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Bound electron pairs formed due to the peculiarities of the band dispersion of electrons in crystals attract 
much interest because they can carry charge and spin even in the absence of band conductivity. However, 
such an important parameter of bound pairs as the effective mass is still poorly understood. We carry out 
this study for materials described by the Bernevig-Hughes-Zhang model in the electron-hole symmetric 
case and find a clear relationship between the effective mass and the energy of a bound pair at rest. The 
dependence of mass on energy has a specific form for each of different types of pairs, but a common 
feature is the change of the mass sign when energy passes through the middle of the band gap. The sign 
is negative when the energy is in the lower half of the gap, and positive in the upper half.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

The pairing of electrons due to the Coulomb interaction attracts 
a long-standing interest, not only because of problems of high-
temperature superconductivity [1,2], but in recent years also in 
connection with the general interest to the electron-electron (e-e) 
interaction effects in materials with non-trivial band states [3,4]. 
The greatest attention is paid to the pairing mechanism caused 
by the peculiarities of the band dispersion in a wide variety of 
materials and low-dimensional systems with both a gapless and 
gapped spectrum. Due to the specific structure of basis atomic or-
bitals and their hybridization, various types of bound electron pairs 
(BEPs) of this nature can form in such systems. They were studied 
for topological insulators (TIs) [5], Dirac semimetals [6], graphene 
and bigraphene [7–11], carbon nanotubes [12], systems with flat 
band [13,14], systems of cold atoms in optical traps [15,16], chi-
ral cold atomic systems [17]. Even in nanophotonic systems with 
a periodic structure, two-photon quasiparticles can form [18]. The 
pairing mechanism is often interpreted as a result of the formation 
of a negative reduced mass [19], although in some cases such an 
idea seems too oversimplified, since the equation of the relative 
motion of pairing electrons generally has a more complex form 
than the usual motion of a particle in the e-e interaction poten-
tial [5].
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The BEPs formed in this way are unusual charge and spin carri-
ers, which can play an important role especially in the cases where 
their energy is in the band gap and under non-equilibrium condi-
tions. Interest in them is stimulated by the recently established 
fact that BEPs are sufficiently resistant to radiative decay [20,21]. 
Therefore, it is now important to study the transfer of BEPs under 
the action of external fields and, first of all, to find their effective 
mass. Until now, this issue has been extremely poorly studied.

The energy of a BEP was studied as a function of its momentum 
for several very simplified forms of the crystal potential [22–24]. 
However this approach does not allow to draw definite conclu-
sions regarding the magnitude and even sign of the effective mass 
and, moreover, the mechanism of its formation. In addition it does 
not reflect the structure of atomic orbitals forming electronic states 
which are important for currently relevant low-dimensional mate-
rials.

The transport of bound pairs of repulsive particles has been 
more consistently studied in relation to cold atomic systems within 
the framework of the Bose- and Fermi-Hubbard models, which 
take into account both on-site and nearest neighbor repulsion, 
but are limited to considering only one lower band of continuum 
states. This approach allows one to find out different families of 
the bound pairs, depending on the model parameters of the inter-
action [25–27] and even study the dynamics of bound-pair packets 
induced by the scattering with a single particle [26,28]. Of most 
interest in view of the subject of the present study is the fact that 
the effective mass of bound pairs depends on the e-e interaction 
parameters used in the model [27,29]. However, no fundamental 
conclusions have been drawn about the dependencies of the ef-
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fective mass on the interaction potential and the single particle 
effective mass in the band of continuum states.

The present paper is aimed at studying the effective mass of 
BEPs for a wide class of currently relevant two-dimensional ma-
terials with a two-band spectrum, in which BEPs are formed by 
mixing of atomic orbitals of both electron-like and hole-like basis 
states. Accordingly, it can be expected that the effective mass of 
such BEPs is largely determined by the composition of the atomic 
orbitals that form them. This is an important factor that has not 
yet been studied and, as will be shown, radically changes the mag-
nitude and even the sign of the effective mass. In this situation, the 
calculation of the effective mass of BEPs is a very nontrivial prob-
lem, since the composition of atomic orbitals is determined by the 
equations of motion of the particles for specific interaction poten-
tial and the momentum of the pair [5]. Therefore, the composition 
of the atomic orbitals of a moving BEP varies with its momentum 
and can be very different from that of a BEP at rest. It is also in-
teresting that the motion of the center of mass of the pair is not 
separated from the relative motion of the electrons, and therefore 
the motion of the pair as a whole leads to a change in the binding 
energy of the BEP.

