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A B S T R A C T

We show that the pair spin–orbit interaction (PSOI) created by the Coulomb fields of interacting electrons
leads to the appearance of an unconventional correlated electronic state in two-dimensional materials with
the large Rashba effect. The effect manifests itself at sufficiently strong PSOI as a sharp peak in the structure
factor, indicating a tendency to form a striped structure with a spatial scale determined by the competition
between the Coulomb repulsion and the PSOI-induced attraction of electrons. Above the critical value of PSOI,
the system becomes unstable with respect to the charge density fluctuations on this scale.
1. Introduction

The interplay of the strong spin–orbit interaction (SOI) in Rashba
materials [1] and Coulomb electron–electron (e–e) repulsion leads to a
bunch of qualitatively new physical effects, including the emergence of
new correlated states [2–5], unusual collective modes [6–8], and even
bound electron pairs (BEPs) [9].

The Rashba SOI is produced by the electric fields external to the
crystal lattice. In quantum structures the common sources of this field
include the confining potential, the charged impurities and structure
defects. It is well known that the Coulomb fields of interacting electrons
also produce the SOI which manifests directly in the e–e interaction
Hamiltonian [10]. As a result the interaction Hamiltonian gains the
contribution that depends on the electron spins and momenta. Effects
of this so-called pair spin–orbit interaction (PSOI) were until very
recently considered only as a small perturbation in such problems as
spin dynamics, spin–spin interaction, spin current generation, etc [11–
14]. However, similarly to the Rashba SOI, the PSOI is strongly en-
hanced in Rashba materials and therefore can produce strong changes
in electronic states [15].

The strong PSOI can generate a plethora of non-trivial effects due
to the effective attraction that this interaction creates. The attraction
mechanism is quite clear [15]. The PSOI created by the Coulomb elec-
tric field of a given electron decreases the energy of another electron
possessing a particular spin orientation relative to its momentum. This
effect increases with decreasing the distance between electrons, which
exactly implies the attraction. The attraction can lead to the emergence
of BEPs with highly unusual configuration of the charge and spin
density [16–18].

Of greatest interest is, of course, the collective behavior of a many-
electron system with a strong PSOI, but this problem has been studied
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extremely poorly to date. In Ref. [19] we considered a specific situation
of a gated one-dimensional quantum wire with the PSOI produced by
means of the image charges on the gate. In this case the PSOI leads to
the appearance of a correlated state with unusual collective excitations.
One of the two collective modes strongly softens in the long-wavelength
part of the spectrum with increasing the PSOI strength, and becomes
unstable when the PSOI exceeds a critical value.

In this paper, we turn to a more general statement of the problem
by considering a two-dimensional (2D) electron system with a richer
configuration of Coulomb fields generating PSOI. The electron dynam-
ics is described using the 𝑘 ⋅𝑝 method [20], assuming that the Coulomb
electric fields are sufficiently smooth.

To begin with, we note that in the presence of the PSOI the effective
strength of the e–e interaction is determined by two parameters. This
is in stark contrast to the conventional case of an electron gas with
Coulomb interaction only, where the interaction strength is charac-
terized by the parameter 𝑟𝑠, which is the ratio of the inter-electron
distance to the Bohr radius 𝑎𝐵 . The e–e interaction Hamiltonian con-
tains the PSOI component 𝐻PSOI in addition to the usual Coulomb term
𝐻Coul, so that the system Hamiltonian is

𝐻 = 𝐻kin +𝐻Coul +𝐻PSOI

=
∑

𝑖

�̂�2𝑖
2𝑚

+ 1
2
∑

𝑖≠𝑗
𝒰(𝒓𝑖 − 𝒓𝑗 )

+ 𝛼
ℏ
∑

𝑖≠𝑗

(

�̂�𝑖 ×𝓔(𝒓𝑖 − 𝒓𝑗 )
)

⋅ 𝝈𝑖 .

(1)

Here 𝒰(𝒓) = 𝑒2∕𝜖𝑟 is the Coulomb interaction potential, 𝓔(𝒓) = 1
𝑒∇𝒓𝒰(𝒓)

is the pair Coulomb field that produces PSOI, �̂�𝑖 is the momentum
operator of the 𝑖th electron, 𝑚 is the effective mass, 𝝈 ≡ (𝜎𝑥, 𝜎𝑦, 𝜎𝑧) is the
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Pauli vector, and 𝛼 stands for the Rashba constant, which is estimated
or the currently known materials with strong SOI from 102 eÅ2 in InAs
o 103 eÅ2 in such materials as Bi2Se3 [21], the BiSb monolayers [22],
nd Van der Waals materials with adsorbed heavy elements [23,24].
n what follows it is convenient to introduce the dimensionless Rashba
onstant �̃� = 𝛼∕𝑒𝑎2𝐵 .

