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Abstract. Chemical vapor deposited (CVD) diamonds have been irradiated with fast reactor 

neutrons at fluencies F = 1·1018 and 3·1018 cm−2 and then heated at temperatures up to 1600 °C. 

The processes of annealing in and annealing out of various complexes of intrinsic defects 

responsible for vibrational and electron-vibrational bands in the IR absorption spectra have been 

studied in detail. Some tens of local vibrational modes and zero-phonon lines with rather small 

width caused by numerous complexes of intrinsic defects were observed in the 400-11000 cm−1 

range. 

1. Introduction 

The further prospects of diamond in science and technology are determined both by improving the 

technology for producing structurally perfect ultrapure diamond, and by developing methods for defect 

engineering, which allow obtaining materials with controlled properties. Traditional techniques, such as 

in situ doping in the synthesis process, are not always appropriate due to the ultra-dense crystal lattice 

of diamond. Ion implantation and irradiation by electrons and neutrons are effective methods for defect 

engineering and are widely used for emerging diamond applications for quantum optics and sensing [1-

2]. To engineer the defects and to improve the radiation damage resistance of diamond sensors [3] we 

must first understand defect’s formation, diffusion, annihilation, interaction with impurities and 

aggregation into larger complexes. Investigation of radiation defects in ion-implanted diamonds is a 

challenge as the damaged sample volume is very small and the damage is not homogeneous through the 

bulk of the diamond. One of the solutions is to simulate ion implantation damage with heavy neutron 

irradiation.  

IR spectroscopy is a powerful technique to study radiative defects in neutron irradiated diamonds. 

The several intensive local vibrational modes were examined in IR spectra of neutron irradiated 

diamonds [4-15], most of them are hydrogen [8-11, 13-14] –  and nitrogen [4, 6, 8-11, 15]–related. The 

effect of neutron irradiation on defect-induced one-phonon absorption band was also examined in a 

number of works [5, 8, 10, 12, 15]. The effect of annealing on the IR absorption spectra of radiation-
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modified diamonds was also studied in [4-15]; however, the ranges of radiation damage, annealing 

temperatures, and the spectral interval under study were rather limited. It was found that in the diamonds, 

where nitrogen content is higher than concentration of radiation induced vacancies, nearly all vacancies 

are trapped by the nitrogen impurity [10], as a result of which information on the behavior of intrinsic 

defects in radiation-modified diamonds is incomplete and contradictory. 

The aim of this work is to investigate in a wide spectral range the transformations of the IR absorption 

spectra of diamonds with a low nitrogen content irradiated with fast neutrons as a result of successive 

annealing at temperatures up to 1600C.  

 

2. Samples and experimental 

Transparent polycrystalline CVD diamond films of thickness >500 μm and mean dimensions of 

crystallites ~50-70 μm have been grown on Si substrates from CH4/H2 mixtures using a microwave 

plasma-enhanced CVD system ASTeX-PDS19 as described elsewhere [16]. The nitrogen concentration 

in the substitution position (determined from optical UV absorption spectra as reported in [17]) in the 

examined specimens was ~1018 cm−3 and of bound hydrogen ~2·1019 cm−3. Mechanically polished CVD 

diamond plates were irradiated with neutrons in a wet channel of an IVV-2M nuclear reactor in the fast 

neutron flux of ~1014 cm−2·s−1 [18] at fluencies F = 1·1018 and 3·1018 cm−2 at temperature of 325 K. The 

neutron irradiated samples have been subjected to annealing (60 min at fixed temperature) in an oven 

with graphite walls in a vacuum of 10−5 Torr at different temperatures of 200 to 1600 °C. To remove the 

graphite which could be formed on external surfaces [19] after the heat treatment, the samples were 

etched in hot H2SO4 + K2Cr2O7 solution at ≈180 °C. After each annealing step FT-IR spectra were 

recorded at room temperature with PerkinElmer Spectrum 100 FT-IR spectrometer in the spectral range 

of 400–7800 cm−1 and with Bruker 70v FT-IR spectrometer in a wider range of 370–25000 cm−1.  

 

3. Results and discussion 

After the neutron irradiation the samples became completely opaque to the eye and remain relatively 

transparent only in the far infrared range. This is due to an absorption continuum with its gradual 

increase toward the UV spectrum, that is characteristic for radiation damaged diamonds and is caused 

by partial amorphization of diamond [20], and appearance of carbon with sp2-hybridization of bonds. 