We develop an approach to solving this problem and calcu-
late the effective mass within the Bernevig-Hughes-Zhang (BHZ) 
model [30] which describes a wide class of two-dimensional ma-
terials with strong spin-orbit interaction in both topological and 
trivial phases. As a result, we have found that there is a general 
relationship between the effective mass of a BEP and its energy at 
rest. In the case of the symmetric BHZ model, the effective mass 
of BEPs is positive when the energy is above the middle of the gap 
of the two-particle band spectrum, and negative when the energy 
is in the lower half of the gap. Near the middle of the gap, the 
effective mass vanishes for all types of BEPs.

2. Model approaches

We will study BEPs within the framework of the BHZ [30]
model, which qualitatively well describes many materials and is 
well suited for studying the effects of e-e interaction when the 
interaction radius is large enough, as in systems with a low elec-
tron density. The model is based on the k · p approximation. 
The single-particle states are presented in the four-band basis 
(|E ↑〉, |H ↑〉, |E ↓〉, |H ↓〉)T , composed of electron and hole orbitals 
with spin up and down. For simplicity, we restrict ourselves to the 
case when the model has electron-hole symmetry.

Since the spin projection Sz , is conserved the two-electron 
states can be categorized into two types by their spin [5]:

(i) singlets with Sz = 0 formed by two-particle basis orbitals 
(|E ↑, E ↓〉, |E ↑, H ↓〉, |H ↑, E ↓〉, |H ↑, H ↓〉)T and a similar 
state with permuted particles,

(ii) two triplets with Sz = ±1 formed by orbitals (|E ↑, E ↑〉,
|E ↑, H ↑〉, |H ↑, E ↑〉, |H ↑, H ↑〉)T and (|E ↓, E ↓〉, |E ↓, H ↓〉,
|H ↓, E ↓〉, |H ↓, H ↓〉)T .

To be specific, we will consider the singlets in topological 
phase. For triplets, the results are quite similar.

Properties of the BEPs essentially depend on the composition 
of the orbitals forming them, since it is the contributions of the 
electron and hole orbitals that are decisive factor determining 
the effective mass of BEPs. In its turn this composition is self-
consistently determined by the equation of motion and depends on 
the interaction potential. As a result, the BEPs formed by electrons, 
both of which occupy predominantly hole orbitals, are very dif-
ferent from BEPs in which one electron predominantly occupies a 
hole orbital while the other occupies the electron one. We classify 
these states as BEPs of the first and second groups, respectively.
2

All possible types of the BEPs with zero total momentum were 
studied previously [5,20,21]. Here we extend this study to the case 
of finite but small total momentum K. For this purpose, we repre-
sent the BEP wave function in the form:

�S(R, r) = �K(r)eiKR, (1)

where R and r are the coordinates of the center of mass and the 
relative position of the electrons, and use the Hamiltonian derived 
in Ref. [5] and given there by Eq. (11), for singlet BEPs. We repre-
sent this Hamiltonian in a more convenient form by separating the 
part describing the motion of a BEP as a whole

H = H0 + H K , (2)

where H0 is the Hamiltonian of the BEP at rest

Ĥ0(k̂) =⎛
⎜⎜⎜⎝

2(k̂2 − 1 + v(r)) ak̂− ak̂+ 0
ak̂+ 2v(r) 0 ak̂+
ak̂− 0 2v(r) ak̂−

0 ak̂− ak̂+ 2(−k̂2 + 1 + v(r))

⎞
⎟⎟⎟⎠ , (3)

and H K is the K-dependent component,

Ĥ K (k̂,K) =

⎛
⎜⎜⎝

K 2/2 −aK+/2 aK+/2 0
−aK+/2 2K·k̂ 0 aK+/2
aK−/2 0 −2K·k̂ −aK−/2

0 aK−/2 −aK+/2 −K 2/2

⎞
⎟⎟⎠ . (4)