The e–e interaction strength is characterized by the ratio of the
nteraction energy to the Fermi energy. The parameter 𝑟𝑠 relates only
o the Coulomb term. The contribution of the PSOI term is described by
nother parameter �̃�∕𝑟𝑠. It is remarkable that both parameters depend
ifferently on the parameters of the electronic system. In particular,
hile the parameter 𝑟𝑠 decreases with increasing the electron density,

he parameter �̃�∕𝑟𝑠, on the contrary, increases. Therefore the PSOI
orrelations can dominate when the density is high enough. While the
ffect of Coulomb correlations is largely understood [25], the role of
he PSOI-induced correlations and the conditions under which they
ead to a radical rearrangement of the electronic system remain to be
lucidated.

This paper aims to find out whether the PSOI creates characteristic
orrelations, under what conditions they become significant, and how
his manifests itself in the spectrum of collective excitations. To this
nd, we study the collective excitations and charge correlations in a
D electron system with the in-plane reflection symmetry, where the
SOI is produced by the in-plane pair Coulomb field. The calculations
re carried out in the framework of the random phase approximation
RPA).

We have found that the static structure factor 𝑆(𝑞) as a function
f the wave vector 𝑞 acquires a sharp peak around a certain value
f 𝑞 = 𝑞𝑐 when the PSOI parameter is large enough �̃�∕𝑟𝑠 ≳ 1∕4,
hich indicates that the PSOI component of the e–e interaction is

omparable in magnitude to the Fermi energy. The peak clearly shows
he appearance of strong electron correlations on the 𝑞𝑐 scale, which
re specific for the PSOI. They arise owing to the competition between
he Coulomb repulsion of electrons and their attraction caused by the
SOI, which determines this characteristic spatial scale. Interestingly,
he PSOI correlated state appears at rather high density of electrons
nd, correspondingly, at small 𝑟𝑠, when the usual Coulomb interaction
s small.

When �̃�∕𝑟𝑠 exceeds a critical value, a new branch of solution with
ery unusual properties arises due to PSOI in the spectrum of collective
xcitations of the system in addition to common long-wave plasmons.
he solution exists only in a finite band of wave vectors around 𝑞𝑐 ,
he band width growing with �̃�∕𝑟𝑠. The solution frequency is purely
maginary, which means that the electron density fluctuations are
rowing with time. It is interesting that the density fluctuations are not
olarized in spin. Thus the spatially uniform paramagnetic state of the
lectron system becomes unstable with respect to the charge density
luctuations on the 𝑞𝑐 scale. For realistic values of the SOI parameter
�̃� ≪ 1 in Rashba materials, the critical value 𝑞𝑐 ∝ �̃�1∕3𝑘𝐹 lies in the
ong-wave part of the spectrum.

. Model and results

In this section we consider the linear response of the 2D electron gas
ith PSOI to the external electric potential, the dynamic charge suscep-

ibility, the static structure factor, and the spectrum of the collective
odes.

The 2D electron system is assumed to be symmetric with respect
o the inversion of the normal to the plane. In this case the PSOI is
roduced by the in-plane pair Coulomb field in contrast to the gated
ne-dimensional quantum wire where only the normal component of
he Coulomb field is important [19]. It is worth noting that the PSOI
rucially depends on the geometry of the generating electric fields and
omenta of interacting electrons. In the situation under consideration,

oth of these quantities are 2D vectors, the topology of which is
etermined self-consistently.

The results are obtained using the equation of motion for the quan-
um Wigner function, which we derive and solve in the RPA, following
2

ef. [19]. The details of the calculation are presented in Appendix.
Fig. 1. The static structure factor 𝑆(𝑞) as a function of 𝑞 for three values of the 𝑟𝑠.
The PSOI magnitude is �̃� = 0.1, which corresponds to 𝑟∗𝑠 = 0.3.