The annealing reduces the degree of radiation damage and leads to an increase in transmission of 

diamond in the entire IR range (Fig. 1 and 2). Note that at all stages of annealing, we did not observe in 

the spectra sufficiently intense absorption bands characteristic for centers with nitrogen atoms in their 

structure, in particular, which are usually observed in IR spectra of neutron-irradiated natural diamonds 

type I [20]. This allows us to assert that the spectral features in the spectra in Figs. 1-3 have the intrinsic 

nature. The transformation of the absorption spectra upon annealing occurs nonmonotonically since 

simultaneously with the annealing of defects of the same type, more complex defects can be generated, 

which is characteristic of radiation-modified diamond. 

One of the advantages of diamond is its high transparency in the range from ultraviolet to far infrared. 

The only rather intense (up to 13 cm-1) absorption bands in pure and defect-free diamond are two- and 

three-phonon absorption in the range up to 2650 cm−1 and up to 4000 cm−1, respectively [21]. Irradiation 

with fast neutrons leads to a long-wavelength shift [12] of the intrinsic two-phonon absorption; however, 

the magnitude of this shift for the samples irradiated with F = 1·1018 cm−2 does not exceed 1.5 cm−1 and 

for 3·1018 cm−2 - 3 cm−1. 

The IR spectra of polycrystalline CVD diamonds are characterized by the presence several bands in 

the region of 2800-3000 cm−1, due to stretching vibrations of CHx groups at intercrystalline boundaries. 

The neutron irradiation modifies the intercrystalline boundaries in CVD diamonds, displacing hydrogen 

atoms into the bulk of diamond crystallites to distances of several micrometers at least [14] which leads 

to a change in the IR spectra (Fig. 1 and 2). The effects of fast neutrons irradiation and subsequent 

annealing of CVD diamonds on the IR spectra of CHx-groups are described in detail in [14]. 

One-phonon absorption is not possible in intrinsic diamond due to the symmetry of the crystal lattice 

[22]. Neutron irradiation damage introduces defects which destroy the local symmetry and creates a 
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characteristic one-phonon spectrum in the range 400-1340 cm−1 [10, 12] with maxima at 1005, 1115 and 

1195 cm−1 (Fig. 1 and 2). The spectral shape of the one-phonon absorption band (500–1350 cm−1) for 

diamond irradiated with a fluence F = 3·1018 cm−2 changes insignificantly upon annealing to 800 °C, 

although the amplitude of the band decreases by a factor of three in relation to the spectra measured 

after irradiation (Fig. 1). After annealing at 800 °C, the intensity of the band with a maximum at 1110 

cm−1 significantly decreases (Fig. 1). For the sample irradiated with fluence of F = 1·1018 cm−2, similar 

transformations of the one-phonon absorption band shape occur at lower annealing temperatures (650–

700 °C) (Fig. 2). Such temperatures are characteristic for the activation of vacancy diffusion in diamond. 

 

  
Figure 1. IR absorption spectra of CVD diamond film irradiated by fast neutrons with fluence F = 3·1018 

cm−2 and annealed for 1 hour at different temperatures: 200 (1), 300 (2), 400 (3), 550 (4), 630 (5), 700 

(6), 850 (7), 940 (8), 1000 (9), 1045 (10), 1100 (11), 1175 (12), 1260 (13), 1310 (14), 1390 (15) and 

1540 °С (16). For clarity, the spectra are shifted relative to each other vertically.  

 

To obtain information on radiation defects in diamond from IR spectroscopy data, the most 

informative are the so-called local vibrational modes (LVM) and zero-phonon lines (ZPL), which are 

present in the spectra as absorption bands with rather small width. The LVM are observed at the phonon 

frequency range above the diamond Raman frequency 1332 cm−1 as a result of the vibration of a lighter 

atom than carbon (for example, a hydrogen atom), the bonding being tighter than that of the lattice (for 

example, at an interstitial atom), or a combination of the two. Such high-frequency vibrational modes 

cannot propagate in the crystal and are localized in space and frequency. In neutron irradiated type-IIa 

diamond the strongest LVMs are at 1530 cm−1 and 1571 cm−1 [4] (Fig. 3c). As LVM 1531 cm−1 

absorption peak anneals out after treatment at 350-400 °C, the 1571 cm−1 mode exhibits a correlated 

increase in intensity reaching maximum after annealing at 475 °C and anneals out after treatment at 