Here and in what follows it is convenient to use dimensionless 
notations. All values of the energy dimension are normalized to 
|M|. The distances are normalized to 

√|B/M| where B and M
are the parameters of the BHZ model, B describes the dispersion 
in the electron and hole bands, M is the mass term. v(r) is the 
normalized e-e interaction potential per electron. The parameter 
a = A(BM)−1/2 is important since it describes the hybridization of 
the electron and hole bands, where the parameter A describes the 
mixing the electron and hole bands in the BHZ model [30]. k̂ is the 
relative momentum operator, k̂± = k̂x ± ik̂y , and K± = Kx ± iK y .

Wave functions of the singlet BEPs are four-rank spinors in the 
two-particle basis:

�K (r) = (ψ3,ψ4,ψ7,ψ8)
T , (5)

and the spinor components are defined from the Schrödinger equa-
tion (H0 + H K )�K = E�K , where E is the two-particle energy.

For simplicity, we restrict ourselves to considering situations 
where the band dispersion has only one central extremum in the 
conduction and valence bands. In the case of the topological phase 
BM > 0, this happens when a ≥ √

2. At a <
√

2, the band disper-
sion has a shape of the Mexican hat and the study of electronic 
states is more complicated. In the case of the trivial phase, the 
band dispersion has only one extremum in each band at any a. 
But in what follows we will keep in mind the topological phase.

First conclusions about the effective masses can be made di-
rectly from the Hamiltonian (2) in the case of small interaction 
potential, v(r) � 1, for BEPs of the first group with the energy 
level E close to the top of the valence band of the two-particle 
spectrum, (E + 2) � 2. Simple analysis shows that in the spinor 
�K , the component ψ3 predominates, but the presence of other 
components reflecting the hybridization of the electron and hole 
orbitals, is very important. As a result, the following equation is 
obtained for ψ3 for K � 1:
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[(
1 − a2

2

)(
k̂2 + K 2

4

)
+ v(r)

]
ψ3 =

(
E

2
+ 1

)
ψ3 . (6)

It is seen that the energy has the form: E = −2 + 2εn + K 2/(2M∗), 
where εn is the binding energy of the BEP per electron at rest with 
respect to the valence band, M∗ is the effective mass of the BEP 
which is equal to

M∗ = 2

2 − a2
. (7)

Obviously, M∗ is exactly equal to twice the effective mass near the 
central extremum in the valence band, m∗ = 1/(2 − a2).

The relative motion with quantized spectrum εn is described by 
the reduced effective mass mr which equals half the band mass, 
mr = m∗/2. When a >

√
2, the reduced effective mass is negative 

and therefore the repulsive e-e interaction leads to the formation 
of BEPs. However, in this case the effective mass M∗ of the BEPs 
is also negative for any shape of v(r). This means that the BEPs 
are unstable, since Coulomb forces acting between the pairs lead 
to their mutual attraction and formation of many-electron com-
plexes with energy levels in the gap. This obviously reflects the 
well-known process of renormalization of the band gap due to e-e 
interaction [31].

The situation, however, changes with an increase in the e-e 
interaction potential, since the interaction amplitude significantly 
affects the composition of the orbitals that form the BEPs [5,20]. 
For example, at a low interaction potential, BEPs of the first group 
are formed mainly by electrons of the valence band. An increase in 
the interaction amplitude leads to additional mixing of the orbitals 
of the conduction band, which leads to a change in both the re-
duced effective mass and the effective mass of the BEPs, but these 
masses obviously change in different ways. Below we study how 
the effective mass of a pair changes with the e-e interaction po-
tential in the case of a small center-of-mass momentum, K � 1, 
using perturbation theory.