2.1. Charge susceptibility

The density 𝑛(𝑠)𝑞𝜔 of the electrons with the 𝑧-component of the spin
equal to 𝑠 = ±1, in units of ℏ

2 , satisfies the following system of linear
equations

𝜒−1
0 𝑛(𝑠)𝑞𝜔 − 𝑉𝑞𝜔

∑

𝜍=±
𝑛(𝜍)𝑞𝜔 = 𝜑𝑞𝜔 , (2)

with the external potential 𝜑𝑞𝜔, and the interaction potential

𝑉𝑞𝜔 = 𝒰𝑞 + 8𝛼
2

𝑒2
𝒰2
𝑞 𝜒𝑗 . (3)

The first term of the interaction potential is due to the Coulomb e–e
repulsion. For the 2D electron gas formed in a uniform system with a
bulk dielectric constant 𝜖 the e–e repulsion is governed by the pure
Coulomb potential 𝒰𝑞 = 2𝜋𝑒2∕𝜖𝑞. The second term of the interaction
potential is exactly due to the PSOI. The dynamic susceptibilities 𝜒0
and 𝜒𝑗 are given by Eqs. (A.20) and (A.25).

Since 𝑉𝑞𝜔 is spin-independent, the solutions of Eq. (2) correspond
to the equal response of up- and down-spin densities, 𝑛(+)𝑞𝜔 = 𝑛(−)𝑞𝜔 . The
dynamic charge susceptibility is

𝜒𝑛(𝑞, 𝜔) =
2𝜒0

1 − 2𝑉𝑞𝜔𝜒0
. (4)

2.2. Static structure factor

Consider the static structure factor 𝑆(𝑞), which is related to the
charge susceptibility of Eq. (4) via

𝑆(𝑞) = − ℏ
𝜋𝑛 ∫

∞

0
𝑑𝜔 Im𝜒𝑛(𝑞, 𝜔) , (5)

being the mean electron density. It is of interest to study the structure
actor as a function of 𝑞 for different values of the e–e interaction
arameters. Since there are two such parameters, it is convenient to
ix the value of the PSOI constant �̃� and change the parameter 𝑟𝑠 in
uch a way that both interaction parameters, 𝑟𝑠 and �̃�∕𝑟𝑠, are varied.
he result is plotted in Fig. 1.

First of all, we found that the structure factor has a strong singular-
ty at a certain value of the parameter 𝑟𝑠 = 𝑟∗𝑠 ,

𝑟∗𝑠 =
2

13
6 �̃�

√

2
1
3 + 2�̃�

2
3 3

2
3

. (6)

As 𝑟𝑠 lowers down to this critical value, the spectral weight is shifted
towards the long-wave part of the spectrum, and eventually a sharp



Physica E: Low-dimensional Systems and Nanostructures 143 (2022) 115328Y. Gindikin and V.A. Sablikov

w

t
c
P
F
m
t
s

2

E

t

𝜔

v

Fig. 2. The critical value 𝑞𝑐 as a function of �̃�.

Fig. 3. The critical value 𝑟∗𝑠 as a function of �̃�.

peak is formed in the structure factor at the critical value 𝑞𝑐 of the
ave-vector, given by

𝑞𝑐
𝑘𝐹

= 2�̃�
1
3 3

1
3

√

2
1
3 + 2�̃�

2
3 3

2
3

, (7)

which indicates the appearance of strong electron correlations due to
PSOI.

The characteristic spatial scale 𝑞𝑐 arises as a result of the competi-
ion between the Coulomb repulsion of electrons and their attraction
aused by the PSOI. Its dependence on �̃� is displayed in Fig. 2. When
SOI is extremely strong, �̃� ≫ 1, the critical value tends to 𝑞𝑐 =

√

2𝑘𝐹 .
or small SOI parameter �̃� ≪ 1, typically found in common Rashba
aterials, the critical value 𝑞𝑐 ∝ �̃�1∕3𝑘𝐹 lies in the long-wave part of

he spectrum. The dependence of the critical value of 𝑟∗𝑠 on the PSOI
trength is plotted in Fig. 3.

.3. Collective modes and the instability of the uniform ground state

The collective modes are given by zeros of the denominator of
q. (4). This equation has two different types of solutions.

In the long-wave region the collective modes are common plasmons,
he spectrum of which gets a correction from the PSOI. At 𝑞 ≪ 𝑘𝐹 ,

= 𝜔
√

1 + 𝛼2 𝑞2𝑘2 , (8)
3

𝑝𝑙 2𝐷 𝑒2 𝐹
Fig. 4. The plasmon frequency 𝜔 as a function of wave vector for three values of the
PSOI constant, with 𝑟𝑠 = 1. The frequency is normalized at 𝜔0 = 𝑣𝐹 𝑘𝐹 . The dashed line
shows the boundary of the particle–hole continuum.

with

𝜔2𝐷 =
√

2𝜋𝑒2𝑛
𝜖𝑚

𝑞 (9)

being the standard plasmon dispersion in a 2D electron gas [26]. The
correction, albeit small, can be accessible to experiment, since the high-
accuracy measurements of the 2D plasmon spectra become available
such as detecting the microwave absorption from the recombination
photoluminescence spectrum [27,28]. The plasmon spectrum is shown
in Fig. 4.

