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A B S T R A C T

Dynamic interaction of acoustic and magnetic systems is of strong current interest, triggered by the promises
of almost lossless new concepts of magnet-based information technology. In such concepts, a significant role is
often given to domain walls (DW). Therefore, here we investigate how launching an acoustic shear wave, we
can control the DW motion. Surprisingly, at sufficiently large amplitudes of the shear displacement, the speed
of the forced DW motion can reach sizeable fraction of the speed of sound. This was shown to happen due to
certain resonance conditions depending on the wave frequency, its angle of incidence, and shear displacement
amplitudes, leading to a total reflection of the wave and maximizing the impact. Most interesting, strong
nonlinearity appears in the interaction of the elastic and magnetic subsystems, expressed by the negative
slope of the resonant reflection peak and the s-shaped dependence of the domain wall velocity on the shear
displacement amplitude, typical for nonlinear systems.
1. Introduction

Waves are everywhere: human beings see, interact and communi-
cate through light and sound waves. Light is instrumental to transport
massive amounts of data. Radiowaves and microwaves enable long
distance communication and GPS systems. The research on waves is
increasingly directed to the possibilities to gain full control over these
waves and use them to manipulate matter. The ultimate question is:
what are the limits to changing material properties with waves that
are tailored in space and time? And then: what are the new concepts
that can arise from these limits?

The most popular type of the waves used to study and manipulate
matter is of cause the electromagnetic radiation. In magnetic materials
in particular, short laser pulses were shown to be able to rapidly change
magnetization on a sub-picosecond time scale [1]; to modify magnetic
anisotropy [2]; to trigger magnetic precession and spin waves [3,4];
and even to reverse the magnetization [5–7]. However, the applications
of ultrafast optical methods are often limited by the simultaneous
generation of a significant number of non-equilibrium charge carriers
and as a consequence, a considerable increase in material temperature.
Because of this, other wave-driven processes are being considered.
Among them, the interaction of acoustic waves with magnetic systems
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becomes increasingly popular because of lower dissipation and much
better scaling-down prospects.

In particular, the so-called straintronics is a novel research direc-
tion in magnetism with promising applications [8], that represent an
outstanding alternative to other wave-based approaches because of
the very low damping of acoustic waves (phonons) as compared to
magnons or plasmons [9,10]. Magnetic straintronics was indicated to
be able to realize memory units with the switching energy of below
1 aJ, which is already very close to the theoretical Landauer limit
of 𝑘𝐵𝑇 ln 2 [11,12]. Therefore, specifics of the interaction between
magnon and phonon subsystems have recently become an area of
strong interest [13–16], from acoustically driven ferromagnetic reso-
nance [17], to magneto-elastic manipulation of magnetic bubbles [18],
and to a complete ultrafast phonon-driven magnetic switching [19].

In general, fast and efficient control of magnetization is central in
information storage and processing technologies based on magnetic
materials, where magnetic domains serve as bits of information. In
contrast, magnetic domain walls (DW) represent an interesting alterna-
tive as a basis for various spintronic devices [20,21]. Being a flexible
magnetic phase boundary, DWs can be used as elements of integrated
spintronics such as logic gates, memory bits and so on. However, what
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severely hampers the application of DW-related concepts in technology,
is that the magnetic field, typically required to control them, is a very
inefficient, bulky, and energy-consuming factor. This is the reason why
other stimuli to control the DW motion are being widely investigated
at present.

In this paper, we theoretically investigate the possibility to drive
magnetic domain wall motion employing a bulk shear wave. Shear
waves are of importance in many applications, such as structural health
monitoring and nondestructive testing [10], manipulation of small
objects [22,23], or in microelectromechanical systems (MEMS) [24].
Via magnetostriction effect, shear waves can be effectively induced in
magnetic media [25], while the inverse effects allow the acoustic waves
to influence the magnetization, also depending on the applied magnetic
field [26].