3. A perturbative approach

When the center-of-mass momentum is small enough, the 
problem can be solved by treating the Hamiltonian H K in Eq. (2)
as a perturbation. Such an approach was successfully used to study 
excitons, especially in materials with complicated valence band 
spectrum [32,33]. Expansion of the energy of a pair in momentum 
in the second order gives the effective mass of the pair. The pertur-
bation series can be constructed on the basis of two-particle states 
of the Hamiltonian (3). Two-particle eigenstates of the Hamilto-
nian (3) were studied in Refs. [5,20,21] in the case where the pa-
rameter a ≥ √

2. The total spectrum of two-particle states contains 
both bound states with a discrete spectrum in the band gap and 
unbound states in the bands. Below we briefly present these states.

There are two groups of the bound states that differ in their 
spatial structure and atomic orbital composition. In polar coor-
dinates (r, ϕ), the bound states are described by the following 
spinors:

�m(r,ϕ)=

⎛
⎜⎜⎝

ψ3m(r)
iψ4m(r)eiϕ

iψ7m(r)e−iϕ

ψ8m(r)

⎞
⎟⎟⎠ eimϕ , (8)

where m is the angular quantum number m = 0, ±1, ±2, . . . , 
ψ3,4,7,8(r) are real functions. The states of the first group |m, nr〉
are additionally characterized by a radial quantum number nr , 
which appears when the radius of the e-e interaction r0 is large 
enough. Their energy spectrum Em,nr and wave functions were 
studied in Refs. [5,20,21] in the case of a step-like potential of e-e 
3

interaction v(r) = v0�(r0 − r). The main feature of the first group 
states is that their energy tends to the band gap bottom with de-
creasing the interaction amplitude v0. At v0 � 1, both electrons 
forming these pairs occupy predominantly the valence band or-
bitals.

The states of the second group, on the contrary, do not exhibit 
a clearly defined radial quantum number. Nevertheless, at a given 
angular quantum number m, there are two states, which we label 
with indices A and B . The states |m, A〉 and |m, B〉 differ in energy 
for a given v(r), and we will assume that the energy of the A state 
is lower than that of B . As v0 decreases to zero, their energies 
Em,A and Em,B tend to the middle of the gap. It is important to 
keep in mind that in the symmetric model, the middle of the band 
gap of the two-particle spectrum is a specific energy. An infinite 
set of unbound two-particle states with one electron in conduction 
band and the other in valence band and zero total momentum of 
the pair resides at this energy. The effective mass of a BEP is de-
termined, roughly speaking, by the contributions of the conduction 
and valence bands to the orbitals that form a bound state. The 
BEPs of the second group are formed by one electron residing pre-
dominantly in the conduction band and the other in the valance 
band. In the limit v0 → 0, the system is symmetric, and the con-
duction and valence bands contribute to the bound state equally. 
Therefore, the total effective mass M* is expected to be zero as the 
sum of the positive and negative masses of the electrons forming 
the bound pair. However, at finite v0 > 0 the symmetry is broken, 
and the contribution of the conduction band becomes dominant, 
so that M* is expected to be positive.

Unbound states of two electrons with zero total momentum 
|k, λ1, λ2〉 are characterized by the value of relative wave vector 
k of electrons which is defined at infinity, r → ∞, where the e-e 
interaction potential vanishes, and indexes λ1,2 indicating in which 
band of the single-particle spectrum each of the two electrons is 
located [20,21]. λ takes two values λ = 1 and λ = −1 for the con-
duction and valence bands respectively. The unbound state energy 
reads

Ek,λ1,λ2 = (λ1 + λ2)
√

(1 − k2)2 + a2k2 . (9)

To be specific, we consider how the motion of the center of 
mass changes the energy of a BEP of the first group, which at rest 
was in the state |m, nr〉. A perturbation expansion to terms in K 2

leads to the following result:

Em,nr (K ) = Em,nr + 〈m,nr |H K |m,nr〉
+

∑
m′ =m,n′

r =nr

〈m,nr |H K |m′,n′
r〉〈m′,n′

r |H K |m,nr〉
Em,nr − Em′,n′

r

+
∑

m′ =m,X=A,B

〈m,nr |H K |m′, X〉〈m′, X |H K |m,nr〉
Em,nr − Em′,X

+
∑
λ1,λ2

∫
d2k

4π2

〈m,nr |H K |k, λ1, λ2〉〈k, λ1, λ2|H K |m,nr〉
Em,nr − Ek,λ1,λ2

.