Most importantly, a new solution of the dispersion equation arises
due to PSOI in addition to plasmons as soon as 𝑟𝑠 ≤ 𝑟∗𝑠 . At 𝑟𝑠 = 𝑟∗𝑠
the solution appears to exist at a single critical value 𝑞𝑐 of the wave-
ector, whereas at 𝑟𝑠 < 𝑟∗𝑠 the region where the solution exists expands

to a finite band of wave vectors [𝑞1, 𝑞2], the band width growing with
lowering 𝑟𝑠. The spectrum of this branch of solution is illustrated by
Fig. 5.

The frequency of the solution is purely imaginary. For every 𝑞
within the allowed band of 𝑞 ∈ (𝑞1, 𝑞2) there are two branches, both
with 𝜔′′ > 0 and 𝜔′′ < 0, forming together the petal-like shape.
The frequencies of the two branches give, respectively, the increment
and decrement of the time-dependent fluctuations in the system. The
solution is characterized by equal response of up- and down-spin den-
sities, 𝑛(+)𝑞𝜔 = 𝑛(−)𝑞𝜔 , which corresponds to the excitation in the charge
sector. Hence the electron density fluctuations growing with time as
∝ exp(𝜔′′𝑡) are not polarized in spin. This indicates that an instability
of the spatially uniform paramagnetic ground state of the 2D electron
gas with PSOI develops with respect to the charge density fluctuations
on the 𝑞𝑐 scale. However, at 𝑟𝑠 > 𝑟∗𝑠 the system is stable.

The effects of PSOI are enhanced in 2D atomically thin layers, either
freely suspended [29,30] or immersed in a weak dielectric. The e–e
repulsion is governed there by the Rytova–Keldysh potential

𝒰𝑞 =
2𝜋𝑒2 , (10)
𝑞(1 + 𝑞𝑙)
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Fig. 5. The imaginary part of the frequency of a new solution of the dispersion
equation due to PSOI as a function of wave vector. The dispersion line is shown for
three values of 𝑟𝑠 to trace how the instability develops in the system with increasing
he PSOI interaction parameter of �̃�∕𝑟𝑠. The PSOI magnitude is fixed to be �̃� = 0.1,

which corresponds to 𝑟∗𝑠 = 0.3.

where 𝑙 is a characteristic length that can be roughly estimated as
𝜖∥𝑑∕2, with 𝑑 being the layer thickness, 𝜖∥ the in-plane dielectric
constant of the layer material [31].

The spectrum of the new solution of the dispersion equation for this
case is displayed in Fig. 6. Because of the decreased dielectric screening
the critical value 𝑟∗𝑠 increases as compared to the purely Coulomb case
considered above.

3. Concluding remarks

We studied electron correlations and collective modes of the 2D
electron system with strong PSOI produced by the in-plane Coulomb
electric fields of interacting electrons, and come to the main conclusion
that the PSOI leads to the formation of a specific strongly correlated
state which becomes unstable with increasing the PSOI strength above
a critical value.

The peculiarity of this system is that the e–e interaction strength
is described by two interaction parameters, 𝑟𝑠 and �̃�∕𝑟𝑠, related to
the Coulomb interaction and the PSOI. They are characterized by
the opposite dependence on the electron density. The attractive PSOI
prevails over the Coulomb repulsion when the density is high enough.

This gives rise to strong electron correlations on a certain spatial
scale that manifest themselves as a sharp peak in the static structure
factor at 𝑞 = 𝑞𝑐 . Moreover, as soon as �̃�∕𝑟𝑠 exceeds a critical value,
the dispersion equation defining the spectrum of the collective modes
in the system features a new solution with purely imaginary frequency
existing in a band of wave vectors around 𝑞𝑐 . In other words, a spatially
uniform paramagnetic ground state becomes unstable with respect to
the charge density fluctuations on the 𝑞𝑐 scale.

This altogether indicates a tendency for an electron state to form
a striped structure of some sort on this spatial scale. Within the linear
analysis undertaken in the present paper, it is impossible to predict a
specific type of the electron state that would correspond to the true
energy minimum. Instead of the perturbative RPA, the self-consistent
4

p

Fig. 6. The imaginary part of the frequency of a new solution of the dispersion
equation due to PSOI as a function of wave vector for three values of 𝑟𝑠. Here a 2D
layer in vacuum is considered, its thickness being 𝑑 = 0.02𝑎𝐵 , the in-plane dielectric
constant 𝜖∥ = 15. The PSOI magnitude is �̃� = 0.1, which corresponds to 𝑟∗𝑠 = 1.054.

approach, like the Hartree–Fock approximation [2,32], is necessary to
attack this problem.

