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We show that the pair spin—orbit interaction (PSOI) created by the Coulomb fields of interacting electrons
leads to the appearance of an unconventional correlated electronic state in two-dimensional materials with
the large Rashba effect. The effect manifests itself at sufficiently strong PSOI as a sharp peak in the structure
factor, indicating a tendency to form a striped structure with a spatial scale determined by the competition
between the Coulomb repulsion and the PSOI-induced attraction of electrons. Above the critical value of PSOI,

the system becomes unstable with respect to the charge density fluctuations on this scale.

1. Introduction

The interplay of the strong spin-orbit interaction (SOI) in Rashba
materials [1] and Coulomb electron—electron (e-€) repulsion leads to a
bunch of qualitatively new physical effects, including the emergence of
new correlated states [2-5], unusual collective modes [6-8], and even
bound electron pairs (BEPs) [9].

The Rashba SOI is produced by the electric fields external to the
crystal lattice. In quantum structures the common sources of this field
include the confining potential, the charged impurities and structure
defects. It is well known that the Coulomb fields of interacting electrons
also produce the SOI which manifests directly in the e—e interaction
Hamiltonian [10]. As a result the interaction Hamiltonian gains the
contribution that depends on the electron spins and momenta. Effects
of this so-called pair spin-orbit interaction (PSOI) were until very
recently considered only as a small perturbation in such problems as
spin dynamics, spin-spin interaction, spin current generation, etc [11—
14]. However, similarly to the Rashba SOI, the PSOI is strongly en-
hanced in Rashba materials and therefore can produce strong changes
in electronic states [15].

The strong PSOI can generate a plethora of non-trivial effects due
to the effective attraction that this interaction creates. The attraction
mechanism is quite clear [15]. The PSOI created by the Coulomb elec-
tric field of a given electron decreases the energy of another electron
possessing a particular spin orientation relative to its momentum. This
effect increases with decreasing the distance between electrons, which
exactly implies the attraction. The attraction can lead to the emergence
of BEPs with highly unusual configuration of the charge and spin
density [16-18].

Of greatest interest is, of course, the collective behavior of a many-
electron system with a strong PSOI, but this problem has been studied
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extremely poorly to date. In Ref. [19] we considered a specific situation
of a gated one-dimensional quantum wire with the PSOI produced by
means of the image charges on the gate. In this case the PSOI leads to
the appearance of a correlated state with unusual collective excitations.
One of the two collective modes strongly softens in the long-wavelength
part of the spectrum with increasing the PSOI strength, and becomes
unstable when the PSOI exceeds a critical value.

In this paper, we turn to a more general statement of the problem
by considering a two-dimensional (2D) electron system with a richer
configuration of Coulomb fields generating PSOI. The electron dynam-
ics is described using the k- p method [20], assuming that the Coulomb
electric fields are sufficiently smooth.

To begin with, we note that in the presence of the PSOI the effective
strength of the e—e interaction is determined by two parameters. This
is in stark contrast to the conventional case of an electron gas with
Coulomb interaction only, where the interaction strength is charac-
terized by the parameter r;, which is the ratio of the inter-electron
distance to the Bohr radius az. The e-e interaction Hamiltonian con-
tains the PSOI component Hypg(, in addition to the usual Coulomb term
H(,y, so that the system Hamiltonian is

H = Hy, + Heoy + Hpsor
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Here % (r) = ¢?/er is the Coulomb interaction potential, €(r) = %V,‘Z{(r)
is the pair Coulomb field that produces PSOI, p; is the momentum
operator of the ith electron, m is the effective mass, ¢ = (o,,0),0,) is the
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Pauli vector, and « stands for the Rashba constant, which is ezstimated
for the currently known materials with strong SOI from 10?2 eA” in InAs

to 103 ef\z in such materials as Bi,Se; [21], the BiSb monolayers [22],
and Van der Waals materials with adsorbed heavy elements [23,24].
In what follows it is convenient to introduce the dimensionless Rashba
constant @ = a/ea?,.

The e-e interaction strength is characterized by the ratio of the
interaction energy to the Fermi energy. The parameter r, relates only
to the Coulomb term. The contribution of the PSOI term is described by
another parameter &/r,. It is remarkable that both parameters depend
differently on the parameters of the electronic system. In particular,
while the parameter r; decreases with increasing the electron density,
the parameter @/r,, on the contrary, increases. Therefore the PSOI
correlations can dominate when the density is high enough. While the
effect of Coulomb correlations is largely understood [25], the role of
the PSOI-induced correlations and the conditions under which they
lead to a radical rearrangement of the electronic system remain to be
elucidated.