(10)

Here the first string in the right-hand side takes a very simple 
form:

〈m,nr |H K |m,nr〉 = π
K 2

2

∞∫
0

drr
(
|ψ3;m,nr |2 − |ψ8;m,nr |2

)
(11)

and describes the change in energy caused by the spinor compo-
nents corresponding to two configurations in which both particles 
are in the electron, ψ3;m,nr , and hole, ψ8;m,nr , states with positive 
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Fig. 1. Dependence of the normalized effective mass M∗/(2|m∗|) of the BEP of the 
first group on the interaction potential amplitude v0 for various interaction radius 
r0 = 2, r0 = 3 and r0 = 4. The insert shows the corresponding energies of the BEPs 
at rest versus v0. The hybridization parameter used in the calculation is a = 2.1. 
(For interpretation of the colors in the figures, the reader is referred to the web 
version of this article.)

and negative masses respectively. The second and third strings de-
scribe the effect of electron transitions between different states 
of the BEP. It is essential that the transitions are possible only 
when m is changed by ±1. The fourth string is caused by elec-
tron transitions from BEPs into unbound states. It is clear that the 
contribution of all electron transitions between different states of 
the pair is proportional to K 2. Thus the variation of the BEP en-
ergy with K has the form 	E(K ) = αK 2 and is described by an 
isotropic effective mass M∗ = (2α)−1, in dimensionless units.

4. The effective mass

We will now calculate the effective mass M∗ for different types 
of BEPs using Eq. (10). The main goal of this study is to clarify how 
the effective mass depends on the amplitude and radius of the e-e 
interaction.

The wave functions required to calculate M∗ are found using 
the model of two-electron states developed in Refs. [5,20,21] and 
some simplifying assumptions. The main simplification is the use 
of the step-like potential with amplitude v0 and radius r0 that 
models the short-range interaction of a finite radius. This simplifi-
cation allows one to solve exactly the two-particle problem within 
the BHZ model. Another simplification relates to the spectrum of 
the BEPs. We assume that the energy gap between the discrete 
levels is large enough, and for this reason the summation over the 
indexes nr or X in Eq. (10) can be limited to only one value. This 
is obviously justified when the interaction radius is small enough. 
And one more simplification relates to the wave functions of the 
unbound two-particle states with continuous spectrum. When cal-
culating the matrix elements, we neglect the change in these wave 
functions due to the e-e interaction. This simplification is justi-
fied by our recent study of the matrix elements of the radiative 
decay of BEPs, which have very similar form. We found that the 
distortion of the wave functions of unbound states due to the e-e 
interaction only weakly changes the matrix elements [21].

Results of the calculations are as follows.
First, consider the BEPs of the first group for a >

√
2. The effec-

tive mass M∗ as a function of the amplitude v0 of the e-e interac-
tion is presented in Fig. 1 for a variety of the interaction radius r0. 
Here, it is convenient to consider the effective mass M∗ normalized 
to 2|m∗|. Thus, the normalized effective mass of BEPs with the en-
ergy close the valence band, as expected from Eq. (7), is to be −1.

Fig. 1 shows that the normalized effective mass M∗ really tends 
to −1 in the limit v0 → 0 and is negative when v0 is not large 
enough. However, M∗ goes to zero and becomes positive when the 
potential exceeds a critical value which depends on the interaction 
radius.
4

Fig. 2. The effective mass of the BEP of the first group as a function of the bound-
state energy at rest for different radii of the e-e interaction r0 = 2, 3, 4.

It is interesting to clarify how M∗ changes with v on an en-
ergy scale relevant to the characteristic energy of BEPs. Within the 
frame of the perturbation theory we expect that M∗ can be ex-
pressed in terms of parameters of the unperturbed state. Such an 
energy parameter is the bound-state energy Em=0,nr=1 at rest. In 
its turn, this energy is determined by the potential amplitude and 
radius, as illustrated in the insert in Fig. 1. Excluding v0 from the 
functions M∗(v0) and E0,1(v0), we arrive at the mass M∗ as a 
function of E0,1. The result is shown in Fig. 2. It turns out that this 
function changes quite slightly with r0.