The RPA, like any other perturbative approach, works well only for
small values of the interaction parameter, which for the PSOI is �̃�∕𝑟𝑠. As
can be seen from Fig. 3, at the instability threshold the PSOI interaction
parameter is close to 1∕2. This is a reasonably good small parameter, so
the RPA is justified for small 𝑟𝑠, when the Coulomb interaction is also
small.

The obtained results, of course, do not imply that a sufficiently
dense 2D electron gas with arbitrarily small PSOI is always unstable
towards the density fluctuations. For very large electron density the
considerations based on 𝑘 ⋅𝑝 approximation and the one-band model of
SOI lose their validity when the Fermi energy is comparable to the gap
energy from other Bloch bands involved in the formation of the PSOI
Hamiltonian. Therefore the limiting value of 𝑟𝑠 is determined by the
band structure of the specific material.

On the other hand, large values of �̃� ≳ 1 are not attainable at least in
lassical semiconductors with 𝑠𝑝3 band hybridization, where the upper
imit for the Rashba constant is of the order of �̃� ≈ 𝜖−2, with 𝜖 being
he bulk dielectric constant.1 Nonetheless, the recent rise of 2D systems
ith giant SOI [33,34] gives us some hope for the realization of the
xtremely strong Rashba SOI by means of other physical mechanisms.
hus, in oxide heterostructures and films [35,36] the strong indications
ere found for the electronic nematicity [37], and for the formation of
EPs [38–40] well beyond the superconducting phase. While the exact
echanisms behind these effects still remain unclear, at least some of

hem are likely due to the interplay of the giant SOI and collective
ffects [9]. That being said, the quest for a particular system with a
iant SOI where the effects predicted in the present paper could develop
s still a challenge for the future.

1 We are grateful to Sergei Tarasenko for pointing this out (S. Tarasenko,
rivate communication).
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Appendix

In this section we obtain the linear response functions of the 2D
electron gas with PSOI within RPA. The microscopic derivation is
based on the equations of motion for the quantum Wigner distribution
functions (WDFs) [19,41].

We start with the second quantized Hamiltonian

𝐻 = − ℏ2

2𝑚
∑

𝑠 ∫ 𝑑𝒓𝜓+
𝑠 (𝒓)∇

2
𝒓𝜓𝑠(𝒓) (A.1)

+ 1
2
∑

𝑠1𝑠2
∫ 𝑑𝒓1𝑑𝒓2 𝜓+

𝑠1
(𝒓1)𝜓+

𝑠2
(𝒓2)𝒰(𝒓1 − 𝒓2)𝜓𝑠2 (𝒓2)𝜓𝑠1 (𝒓1) (A.2)

+
∑

𝑠 ∫ 𝑑𝒓𝜓+
𝑠 (𝒓)𝜑(𝒓, 𝑡)𝜓𝑠(𝒓) (A.3)

− 𝑖𝛼
∑

𝑠1𝑠2
∫ 𝑑𝒓1𝑑𝒓2 𝜓+

𝑠1
(𝒓1)𝜓+

𝑠2
(𝒓2)

[

(𝑠1𝜕𝑥1 − 𝑠2𝜕𝑥2 )ℰ𝑦(𝒓1 − 𝒓2)

− (𝑠1𝜕𝑦1 − 𝑠2𝜕𝑦2 )ℰ𝑥(𝒓1 − 𝒓2)
]

𝜓𝑠2 (𝒓2)𝜓𝑠1 (𝒓1) , (A.4)

where 𝜓𝑠(𝒓) is the electron field operator in the 𝑠𝑧 representation (𝑠 =
±1), and 𝒓 ≡ (𝑥, 𝑦, 0) stands for the in-plane position. Eq. (A.1) is the
kinetic energy operator, Eq. (A.2) is the Coulomb interaction, Eq. (A.3)
is the external perturbation, and Eq. (A.4) is the PSOI.