This paper aims to find out whether the PSOI creates characteristic
correlations, under what conditions they become significant, and how
this manifests itself in the spectrum of collective excitations. To this
end, we study the collective excitations and charge correlations in a
2D electron system with the in-plane reflection symmetry, where the
PSOI is produced by the in-plane pair Coulomb field. The calculations
are carried out in the framework of the random phase approximation
(RPA).

We have found that the static structure factor S(q) as a function
of the wave vector ¢ acquires a sharp peak around a certain value
of ¢ = ¢, when the PSOI parameter is large enough @/r, 2 1/4,
which indicates that the PSOI component of the e-e interaction is
comparable in magnitude to the Fermi energy. The peak clearly shows
the appearance of strong electron correlations on the g, scale, which
are specific for the PSOL They arise owing to the competition between
the Coulomb repulsion of electrons and their attraction caused by the
PSOI, which determines this characteristic spatial scale. Interestingly,
the PSOI correlated state appears at rather high density of electrons
and, correspondingly, at small r;, when the usual Coulomb interaction
is small.

When @/r exceeds a critical value, a new branch of solution with
very unusual properties arises due to PSOI in the spectrum of collective
excitations of the system in addition to common long-wave plasmons.
The solution exists only in a finite band of wave vectors around g,
the band width growing with @/r,. The solution frequency is purely
imaginary, which means that the electron density fluctuations are
growing with time. It is interesting that the density fluctuations are not
polarized in spin. Thus the spatially uniform paramagnetic state of the
electron system becomes unstable with respect to the charge density
fluctuations on the ¢, scale. For realistic values of the SOI parameter
@ < 1 in Rashba materials, the critical value g, « @'/3kf lies in the
long-wave part of the spectrum.

2. Model and results

In this section we consider the linear response of the 2D electron gas
with PSOI to the external electric potential, the dynamic charge suscep-
tibility, the static structure factor, and the spectrum of the collective
modes.

The 2D electron system is assumed to be symmetric with respect
to the inversion of the normal to the plane. In this case the PSOI is
produced by the in-plane pair Coulomb field in contrast to the gated
one-dimensional quantum wire where only the normal component of
the Coulomb field is important [19]. It is worth noting that the PSOI
crucially depends on the geometry of the generating electric fields and
momenta of interacting electrons. In the situation under consideration,
both of these quantities are 2D vectors, the topology of which is
determined self-consistently.

The results are obtained using the equation of motion for the quan-
tum Wigner function, which we derive and solve in the RPA, following
Ref. [19]. The details of the calculation are presented in Appendix.
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Fig. 1. The static structure factor S(q) as a function of ¢ for three values of the r,.
The PSOI magnitude is @ = 0.1, which corresponds to r =0.3.

2.1. Charge susceptibility
The density nf,if, of the electrons with the z-component of the spin
equal to s = +1, in units of g, satisfies the following system of linear
equations

—1, (s
Ao n;‘a)) ~Viw Z "22 =P 2
¢=+
with the external potential ¢,,, and the interaction potential
Vo= 8% 3)
g =4t 2 “aki-

The first term of the interaction potential is due to the Coulomb e-e
repulsion. For the 2D electron gas formed in a uniform system with a
bulk dielectric constant ¢ the e-e repulsion is governed by the pure
Coulomb potential %, = 2re? /eq. The second term of the interaction
potential is exactly due to the PSOI. The dynamic susceptibilities y,
and x; are given by Egs. (A.20) and (A.25).

Since V,,, is spin-independent, the solutions of Eq. (2) correspond
to the equal response of up- and down-spin densities, nﬁ,’;} = n;;) The
dynamic charge susceptibility is

2x0

B { 4
1- Zl/qu))(()

Xn(q, ®) =

2.2. Static structure factor

Consider the static structure factor S(q), which is related to the
charge susceptibility of Eq. (4) via

@) =-= /0 do m 1,(q.®). ®)

n being the mean electron density. It is of interest to study the structure
factor as a function of ¢ for different values of the e-e interaction
parameters. Since there are two such parameters, it is convenient to
fix the value of the PSOI constant @ and change the parameter r, in
such a way that both interaction parameters, r, and @/r,, are varied.
The result is plotted in Fig. 1.
First of all, we found that the structure factor has a strong singular-
ity at a certain value of the parameter r, = r,
B
r: _ 26 a _ 6)
1 22
V23 +2a333
As r; lowers down to this critical value, the spectral weight is shifted
towards the long-wave part of the spectrum, and eventually a sharp
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Fig. 2. The critical value ¢, as a function of a.
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Fig. 3. The critical value r} as a function of a.

peak is formed in the structure factor at the critical value g, of the
wave-vector, given by

wi=
wi—

4 _ 2333 @

kg \/ﬁ ’

23 +2a333
which indicates the appearance of strong electron correlations due to
PSOL.