In such a way we arrive at an unexpected conclusion that the 
effective mass of the first group BEPs is close to a universal func-
tion of the bound state energy at rest, as shown in Fig. 2. Here, 
the deviation of all three lines from the universal one is notice-
able only at an energy close to the conduction band. Of course, 
the conclusion about a slight change in the shape of the depen-
dence of M∗ on E0,1 with a change in r0 is limited by simplified 
assumptions used in these calculations, and is hardly universal for 
a wide class of functions v(r). Nevertheless, this is a curious fact.

However, the main conclusion from these results is that the 
effective mass changes its sign in the middle of the gap and is 
positive only in the upper half of the band gap. Changing the 
hybridization parameter a leads to a change in the form of de-
pendence of M∗ on E0,1, but this main feature remains unchanged 
for all types of BEPs. Below we illustrate this by considering two 
cases for completely different types of BEPs.

Of special interest is the limiting case where a = √
2. In this 

case the band dispersion near the valence band extremum be-
comes almost flat, ε + 1 ∼ k4, and the band effective mass m∗
formally turns to infinity. Accordingly, the energy of the BEPs of 
the first group strongly increases. Really the bound-state energy is 
determined by a reduced effective mass which is formed as a re-
sult of hybridization of electron and hole orbitals in a wide range 
of k and turns out to be finite. In this case, the effective mass 
of BEPs, M∗ , as a function of the bound-state energy is shown in 
Fig. 3 for three values of the e-e interaction radius. It is seen that 
the above conclusion that M∗ turns to zero near the middle of the 
band gap is also valid in this case, although the shape of the lines 
describing M∗ as a function of E0,1 changes.

Now we turn to the BEPs of the second group. At K = 0 they 
are described by the wave functions |m, X = A, B〉 and have re-
spectively the energy levels Em,X=A,B , both of which lie above the 
middle of the gap. The peculiarity of these states is that one of 
the electrons is predominantly in the conduction band, while the 
other is in the valence band. Since the electron and hole orbitals 
are almost equally involved in the formation of the BEPs, it can 
be expected that in the limit of small v0 the effective mass of the 
pair is close to zero. However, in reality, this electron-hole equal-
ity is violated by the interaction potential, and the effective mass 
becomes finite. We have calculated the mass for both BEPs of the 
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Fig. 3. The effective mass M∗ of the BEPs of the first group as a function of the 
bound-state energy at rest in the case of a = √

2 for r0 = 2, 3, 4.

Fig. 4. The effective masses of two BEPs, |0, A〉 and |0, B〉, of the second group as 
functions of their binding energy at rest for two radii of the e-e interaction. The in-
sert shows the bound state energies as functions of the amplitude of e-e interaction 
potential. The model parameters are a = 2.1, r0 = 1, 3.

second group indexed above as A and B . The energy Em,X (K ) of 
a moving BEP is described by equations similar to Eq. (10), not 
shown here. In this way we arrive at the results shown in Fig. 4
for both states for one value of the hybridization parameter and 
two interaction radii.

It is clearly seen that the effective mass M∗ is positive for both 
states in agreement with our previous conjecture that M∗ is posi-
tive when the bound state energy lies in the upper half of the gap. 
In the limit v0 → 0 the effective mass goes to zero, as expected. 
The dependence of M∗ on the bound state energy again is close to 
a universal one for both states A and B , but the deviations from it 
are much larger than in the case of the first group states.

5. Conclusion

We have studied the effective mass of BEPs that form due to 
peculiarities of the band dispersion of electronic states composed 
of electron and hole orbitals in materials with two-band spectrum. 
Specific calculations were carried out within the frame of the sym-
metric BHZ model for singlet BEPs in the topological phase, but the 
main results are of a more general nature. Our calculations show 
that they are qualitatively valid for both triplet pairs and the trivial 
phase. The problem of finding the dispersion equation for different 
types of BEPs with a finite momentum K is solved perturbatively 
by expanding the energy of a moving BEP in K.