Let us introduce the single-particle and two-particle Klimontovich
operators [42] as

𝑓 (𝑠)(𝒓,𝒑, 𝑡) = 1
(2𝜋)2 ∫ 𝑑𝑹 𝑒𝑖𝒑⋅𝑹𝜓+

𝑠

(

𝒓 + 𝑹
2 , 𝑡

)

𝜓𝑠
(

𝒓 − 𝑹
2 , 𝑡

)

(A.5)

and

𝑓 (𝑠1 ,𝑠2)(𝒓1,𝒑1, 𝒓2,𝒑2, 𝑡) =
1

(2𝜋)4 ∫ 𝑑𝑹1𝑑𝑹2 𝑒
𝑖(𝒑1⋅𝑹1+𝒑2⋅𝑹2)

× 𝜓+
𝑠1

(

𝒓1 +
𝑹1
2 , 𝑡

)

𝜓+
𝑠2

(

𝒓2 +
𝑹2
2 , 𝑡

)

𝜓𝑠2
(

𝒓2 −
𝑹2
2 , 𝑡

)

𝜓𝑠1
(

𝒓1 −
𝑹1
2 , 𝑡

)

.

(A.6)

The expectation value of the Klimontovich operators w.r.t. the ground
state of 𝐻 are exactly the WDFs, i.e.

⟨

𝑓 (𝑠)(𝒓,𝒑, 𝑡)
⟩

≡ 𝑓 (𝑠)(𝒓,𝒑, 𝑡). By
commuting 𝑓 (𝑠)(𝒓,𝒑, 𝑡) with 𝐻 and taking the expectation value we
obtain the first equation of motion in the Bogoliubov–Born–Green–
Kirkwood–Yvon hierarchy [43]:

𝑖ℏ𝜕𝑡𝑓
(𝑠)(𝒓,𝒑, 𝑡) = − 𝑖ℏ2

𝑚
𝒑 ⋅ ∇𝒓𝑓

(𝑠)(𝒓,𝒑, 𝑡) + 1
(2𝜋)2 ∫ 𝑑𝑹𝑑𝒑1 𝑒𝑖(𝒑−𝒑1)⋅𝑹

×
{

𝜑
(

𝒓 − 𝑹
2 , 𝑡

)

− 𝜑
(

𝒓 + 𝑹
2 , 𝑡

)}

𝑓 (𝑠)(𝒓,𝒑1, 𝑡) (A.7)

+ 1
(2𝜋)2

∑

𝜍 ∫ 𝑑𝒓1𝑑𝑹 𝑑𝒑1𝑑𝒑2 𝑒𝑖(𝒑−𝒑1)⋅𝑹

×
{

𝒰
(

𝒓 − 𝒓1 −
𝑹
2

)

−𝒰
(

𝒓 − 𝒓1 +
𝑹
2

)}

× 𝑓 (𝑠,𝜍)(𝒓,𝒑1, 𝒓1,𝒑2, 𝑡)

− 𝑖𝛼
2𝜋2

∑

𝜍 ∫ 𝑑𝒓1𝑑𝑹 𝑑𝒑1𝑑𝒑2 𝑒𝑖(𝒑−𝒑1)⋅𝑹ℰ𝑦
(

𝒓1 − 𝒓 + 𝑹
2

)

×
[

𝜍( 12 𝜕𝑥1 + 𝑖𝑝2𝑥) − 𝑠(
1
2 𝜕𝑥 + 𝑖𝑝1𝑥)

]

𝑓 (𝑠,𝜍)(𝒓,𝒑1, 𝒓1,𝒑2, 𝑡)

+ 𝑖𝛼
2

∑

∫ 𝑑𝒓1𝑑𝑹 𝑑𝒑1𝑑𝒑2 𝑒𝑖(𝒑−𝒑1)⋅𝑹ℰ𝑥
(

𝒓1 − 𝒓 + 𝑹
2

)

5

2𝜋 𝜍
×
[

𝜍( 12 𝜕𝑦1 + 𝑖𝑝2𝑦) − 𝑠(
1
2 𝜕𝑦 + 𝑖𝑝1𝑦)

]

𝑓 (𝑠,𝜍)(𝒓,𝒑1, 𝒓1,𝒑2, 𝑡)

− 𝑖𝛼
2𝜋2

∑

𝜍 ∫ 𝑑𝒓1𝑑𝑹 𝑑𝒑1𝑑𝒑2 𝑒𝑖(𝒑−𝒑1)⋅𝑹ℰ𝑦
(

𝒓1 − 𝒓 − 𝑹
2

)

×
[

𝜍( 12 𝜕𝑥1 − 𝑖𝑝2𝑥) − 𝑠(
1
2 𝜕𝑥 − 𝑖𝑝1𝑥)

]

𝑓 (𝑠,𝜍)(𝒓,𝒑1, 𝒓1,𝒑2, 𝑡)

+ 𝑖𝛼
2𝜋2

∑

𝜍 ∫ 𝑑𝒓1𝑑𝑹 𝑑𝒑1𝑑𝒑2 𝑒𝑖(𝒑−𝒑1)⋅𝑹ℰ𝑥
(

𝒓1 − 𝒓 − 𝑹
2

)

×
[

𝜍( 12 𝜕𝑦1 − 𝑖𝑝2𝑦) − 𝑠(
1
2 𝜕𝑦 − 𝑖𝑝1𝑦)

]

𝑓 (𝑠,𝜍)(𝒓,𝒑1, 𝒓1,𝒑2, 𝑡) .