The characteristic spatial scale g, arises as a result of the competi-
tion between the Coulomb repulsion of electrons and their attraction
caused by the PSOL Its dependence on & is displayed in Fig. 2. When
PSOI is extremely strong, @ > 1, the critical value tends to g, = \/Ek P
For small SOI parameter @ < 1, typically found in common Rashba
materials, the critical value g, « &'/3kp lies in the long-wave part of
the spectrum. The dependence of the critical value of r¥ on the PSOI
strength is plotted in Fig. 3.

2.3. Collective modes and the instability of the uniform ground state

The collective modes are given by zeros of the denominator of
Eq. (4). This equation has two different types of solutions.

In the long-wave region the collective modes are common plasmons,
the spectrum of which gets a correction from the PSOI. At g < kp,

/ 2
a
wy, = wyp\[ 1+ e_zqszF , (€))
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Fig. 4. The plasmon frequency w as a function of wave vector for three values of the
PSOI constant, with r; = 1. The frequency is normalized at w, = vy k. The dashed line
shows the boundary of the particle-hole continuum.
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being the standard plasmon dispersion in a 2D electron gas [26]. The
correction, albeit small, can be accessible to experiment, since the high-
accuracy measurements of the 2D plasmon spectra become available
such as detecting the microwave absorption from the recombination
photoluminescence spectrum [27,28]. The plasmon spectrum is shown
in Fig. 4.

Most importantly, a new solution of the dispersion equation arises
due to PSOI in addition to plasmons as soon as r; < ri. At rg = r}
the solution appears to exist at a single critical value g, of the wave-
vector, whereas at r; < r} the region where the solution exists expands
to a finite band of wave vectors [q;, ¢,], the band width growing with
lowering r,. The spectrum of this branch of solution is illustrated by
Fig. 5.

The frequency of the solution is purely imaginary. For every g¢
within the allowed band of ¢ € (q;,¢,) there are two branches, both
with ®” > 0 and ®” < 0, forming together the petal-like shape.
The frequencies of the two branches give, respectively, the increment
and decrement of the time-dependent fluctuations in the system. The
solution is characterized by equal response of up- and down-spin den-
sities, nf;,:,) = nf,;), which corresponds to the excitation in the charge
sector. Hence the electron density fluctuations growing with time as
« exp(w’t) are not polarized in spin. This indicates that an instability
of the spatially uniform paramagnetic ground state of the 2D electron
gas with PSOI develops with respect to the charge density fluctuations
on the ¢, scale. However, at r; > r; the system is stable.

The effects of PSOI are enhanced in 2D atomically thin layers, either
freely suspended [29,30] or immersed in a weak dielectric. The e-e
repulsion is governed there by the Rytova—Keldysh potential

2me?

Y= dran (10)
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Fig. 5. The imaginary part of the frequency of a new solution of the dispersion
equation due to PSOI as a function of wave vector. The dispersion line is shown for
three values of r, to trace how the instability develops in the system with increasing
the PSOI interaction parameter of &/r,. The PSOI magnitude is fixed to be @ = 0.1,
which corresponds to r} =0.3.

where / is a characteristic length that can be roughly estimated as
€,d/2, with d being the layer thickness, ¢ the in-plane dielectric
constant of the layer material [31].

The spectrum of the new solution of the dispersion equation for this
case is displayed in Fig. 6. Because of the decreased dielectric screening
the critical value r} increases as compared to the purely Coulomb case
considered above.

3. Concluding remarks

We studied electron correlations and collective modes of the 2D
electron system with strong PSOI produced by the in-plane Coulomb
electric fields of interacting electrons, and come to the main conclusion
that the PSOI leads to the formation of a specific strongly correlated
state which becomes unstable with increasing the PSOI strength above
a critical value.