The main conclusion is that the effective mass M∗ of the BEPs 
is defined by their energy E K=0 at rest. M∗ is negative if E K=0 is 
below the middle of the gap of the two-particle band spectrum 
and M∗ is positive if E K=0 lies in the upper half of the band gap. 
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M∗ turns to zero when E K=0 is near the middle of the gap. More-
over, our results suggest that the form of the function M∗(E K=0) is 
specific for each type of BEPs and, under certain conditions, weakly 
depends on the parameters of the e-e interaction potential, such as 
the interaction radius.

The step potential is a good model approximation of the short-
range interaction potential, which is realized in realistic systems 
due to screening processes. This simplification is widely used in 
the literature, see for example the Ref. [7]. The main its advantage 
is the possibility to solve the problem exactly, as in the case of 
bound electron pairs. The results obtained using this simplification 
are confirmed at the qualitative level for other types of short-range 
interactions, although specific results may differ quantitatively. In 
particular, the fact that the effective mass M* of the BEP is nega-
tive when its energy is close to the valence band is correct for an 
arbitrary shape of the potential, see Eq. (7). With an increase in 
the bound state energy, the value of the effective mass decreases.

The fact that M∗ is negative in a wide range of energy indicates 
the instability of the electron system to the formation of many-
electron complexes and appearance of many-electron states in the 
lower part of the forbidden gap. In essence, this reflects the well 
known process of the gap renormalization due to e-e interaction 
in many-electron systems [31].

Stable BEPs of the first group can form when the e-e interac-
tion is strong so that the bound state energy is large enough. In the 
symmetric BHZ model, those BEPs are stable whose rest energy is 
in the upper half of the band gap. This allows one to estimate the 
condition under which stable BEPs of the first group can appear in 
the case of the Coulomb interaction. The bound state energy can 
be roughly estimated by the effective Rydberg E R , which is calcu-
lated according to Ref. [34] using the band effective mass m∗ for 
the symmetric BHZ model. In this way, we find that the BEP en-
ergy is in the upper half of the band gap when E R/|M| > 1, and 
E R/|M| ∼ e4[ε2(a2 − 2)|BM|]−1, with ε being the dielectric con-
stant. This gives a constraint on the material parameters under 
which the BEPs are stable. A numerical estimate for specific ma-
terials shows, for example, that when the material parameters are 
close to those of HgTe, this constraint can only be met if a is close 
to 

√
2. For materials with a lower dielectric constant, the estimates 

are more favorable.
In contrast, the BEPs of the second group are stable even if the 

e-e interaction is not so strong. These BEPs are formed by electrons 
one of which is mainly in the conduction band and the other in the 
valence band. They are most promising for implementation in ma-
terials with strong spin-orbit interaction. This raises the question 
of a more detailed study of pairs of this type, in particular, in ma-
terials with broken particle-hole symmetry, as is the case in many 
materials used in experiments.

One of the main physical conclusions of our study that the ef-
fective mass of a BEP is largely determined by the composition of 
atomic orbitals can be illustrated by comparing the above results 
with the results of other theories based on models that do not 
take into account the mixing of atomic orbitals in the structure of 
bound pair states. As an example, we will discuss this for the re-
sults recently obtained in the framework of the lattice models of 
BEPs [15,27].

It is obvious that BEPs of the second group are lost in the above 
tight-binding models, as long as they are limited to consideration 
of one band of a single-particle spectrum. In this case, the BEPs of 
the second group are not possible, since they are formed by or-
bitals of different bands. Therefore we can compare only the BEPs 
of the first group. At a small amplitude of the interaction poten-
tial, the effective mass of these BEPs is negative according to our 
theory, similarly as according to the Bose–Hubbard model [15]. 
However, an increase in the interaction potential leads to an in-
crease in the effective mass in the Bose–Hubbard model, while our 
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two-band theory predicts a decrease in the effective mass and even 
a change in its sign. The reason for this discrepancy is obviously 
that an increase in the interaction potential in the two band model 
leads to an increase in the fraction of the conduction band orbitals 
in the wave function of the BEPs. In a single band model, this is 
impossible. In addition, the bound states studied in the framework 
of the BHZ model have the topological properties inherent in this 
model, which leads to qualitatively new types and properties of 
pairs in comparison with single-band models.
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