RPA consists in truncating the hierarchy by factorizing the two-particle
WDF according to

𝑓 (𝑠1 ,𝑠2)(𝒓1,𝒑1, 𝒓2,𝒑2, 𝑡) = 𝑓 (𝑠1)(𝒓1,𝒑1, 𝑡)𝑓 (𝑠2)(𝒓2,𝒑2, 𝑡) . (A.8)

Let us define the deviation 𝑓 (𝑠)
1 (𝒓,𝒑, 𝑡) of 𝑓 (𝑠)(𝒓,𝒑, 𝑡) from its equilibrium

value 𝑓 (𝑠)
0 (𝒑) as a result of the external perturbation,

𝑓 (𝑠)
1 (𝒓,𝒑, 𝑡) = 𝑓 (𝑠)(𝒓,𝒑, 𝑡) − 𝑓 (𝑠)

0 (𝒑) . (A.9)

The equation of motion for 𝑓 (𝑠)
1 (𝒓,𝒑, 𝑡), linearized with respect to the

external potential, reads in Fourier representation as

−ℏ𝜔𝑓 (𝑠)
1 (𝒒,𝒑, 𝜔) = −

ℏ2𝒑 ⋅ 𝒒
𝑚

𝑓 (𝑠)
1 (𝒒,𝒑, 𝜔) +

[

𝑓 (𝑠)
0 (𝒑 + 𝒒

2 ) − 𝑓
(𝑠)
0 (𝒑 − 𝒒

2 )
]

×

×

{

𝜑𝑞𝜔 +𝒰𝑞
∑

𝜍
𝑛(𝜍)𝒒𝜔 + 2𝛼𝑠(𝒑 ×𝓔𝒒)𝑧

∑

𝜍
𝑛(𝜍)𝒒𝜔

+2𝛼 𝑚
𝑒ℏ

∑

𝜍
𝜍(𝒋(𝜍)𝒒𝜔 ×𝓔𝒒)𝑧

}

.

(A.10)

Here 𝑛(𝑠)𝑞𝜔 and 𝒋(𝑠)𝒒𝜔 are the 𝑠-spin components of the electron density
and paramagnetic current response, related to the WDF, respectively,
by

𝑛(𝑠)𝑞𝜔 = ∫ 𝑑𝒑 𝑓 (𝑠)
1 (𝒒,𝒑, 𝜔) (A.11)

and

𝒋(𝑠)𝒒𝜔 = − 𝑒ℏ
𝑚 ∫ 𝑑𝒑𝒑𝑓 (𝑠)

1 (𝒒,𝒑, 𝜔) . (A.12)

The Fourier component of the in-plane electric field is given by 𝓔𝒒 =
𝒒
𝑖𝑒𝒰𝑞 . Two specific forms of the e–e repulsion potential 𝒰𝑞 are consid-
red in the main text.

The first two moments of the Eq. (A.10) are

(𝑠)
𝑞𝜔 = 𝜒0

(

𝜑𝑞𝜔 +𝒰𝑞
∑

𝜍
𝑛(𝜍)𝑞𝜔 + 2𝛼 𝑚

𝑒ℏ
∑

𝜍
𝜍(𝒋(𝜍)𝒒𝜔 ×𝓔𝒒)𝑧

)

+ 𝜒1
2𝛼𝑠
𝑖𝑒

𝒰𝑞
∑

𝜍
𝑛(𝜍)𝑞𝜔 , (A.13)

nd

𝑚
𝑒ℏ

𝒋(𝑠)𝒒𝜔 = χ2

(

𝜑𝑞𝜔 +𝒰𝑞
∑

𝜍
𝑛(𝜍)𝑞𝜔 + 2𝛼 𝑚

𝑒ℏ
∑

𝜍
𝜍(𝒋(𝜍)𝒒𝜔 ×𝓔𝒒)𝑧

)

+ χ3
2𝛼𝑠
𝑖𝑒

𝒰𝑞
∑

𝜍
𝑛(𝜍)𝑞𝜔 . (A.14)

