𝑟) +𝐷𝑚𝐾𝑚(𝜅𝑟) , (26)

𝜓2,𝑚(𝑟)=𝐵𝑚𝛽𝐽 ,𝑘𝐽𝑚−1(𝑘𝑟)+𝐶𝑚𝛽𝐽 ,𝑘𝐻
(1)
𝑚−1(𝑘𝑟)+𝐷𝑚𝛽𝐾𝐾𝑚−1(𝜅𝑟) , (27)

where

𝑘 =

√

√

√

√1 − 𝑎2
2

+

√

𝐸2 − 𝑎2
(

1 − 𝑎2
4

)

, (28)

=

√

√

√

√−1 + 𝑎2
2

+

√

𝐸2 − 𝑎2
(

1 − 𝑎2
4

)

, (29)

and

𝛽𝐽 ,𝑘 =
−𝑎𝑘

𝐸 − 1 + 𝑘2
, 𝛽𝐾 = 𝑎𝜅

𝐸 − 1 − 𝜅2
. (30)

According to Eq. (25), the coefficient 𝐵𝑚 is 𝐵𝑚 = 𝑖𝑚𝐶𝑘. All other
coefficients, 𝐴1,𝑚, 𝐴2,𝑚, 𝐶𝑚 and 𝐷𝑚, in Eqs. (20), (21), (26) and (27) are
determined from conditions for matching the wave functions and their
derivatives at the boundary 𝑟 = 𝑟0.

In this way, we have calculated all the above coefficients as func-
ions of the energy and the wave functions for a sequence of increasing
alues of 𝑣0 ≫ 1, simultaneously decreasing the radius 𝑟0 so that the
roduct 𝑣0𝑟20 ≡ 𝑣 remains a constant value until the scattering amplitude
s a function of energy ceases to change qualitatively. The quantity 𝑣∕𝜋
s the amplitude of the equivalent 𝛿 potential.

1 Here we have taken into account that for 𝑣0 ≫ 1 and 𝐸 ≳ 1 in the region
𝑟 < 𝑟0 there are two characteristic wave numbers 𝑞 and 𝑖𝜆, one of which is
real and the other is imaginary.
4

t

Fig. 2. The amplitudes of outgoing scattered 𝑠- and 𝑝-waves as functions of energy 𝐸
for different (a) hybridization parameters, 𝑎, and (b) the amplitudes, 𝑣, of the potential.

Of most interest are the coefficients 𝐶𝑚 that determine the ampli-
tude of the scattered wave. For convenience, they will be normalized
to corresponding coefficients 𝐵𝑚 so that 𝐶𝑚 = 𝐶𝑚∕𝐵𝑚. The most
mportant are only 𝑠- and 𝑝-waves with the angular numbers 𝑚 = 0
nd 𝑚 = 1, since the amplitudes of higher harmonics are small for a
hort-range potential, at least in the parameter (𝑘𝑟0)2𝑚. This is quite

analogous to the scattering theory for 2D systems with one and two
band spectra [24,25].

The calculation shows that the amplitude 𝐶1(𝐸) as a function of
nergy has a sharp peak located above the top of the Mexican-hat
ispersion, which corresponds to the quasi-bound state. The width of
he peak increases with the hybridization parameter 𝑎. Interestingly,
he maximum of 𝐶1(𝐸) is preserved with increasing 𝑎 up to 𝑎 =

√

2. As a
function of the potential amplitude 𝑣, the value 𝐶1 gradually increases.

The coefficient 𝐶0(𝐸) also has a resonant feature at a much higher
nergy, which, however, disappears with decreasing the radius 𝑟0. In

the vicinity of the 𝐶1 peak, the coefficient 𝐶0 is nearly constant. The
nergy dependence of 𝐶1 and 𝐶0 is shown in Fig. 2 for a variety of the
ybridization parameter and the potential amplitude.

The coefficients 𝐶1 and 𝐶0 determine directly the scattering am-
litude 𝑓 (𝑟, 𝜑). To find the scattering cross section, it is necessary to
alculate the scattered current. The operator 𝐣 is defined in the standard
ay via the velocity operator 𝐯 = 1

ℏ
𝛿𝐻
𝛿𝐤 and the density operator. Having

one these calculations for the BHZ Hamiltonian, we arrive at a general
xpression for the average current in a state described by the spinor
= (𝜓1, 𝜓2)𝑇 ,