The peculiarity of this system is that the e—e interaction strength
is described by two interaction parameters, r, and @/r,, related to
the Coulomb interaction and the PSOI. They are characterized by
the opposite dependence on the electron density. The attractive PSOIL
prevails over the Coulomb repulsion when the density is high enough.

This gives rise to strong electron correlations on a certain spatial
scale that manifest themselves as a sharp peak in the static structure
factor at ¢ = g,. Moreover, as soon as &/r, exceeds a critical value,
the dispersion equation defining the spectrum of the collective modes
in the system features a new solution with purely imaginary frequency
existing in a band of wave vectors around g¢,. In other words, a spatially
uniform paramagnetic ground state becomes unstable with respect to
the charge density fluctuations on the g, scale.

This altogether indicates a tendency for an electron state to form
a striped structure of some sort on this spatial scale. Within the linear
analysis undertaken in the present paper, it is impossible to predict a
specific type of the electron state that would correspond to the true
energy minimum. Instead of the perturbative RPA, the self-consistent
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Fig. 6. The imaginary part of the frequency of a new solution of the dispersion
equation due to PSOI as a function of wave vector for three values of r. Here a 2D
layer in vacuum is considered, its thickness being d = 0.02ay, the in-plane dielectric
constant ¢, = 15. The PSOI magnitude is & = 0.1, which corresponds to r} = 1.054.

approach, like the Hartree-Fock approximation [2,32], is necessary to
attack this problem.

The RPA, like any other perturbative approach, works well only for
small values of the interaction parameter, which for the PSOI is @/r,. As
can be seen from Fig. 3, at the instability threshold the PSOI interaction
parameter is close to 1/2. This is a reasonably good small parameter, so
the RPA is justified for small r,, when the Coulomb interaction is also
small.

The obtained results, of course, do not imply that a sufficiently
dense 2D electron gas with arbitrarily small PSOI is always unstable
towards the density fluctuations. For very large electron density the
considerations based on k - p approximation and the one-band model of
SOI lose their validity when the Fermi energy is comparable to the gap
energy from other Bloch bands involved in the formation of the PSOI
Hamiltonian. Therefore the limiting value of r, is determined by the
band structure of the specific material.

On the other hand, large values of @ > 1 are not attainable at least in
classical semiconductors with sp> band hybridization, where the upper
limit for the Rashba constant is of the order of @ ~ ¢2, with ¢ being
the bulk dielectric constant.! Nonetheless, the recent rise of 2D systems
with giant SOI [33,34] gives us some hope for the realization of the
extremely strong Rashba SOI by means of other physical mechanisms.
Thus, in oxide heterostructures and films [35,36] the strong indications
were found for the electronic nematicity [37], and for the formation of
BEPs [38-40] well beyond the superconducting phase. While the exact
mechanisms behind these effects still remain unclear, at least some of
them are likely due to the interplay of the giant SOI and collective
effects [9]. That being said, the quest for a particular system with a
giant SOI where the effects predicted in the present paper could develop
is still a challenge for the future.

1 We are grateful to Sergei Tarasenko for pointing this out (S. Tarasenko,
private communication).
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Appendix

In this section we obtain the linear response functions of the 2D
electron gas with PSOI within RPA. The microscopic derivation is
based on the equations of motion for the quantum Wigner distribution
functions (WDFs) [19,41].

We start with the second quantized Hamiltonian

2
-2 ) / dry (OV2p,() A1)

+23 [anan i eoniete - v e, ) 02

S]S')

+ 2 / dry (Ne(r, Dw,(r) (A3)

taZ/drldrzw (rl)y/s?(rz) [(sl , ~ $20x,)&,(r; = 12)

S189
=510y, = 520,)E(ry = )| Wy (rawr, (), (A4)

where y,(r) is the electron field operator in the s, representation (s =
+1), and r = (x,y,0) stands for the in-plane position. Eq. (A.1) is the
kinetic energy operator, Eq. (A.2) is the Coulomb interaction, Eq. (A.3)
is the external perturbation, and Eq. (A.4) is the PSOL.