Four susceptibilities entering the Eqs. (A.13)–(A.14) are as follows,

𝜒0 = ∫ 𝑑𝒑
𝑓 (𝑠)
0 (𝒑 + 𝒒

2 ) − 𝑓
(𝑠)
0 (𝒑 − 𝒒

2 )
ℏ2
𝑚 𝒑 ⋅ 𝒒 − ℏ(𝜔 + 𝑖0)

, (A.15)

1 = ∫ 𝑑𝒑
𝑓 (𝑠)
0 (𝒑 + 𝒒

2 ) − 𝑓
(𝑠)
0 (𝒑 − 𝒒

2 )
ℏ2
𝑚 𝒑 ⋅ 𝒒 − ℏ(𝜔 + 𝑖0)

(𝒑 × 𝒒)𝑧 , (A.16)

χ2 = ∫ 𝑑𝒑
𝑓 (𝑠)
0 (𝒑 + 𝒒

2 ) − 𝑓
(𝑠)
0 (𝒑 − 𝒒

2 )
ℏ2

𝒑 , (A.17)

𝑚 𝒑 ⋅ 𝒒 − ℏ(𝜔 + 𝑖0)
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a

(

𝜒

χ3 = ∫ 𝑑𝒑
𝑓 (𝑠)
0 (𝒑 + 𝒒

2 ) − 𝑓
(𝑠)
0 (𝒑 − 𝒒

2 )
ℏ2
𝑚 𝒑 ⋅ 𝒒 − ℏ(𝜔 + 𝑖0)

𝒑(𝒑 × 𝒒)𝑧 . (A.18)

Note that χ2 and χ3 are vector quantities.
In a non-self-consistent RPA, 𝑓 (𝑠)

0 (𝒑) is the momentum distribution
of the free 2D paramagnetic electron gas,

𝑓 (𝑠)
0 (𝒑) = 1

(2𝜋)2
𝜃(𝑘𝐹 − |𝒑|) , (A.19)

𝑘𝐹 being the Fermi wave vector. In this case

𝜒0 =
𝑁𝜎

(𝑞∕𝑘𝐹 )

(

𝜈− − sign(Re 𝜈−)
√

𝜈2− − 1 − 𝜈+ + sign(Re 𝜈+)
√

𝜈2+ − 1
)

,

(A.20)

𝜒1 = 0 , (A.21)

χ2 =
𝒒𝑁𝜎

2(𝑞∕𝑘𝐹 )

(

𝜈− − sign(Re 𝜈−)
√

𝜈2− − 1 + 𝜈+ − sign(Re 𝜈+)
√

𝜈2+ − 1
)

(A.22)

+
𝒒𝑁𝜎

(𝑞∕𝑘𝐹 )
2

(

𝜈2− − 𝜈− sign(Re 𝜈−)
√

𝜈2− − 1 − 𝜈2+

+ 𝜈+ sign(Re 𝜈+)
√

𝜈2+ − 1
)

, (A.23)

χ3 = 𝑁𝜎𝑘
2
𝐹

𝒒⟂
(𝑞∕𝑘𝐹 )

(

𝜈−
2

− 1
3
sign(Re 𝜈−)

[

(𝜈2−)
3
2 − (𝜈2− − 1)

3
2

]

−
𝜈+
2

+ 1
3
sign(Re 𝜈+)

[

(𝜈2+)
3
2 − (𝜈2+ − 1)

3
2

])

. (A.24)

Here 𝜈± = 𝜔+𝑖0
𝑞𝑣𝐹

± 𝑞
2𝑘𝐹

, 𝑁𝜎 = 𝑚
2𝜋ℏ2 is the 2D density of states of spin 𝜎

per unit area, 𝒒⟂ ≡ (𝑞𝑦,−𝑞𝑥), the branch cut lies along the negative real
xis. Eq. (A.20) is due to Stern [26].

Expressing 𝑛(𝑠)𝑞𝜔 from a coupled system of equations Eqs. (A.13)–
A.14) gives Eq. (2) of the main text with

𝑗 ≡ (χ3 × 𝒒)𝑧 = 𝑁𝜎𝑘
4
𝐹
𝑞
𝑘𝐹

(

𝜈−
2

− 1
3
sign(Re 𝜈−)

[

(𝜈2−)
3
2 − (𝜈2− − 1)

3
2

]

−
𝜈+
2

+ 1
3
sign(Re 𝜈+)

[

(𝜈2+)
3
2 − (𝜈2+ − 1)

3
2

]

)

. (A.25)
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