𝛹 |𝐣|𝛹⟩ = −𝜓1𝐤̂𝜓∗
1 + 𝜓∗

1 𝐤̂𝜓1 + 𝜓2𝐤̂𝜓∗
2 − 𝜓∗

2 𝐤̂𝜓2

+ 𝑎
(

𝜓∗
1𝜓2𝐞+ + 𝜓∗

2𝜓1𝐞−
)

, (31)

here 𝐞± is complex combination of the unit vectors: 𝐞± = 𝐞𝑥 ± 𝑖𝐞𝑦 =
±𝑖𝜑 (𝐞𝑟 ± 𝑖𝐞𝜑

)

for the cartesian and polar coordinates, respectively.
The differential cross section of the scattering is found as a ratio of

he current density 𝑗 scattered in the radial direction 𝐞 to the incident
𝑠𝑐 𝑟
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flow 𝐼𝑖𝑛. Calculating 𝑗𝑠𝑐 and 𝐼𝑖𝑛 as the average values of the current
perator (31) over the scattered and incident wave functions we get
𝑑𝜎(𝐸,𝜑)
𝑑𝜑

= 2
𝜋𝑘

∑

𝑚,𝑚′
𝐶𝑚(𝐸)𝐶∗

𝑚′ (𝐸)𝑒𝑖(𝑚−𝑚
′)𝜑 , (32)

where 𝑘 = 𝑘(𝐸) is defined by Eq. (28). Taking into account that for a
short-range potential we can restrict ourselves to the angular harmonics
𝑚 = 1 and 𝑚 = 0, the expression for the cross section can be written as
𝑑𝜎(𝐸,𝜑)
𝑑𝜑

= 2
𝜋𝑘
𝑆(𝐸,𝜑) , (33)

where 𝑆(𝐸,𝜑) is a function that largely determines the energy and
ngle dependence of the scattering,

(𝐸,𝜑) = |𝐶1|
2
+ |𝐶0|

2
+ 2|𝐶1𝐶0| cos (𝜑 − 𝛥𝜒) . (34)

Here 𝐶0(𝐸) and 𝐶1(𝐸) are represented as

𝐶0,1(𝐸) = |𝐶0,1(𝐸)|𝑒𝑖𝜒0,1(𝐸), (35)

and

𝛥𝜒(𝐸) = 𝜒0(𝐸) − 𝜒1(𝐸). (36)

The scattering cross section for spin-down electrons is found directly
using the unitary transformation 𝑈̂ introduced above. Thus, we come to
a fairly obvious conclusion that for electrons with spin down 𝑆↓(𝐸,𝜑) =
𝑆(𝐸,−𝜑) and the scattering cross section differs from Eq. (33) only by
changing the sign of 𝜑.

It can be seen that the scattering cross section as a function of the
energy and the scattering angle is mainly determined by the amplitudes
and phases of 𝐶0(𝐸) and 𝐶1(𝐸). An analysis of Eq. (33) shows that there
are the following non-trivial features of the scattering:

(i) The scattering cross section has a sharp resonance near the
energy of the quasi-bound state.

(ii) 𝑑𝜎∕𝑑𝜑 for each spin component is asymmetric with respect
to the scattering angle, so that electrons with opposite spins scatter
predominantly in opposite directions. The magnitude of this asymmetry
near the resonance is quite large. The skewness angle, defined from the
maximum of 𝑑𝜎∕𝑑𝜑 as a function of 𝜑, is equal to ±𝛥𝜒(𝐸) for spin-up
and spin-down electrons respectively.

(iii) The skewness angle 𝛥𝜒(𝐸) changes in a wide range from 0 to 𝜋
depending on the energy when 𝐸 passes through the resonance. At the
peak of the resonance in energy, the cross section as a function of angle
reaches its maximum at 𝜑 ≈ 𝜋∕2, and on the slopes of the resonance,
forward scattering (on the high-energy slope) or backward scattering
(on the low-energy slope) become predominant.

(iv) At a certain energy, defined by the equation |𝐶1(𝐸)| = |𝐶0(𝐸)|,
the scattering cross section vanishes in the direction opposite to the
skewness angle for each spin, 𝜑 = ±(𝛥𝜒(𝐸) + 𝜋).

Below we consider these features in more detail using the example
of the case with the hybridization parameter 𝑎 = 0.2. The key role is
played by the function 𝑆(𝐸,𝜑) which, in fact, can be considered as a
normalized cross section, since 𝑘(𝐸) only slowly changes with 𝐸 in the
energy range of interest to us and does not depend on 𝜑.