Let us introduce the single-particle and two-particle Klimontovich
operators [42] as

2 1 ip-
= o / dR PRy (r+ 8r)y, (r-5u1) A5)
and

2 1 i(p1-R .R
f(sl’sz)(rlsplv"ZvPZv’)zw/dedRzel@l 1+P2Ry)

R R
t) y/:r2 (rz + 7,t> vy, (rz -5 ,t) vy, (r] - 7‘1) .
(A.6)

The expectation value of the Klimontovich operators w.r.t. the ground
state of H are exactly the WDFs, i.e. (/9 p,n) = fO(r,p,1). By
commuting f®(r, p,r) with H and taking the expectation value we
obtain the first equation of motion in the Bogoliubov—Born-Green—
Kirkwood-Yvon hierarchy [43]:

) ih?
ihd, fO(r,p,H) = — 171)- v, fOr, p,

R
X y/:] <r1 + 3

dRdp, ¢!(P=P1)-R

X {(p(f—5,t)—w(r+5,t>}f(s)(r,pl,t) (A.7)

(2 : Z/dr,depldpze’(p PR
T

x{u(r-r-2)-2(r-r,+ %)}

X fSO(r, py.ri.py.1)

x i(p—p1)-
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RPA consists in truncating the hierarchy by factorizing the two-particle
WDF according to

f(sl’sz)("ppl,rz,PzJ) = f(sl)("l,Pl,f)f(sz)(rypzvl)- (A.8)

Let us define the deviation f IS)(r p.t) of fO)(r, p,t) from its equilibrium
value f; )(p) as a result of the external perturbation,

1= 1w p.0 - 1) (A9

The equation of motion for f l(s) (r, p, 1), linearized with respect to the
external potential, reads in Fourier representation as

~nof{’q.p.o)= - L2 10q po)+ [0+ D - 100 - D] x

X {(qu"'% z (§)+2as(p><%') (g)

<
m z‘ i(©)
2a P g(lq‘wx%q)z}.

(A.10)

Here nf;a), and jg, are the s-spin components of the electron density

and paramagnetic current response, related to the WDF, respectively,
by

+(5)

niy) = / dp \(q. p.®) (A11)
and

S = dppsP(q.p.w). (A12)
q m 1

The Fourier component of the in-plane electric field is given by &, =
%% - Two specific forms of the e-e repulsion potential %, are consid-
ered in the main text.

The first two moments of the Eq. (A.10) are

SIS,‘),:/YO <¢qw+%qz (§)+2a_ Zg(‘](g) X & ) )
9

2
0Ty Y (A.13)
S

qo’

and

— e = <<pqm+% 2o+ 2 Zcu@ X&) >
2as
+U=, % Z nl). (A.14)
<

Four susceptibilities entering the Egs. (A.13)-(A.14) are as follows,

P+ -Pp-19
)(o=/dp 0 2 0 2

- : (A.15)
h—p~q—h(w+i0)
e+ H-1e-9
n =/dp = 2 ( Xq),, (A.16)
7p~q—h(a)+i0)
(s) q (s) q
P+H-r0w-9
X2=/de0 PRI h ey, (A.17)

i’n—2p~q—h(a)+i0)
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X3=/d

Note that %, and y; are vector quantities.
In a non-self-consistent RPA, fos)(p) is the momentum distribution
of the free 2D paramagnetic electron gas,

(S)(p+ Q) (5)(p
;p-q—h(w+i0)

(p Xq);. (A.18)

19 = ~1pD. (A.19)
k being the Fermi wave vector. In this case
No ( ign(Rev_) 1 + (Rev,) 1)
= v_ — sign(Re v_ —1—v, +signRev.
07 /) ¢ P
(A.20)
n=0, (A.21)
x:ﬂ v_ —sign(Rev_)y/v2 — 1 + v, —sign(Rev,)y/v2 — 1
2 2q/kp \\~ 4 - - + =4 + +
(A.22)
N,
AT — (vz —v_sign(Rev_)y/vZ —1— vJZr
(q/k )
+v, sign(Rev,) 1) (A.23)
X = Nk (= = S signRev.) |02 n: @2 -pi-%
3= e (q/k ) 3% - 2
3 3
+ 5 sign(Re v, ) [(vi)z - - 1)2]> : (A.24)
Here v, = e @+i0 2i N, = le is the 2D density of states of spin ¢

per unit area, q, = (qy, —q,), the branch cut lies along the negative real
axis. Eq. (A.20) is due to Stern [26].

Expressing n(:) from a coupled system of equations Egs. (A.13)-
(A.14) gives Eq. (2) of the main text with

3
=N L[ = % sign(Re v_) [(vf)f —02-1)

3
=Wz xq), = P\ 2 2

=% Lenev,) [02)F -2 - 1)%] (A.25)
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