1000 °C. In type Ib diamond these LVMs are stable up to 450 and 650 °C, respectively [4]. The defects 

responsible for these LVMs contain only carbon atoms in their composition; however, the exact structure 

of these centers remains controversial. The local vibrational modes at 1571 cm−1 follow the annealing 

behavior expected for the isolated neutral <001>-split self-interstitial (I001) defect [13]. For the 1530 

cm−1 LVM, the 12C:13C isotopic splitting suggests that the defect responsible may have four equivalent 

carbon atoms and given the low thermal stability of this defect, it is tempting to speculate that this could 

be a Td symmetry interstitial [10]. 
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Several tens of other relatively narrow (FWHMs down to 5 cm−1) less intensive LVM with different 

dependences on the annealing temperature are observed in the spectra of diamonds irradiated with fast 

neutrons (Fig. 3, a). The study of the nature of these IR bands is the subject of a separate work. A large 

amount of LVM is characteristic for the optical spectra of high dose neutron irradiated diamonds [11-

13, 24] due to the formation of complexes of various intrinsic defects. 

 

  
Figure 2. Infrared absorption spectra of the diamond film before (1), after irradiation with F = 1·1018 

cm−2 (2) and after 1 hour subsequent annealing runs at (a): 300 (3), 400 (4), 550 (5), 650 (6), 800 °C (7); 

(b): 990 (8), 1100 (9), 1250 (10), 1370 (11), 1480 (12), 1545 (13) and 1590 °C (14). The spectra are 

shifted relative to each other vertically. 

 

Sharp absorption features called ZPLs - electronic transitions between the states of the defect within 

the band gap are observed in absorption and luminescence spectra of diamond predominantly in visible 

range [22]. The most studied ZPLs in the IR range are due to the acceptor impurity of boron [22], as 

well as the so-called amber centers [10, 22-25], which are usually observed in brown type Ia diamonds 

colored via plastic deformation.  

Measurements in a wide spectral range (400-11000 cm−1) made it possible to detect more than ten 

ZPL in the IR spectra of irradiated with fast neutrons CVD diamonds with a low nitrogen impurity 

content (Fig. 1-3). For example, the relatively wide band in the range 2000–8500 cm−1 with local 

maxima at 3110, 4640, and 5665 cm−1 (Fig. 3, b) anneals in starting at 300 °C, attains its maximum at 

700-750 °C, and anneals out between 1100 °C and 1200 °C. These ZPLs may be due to some kind of 

interstitial defects without an unambiguous identification as they are annealed at temperatures where the 

carbon interstitial is known to be mobile. Annealing at 950-1000 °C caused the appearance of the ZPL 

at 4100 cm−1(Fig. 1 and 2). Band with the same spectral shape and position is known to refer to “amber 

centers” which are closely related complex vacancy based defects and usually observed in brown type 

diamonds colored via plastic deformation [10, 13, 24-25]. The less intensive ZPLs at 4500 and 5875 

cm−1 increase synchronously with the 4100 cm−1 band, probably having the same nature. ZPLs at 7415 

cm−1 and 7880 cm−1 are also observed, which have similar temperature dependences – they anneal in at 

800 °C and reach a maximum at ~1300 °C (Fig. 1 - 3). To date, there is no information in the literature 

on the observation of ZPL at 3100, 4640, 5665, 5875, 7415 and 7880 cm−1 in the spectra of diamonds. 
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Figure 3. (a) Transformations of local vibration modes in the IR absorption spectra for fast neutron 

irradiated diamonds after successive 1 h. anneals at 200 (1), 300 (2), 400 (3), 475 (4), 630 (5), 850 (6), 

940 (7), 1045 °С (8) (all for F = 3·1018 cm−2) and 1175 °С (9) (for F = 1·1018 cm−2). A vertical expansion 

of 5× is used to highlight the cluster of LVM after annealing at 1045 and 1175 oC (see inset). (b) IR 

absorption spectra for neutron irradiated sample (F = 3·1018 cm−2) after successive 1 hour anneals at 630 

(1), 700 (2), 850 (3), 940 (4), 1000 (5), 1045 (6) and 1100 °С (7). The spectrum for pristine (unirradiated) 

diamond has been subtracted. (c) Superposition of 9280 and 9320 cm−1 ZPLs in IR spectra of CVD 

diamonds irradiated with fast neutrons with fluence F = 1·1018 cm−2 –  annealing at 800 (1), 880 (2), 

1100 °С (3) and with fluence F = 3·1018 cm−2 –  annealing at 700 (4), 850 (5), 1000 (6) and 1175 °С (7). 