The amplitude and the phase of the coefficients 𝐶1 and 𝐶0 are shown
in Fig. 3 where the asterisks indicate the points of the energy at which
the angular dependence of the scattering cross section significantly
changes or is specific to the surrounding energy region. It is seen that
the phase of 𝐶1 changes by 𝜋 when the energy passes the resonance,
while 𝐶0 is almost constant.

The main peculiarities of the function 𝑆(𝐸,𝜑) are seen from Fig. 4.
The amplitude of 𝑆(𝐸,𝜑) as a function of 𝐸 has a peak that shifts
slightly and changes its height as 𝜑 changes, but the maximum value
is reached approximately at 𝜑 = 𝜋∕2. As a function of 𝜑, at a given
energy, the quantity 𝑆(𝐸,𝜑) changes in a wide range which indicates a
large angular anisotropy. The skewness angle, at which 𝑆(𝐸,𝜑) reaches
its maximum, changes with energy in the range from 0 to 𝜋. This shows
5

that, depending on 𝐸, the predominant scattering can occur in the d
Fig. 3. The amplitude (a) and the phase (b) of the coefficients 𝐶1 and 𝐶0 calculated
for parameters 𝑎 = 0.2, 𝑣 = 0.6𝜋 and 𝑟0=0.2. The asterisks marked by numbers 1
— 7 indicate the energy points at which the angular dependence of 𝑆(𝐸,𝜑) changes
significantly or its behavior is specific for an energy range.

forward, lateral, and backward directions. The angular dependence of
𝑆(𝐸,𝜑) is very different for different energies in the resonance region.
In the point 4 marked by asterisk in Fig. 3a, where the coefficient 𝐶1(𝐸)
has the largest value, 𝑆(𝐸,𝜑) reaches its maximum at 𝜑 ≈ 𝜋∕2. In two
other interesting points 2 and 6, where |𝐶1(𝐸)| = |𝐶0(𝐸)|, in contrast,
(𝐸,𝜑) turns to zero at some angle. This is easily to see directly from
q. (34). In these energy points, 𝑆(𝐸,𝜑) = 0 at 𝜑 = 𝛥𝜒(𝐸) ± 𝜋.

A more complete picture of the angular dependence of 𝑆(𝐸,𝜑) for
ifferent energies is given by the polar diagram shown in Fig. 5.

It is clearly seen that in the resonance region, Fig. 5a, the predom-
nant scattering occurs in the direction perpendicular to the incoming
low. But on the slopes of the resonance the situation changes qual-
tatively, Fig. 5b. On the low-energy slope, the skewness direction
urns into the sector between 𝜋∕2 and 𝜋, and the backward scattering
ecomes predominant. On the high-energy slope, on the contrary, the
orward scattering predominates.

On both slopes, a very nontrivial effect occurs at a certain energy.
he scattering cross section vanishes in the direction opposite to the
kewness angle. The physical mechanism of this suppression of the scat-
ering is obviously related to the destructive interference of scattered
- and 𝑝-waves, which increases with distance from the peak, and at
ertain points the scattering cross section in this direction vanishes and
hen increases again.

For spin-down electrons the polar diagram of the scattering is the
ame as for spin-up electrons if the sign of 𝜑 is changed. Thus, in
he energy region near resonance, the skew scattering occurs in the
pposite lateral direction. But on the slopes, the forward and backward
cattering is predominant, just as in the case of spin-up electrons.

. Discussion and concluding remarks

We have shown that in materials with a Mexican-hat dispersion,

efects with a localized repulsive potential create specific quasi-bound
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Fig. 4. Energy and angular dependences of the 𝑆(𝐸,𝜑) function, which largely
etermines the scattering cross section. (a) 𝑆(𝐸,𝜑) as function of 𝐸 for three values of
he angle. (b) The skewness angle 𝛥𝜒(𝐸) as a function of 𝐸. (c) The angular dependence
f 𝑆(𝐸,𝜑) for three values of the energy near the resonance. The parameters used in
he calculation are 𝑎 = 0.2, 𝑣 = 0.6𝜋 and 𝑟0 = 0.2.

tates, which lead to the enhanced skew scattering of electrons with
ery nontrivial polar diagram and energy dependence. The mechanism
f the formation of the quasi-bound states is due to the feature of the
exican-hat dispersion, which has remained unexplored until now. It

onsists in the fact that the sign of the effective mass in the region of
-space near the central extremum of the Mexican hat is opposite to the
ign of the mass outside this region. Therefore, particles in the states of
he region near the central extremum are attracted to the defect, while
he particles in the outer region of 𝐤-space are repelled. As a result, a

resonant state is formed with an energy above the central maximum of
the Mexican hat.

We have studied these quasi-bound states in the case when the
Mexican-hat dispersion arises due to the hybridization of the inverted
electron and hole bands, and is described by the BHZ model. The theory
of quasi-bound states has been developed by reducing this problem
to the Fano–Anderson model in which the hybridization Hamiltonian
plays a role similar to a tunneling Hamiltonian. The hybridization
Hamiltonian relates the bound state formed by the states of the hole
band to the continuum of states of the electron band. Within the
6

v

Fig. 5. Polar diagrams of 𝑆(𝐸,𝜑) for the energy points marked by asterisks in Fig. 3.
(a) The diagrams for points 3, 4 and 5 near the maximum of the scattering. (b) The
diagrams for points 2 and 6 in which the 𝑆(𝐸,𝜑) = 0 at 𝜑 = 𝛥𝜒 ± 𝜋, and points 1
nd 7 in the region where the scattering becomes weak. The parameters used in the
alculation are 𝑎 = 0.2, 𝑣 = 0.6𝜋 and 𝑟0 = 0.2.

ramework of this approach, we have found that quasi-bound states
re formed mainly by hole-band states with an admixture of electronic
tates, while continuum states are formed mainly by electron-band
tates with an addition of hole states. The emerging quasi-bound state
reates a resonance of the local density of states, the energy of which
s somewhat shifted relative to the energy of the bare bound state in
he hole band with an energy above the maximum of the Mexican hat
y an amount determined by the hybridization parameter 𝑎. The width
f the resonance is also determined by the parameter 𝑎 and is changed
s 𝑎2 when 𝑎2 ≪ 1.

An interesting property of quasi-bound states formed by this mech-
nism is that they can transform to a BIC. However this occurs only for
specific form of the potential at which the resonance width turns to

ero.
The most striking manifestations of the quasi-bound states in exper-

ment can be associated with their effect on the electron transport. In
his regard, we have studied the electron scattering on a repulsive de-
ect which creates a quasi-bound state. The scattering theory has been
eveloped for a defect with a short-range potential in the limit of a 𝛿-
ike form. It has been found that a quasi-bound state strongly enhances
he skew scattering of electrons with energies near the resonance. But
he most non-trivial effect is a strong increase in spin-dependent large-
ngle scattering with a very unusual polar diagram, which, moreover,

aries significantly with energy.
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The angular asymmetry of scattering manifests itself in two aspects.
One of them refers to spin-dependent asymmetry in the normal direc-
tion relative to the incident flow. Electrons with different spins scatter
predominantly in opposite directions to the left and right from the
incident flow. This is a well known skew scattering effect, but here it
is strongly enhanced. The greatest effect is achieved at the resonance
energy where the skewness angle is about 𝜋∕2. For realistic values of
the parameter 𝑎 ∼ 0.1 − 0.5, the ratio of scattering cross sections in
opposite sides reaches 3, as shown in Fig. 5. With distance from the
maximum, this angular asymmetry decreases, and much more slowly on
the low-energy slope than on the high-energy one. Thus, the mechanism
under consideration makes it possible to efficiently separate electrons
according to their spins.

Another aspect relates to the scattering asymmetry in the direc-
tion along the incident flow, that is asymmetry of backward/forward
scattering which appears on the slopes of the resonance. Interestingly,
on the low-energy slope the backward scattering becomes dominant,
while the forward scattering becomes dominant on the high-energy
slope as shown in Fig. 5 where the scattering asymmetry in longitudinal
direction reaches 3–4.

But the most unexpected result is the suppression of the scattering
in the direction opposite to the skewness angle, which occurs due to
the interference of scattered 𝑠- and 𝑝-waves.

The magnitude of the effect can be estimated from Eq. (33) and
data of Figs. 3–5. The scattering cross section (or more precisely, for
2D systems, the scattering length) is of the order of 𝑘−1, where 𝑘 is the
wave number for the energy of the order of the central maximum of
the Mexican hat. For 𝑎 = 0.2 and other parameters close to HgTe, the
scattering cross section is estimated as 𝑑𝜎∕𝑑𝜑 ∼ 10−6 cm. At a defect
concentration 𝑁𝑖 ∼ 1012 cm−2, this gives an estimate of the mean-free
path time for skew scattering of about 10−12 s, with the asymmetric
component of the same order as symmetric one. Thus the considered
mechanism of skew-scattering can lead to quite observable transport
effects, but this issue requires a further study. The physical mechanism
of enhanced asymmetric scattering and the nontrivial features of the
angular and energy dependence of the scattering cross section are due
to the helical structure of the quasi-bound states in the BHZ model.
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