Spectra (1), (2) and (6) multiplied by a factor of two, (3) – by a factor of five and (7) – by a factor of 

ten. The arrows point to the features on the phonon sidebands of 9280 and 9320 cm−1 ZPLs. For clarity, 

all spectra at (a) – (c) are shifted relative to each other vertically. 

 

In contrast to the few published studies on the effect of heat treatments on IR spectra of the neutron-

irradiated diamonds, we chose a small step (minimum ΔT=45-50 °C) in the annealing temperature, 

which made it possible to trace in detail the transformations of the IR absorption spectra and, in some 

cases, to spectrally separate the overlapping bands. In particular, the shift to higher frequencies of the 

most intense band near 9300 cm−1 in the samples under study during annealing is caused not by 

mechanical stress, but by the superposition of two ZPLs - 9280 cm−1, which dominates at low annealing 

temperatures, and a less intense and more thermally stable ZPL at 9320 cm−1 (Fig. 3c). Both of these 

bands were previously observed separately in the spectra of diamonds. ZPL at 9320 cm−1 (1077.9 nm) 

is present in the IR absorption spectra of type 1b and 2a diamonds irradiated with fast neutrons with F 

= 1·1018 cm−2 [11]. ZPL at 1.149 eV (9280 cm−1, 1077.9 nm) was observed in the cathodoluminescence 

(CL) spectra of type IIa and Ib natural diamonds after ion implantation [26]. Measurements of the IR 

absorption spectra with a small step in the annealing temperature made it possible to study the phonon 

sidebands of these ZPLs. The electron-phonon coupling at the 9320 cm−1 center is dominated by 

interaction with 575 cm−1 (71 meV) vibrations (see row under spectra 3 at Fig. 3, c), which coincides 

with the frequency of the TA (L) phonon in diamond. It was noticed that center intensity decreases with 

increase in nitrogen content, however CL center with 9280 cm−1 ZPL does not relate to nitrogen and 

anneals out at temperatures above 1000 °C [23]. The same dependence on the annealing temperature 

has 9280 cm−1 ZPL in the IR absorption spectra (Fig. 3, c). The 9280 cm−1 center predominantly interacts 

with vibrations of energy 41 and 125 meV (340 and 1005 cm−1). A local mode at 37–41 meV is 

characteristic for diamond centers with a vacancy in their structure [13]. The feature in the phonon 

sideband at 1005 cm−1 (Fig. 3c) is related to LA(L) and/or TO(W) phonons in diamond. The both centers 

at ~ 9300 cm−1 are related possibly to a multivacancy complex or they are precursors of “amber centers” 

that appear in the IR spectra with a several characteristic absorption bands near 4100 cm−1 [24-25].  

1400 1500 1600

5

10

15

20

1400 1500
2

3

9
8
7
6

5
4
3
2

A
b

so
rp

ti
o

n
 c

o
ef

fi
ci

en
t,

 c
m

-1

Wavenumber, cm
-1

(a)

1

  

 

9

8

5000 10000

10

20

30

40

50

(b)

1

2

3

4

5
6
7

A
b

so
rp

ti
o

n
 c

o
ef

fi
ci

en
t,

 c
m

-1

Wavenumber, cm
-1

9000 9500 10000 10500

10

20

30

40

50

7

3

2
6
1

5

A
b

so
rp

ti
o

n
 c

o
ef

fi
ci

en
t,

 c
m

-1

Wavenumber, cm
-1

4

(c)



International Conference PhysicA.SPb/2021
Journal of Physics: Conference Series 2103 (2021) 012076

IOP Publishing
doi:10.1088/1742-6596/2103/1/012076

6

4. Conclusion 

The results of IR spectroscopy of fast neutron irradiated CVD diamonds demonstrate once again the 

complexity of the defect structure of a heavily radiation-damaged diamond. Several tens of LVMs and 

ZPLs observed in the IR absorption spectra of SVD diamonds irradiated with fast neutrons (F = 1·1018 

and 3·1018 cm−2) reflect the processes of migration, dissociation, and aggregation into larger complexes 

of intrinsic radiation defects in diamond. The ZPL at 3100, 4640, 5665, 5875, 7415 and 7880 cm−1 

previously does not observe in the optical spectra of diamonds. An analysis of the temperature 

dependences of phonon sidebands of centers with ZPL at 9280 and 9320 cm−1 showed that these ZPLs 

interacts predominantly with vibrations of energy 41, 125 meV and 71 meV, correspondingly.  
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