Originally, the problem of interaction of DW with acoustic waves
in ferromagnetic crystals was in some way inspired by the studies of
similar effects of parametric interaction of electromagnetic radiation
with moving interfaces — mirrors in optics and electrodynamics [27].
In particular, electromagnetic waves reflected from moving magnetic
‘‘mirrors’’ in ferrites [28] could be used to measure the velocity of fast
moving DW [29] and to study its interaction with phonons [30].

In this work we show how an acoustic wave induces the DW motion
when incident at an angle onto the plane of the wall (Fig. 1(a)). First
of all, a propagating shear wave creates, via magneto-elastic interac-
tion, small oscillating effective magnetic fields. Crossing DW, however,
results in an extra contribution to magnetic potential and creates a
periodic pattern of magnetostatic leakage field poles of alternating sign
(see Fig. 1(b)). Because of these poles that couple back into the elastic
system, a reflected wave appears. This reflection, that only occurs at
a finite angle of incidence (otherwise, no poles are created!), creates a
certain pressure on DW, depending on the reflection coefficient. This
pressure, that can in principle lead to the motion of DW, is typically a
small effect only. However, when the frequency of the acoustic wave
approaches that of ferromagnetic resonance, these oscillating poles lead
to a large-amplitude precession of spins in the vicinity of DW and,
surprisingly, to a total reflection of the wave. The resulting pressure
becomes significant, creating an effective mechanism to drive the DW
dynamics.

Most interesting, the resonant coupling of the magnetic and acoustic
subsystems, together with nonlinear properties of magnetoelastic inter-
action, can lead to various unusual effects [32]. For example it has been
shown that such nonlinear effects are important for spin wave propa-
gation, and that they can directly be observed experimentally [32,33].
In our case, the nonlinearity is strongly expressed by the negative slope
of the resonant reflection peak and the 𝑠-shaped dependence of the
domain wall velocity on the amplitude of shear displacement.

The paper is organized as follows: general formulation of the prob-
lem, magnetic energies and the equation of motion are given in Sec-
tion 2. Section 3 discusses in general the evaluation of the pressure
on the wall resulting from the reflection of the incident acoustic wave
from it. Further, Section 4 deals with the wave refraction on DW
and the resulting from it magnetic poles, in the static case. Section 5
adds the DW motion and derives the final equations for the reflection
and transmission coefficients in this case. Finally, Section 6 shows the
results of numerical simulations and treats the appearing nonlinearities.
The paper closes with conclusive discussions in Section 7.

2. Formulation of the problem

The geometry of our model is shown in Fig. 1(a). Acoustic waves are
excited on the (010)-oriented face of YIG crystal, and propagate in the
𝑥𝑦-plane orthogonal with respect to the magnetization of the domains
as well as to the internal magnetic field, that are both directed along
the 𝑧-axis: 𝐌0 , 𝐇𝑖 ∥ 𝐳, thus the wave vector 𝐤⊥𝐇𝑖,𝐌0. The excitation
source by itself is not important here; they can be excited using various
mechanisms, such as optical [34,35], piezoelectric [36], acoustic [37],
2

Fig. 1. (a) The geometry considered in this work: DW is placed in the 𝑥𝑧 plane of YIG
crystal. The acoustic wave is incident on the DW under an angle 𝜃 in the 𝑥𝑦-plane. The
magnetization in the two domains is along the ±𝑧-axis, as well as the polarization 𝑢𝑧
of the incident shear wave. 𝑃𝑣 is the pressure on DW created by the incident wave. (b)
A toy model showing the sinusoidal distribution of the DW-induced magnetic potential
𝛷 (yellow line) as well as the local oscillating magnetic fields ℎ𝑥 , ℎ𝑦 resulting from
it (green arrows). Note that the incident (𝜃) and reflection (𝜃′) angles are not equal,
which is the result of the Doppler effect [31]. 𝑘𝑥 is the 𝑥-component of the wave vector
of the incident wave.

and others [35,36]. Acoustic waves are treated in a harmonic plane
wave approximation as purely shear waves with particle displacements
𝐮 ∥ 𝐳. In this case 𝑢𝑖𝑖 = div𝑢 ≡ 0 and deformation tensor 𝑢𝑖𝑘 has the
following non-zero components:

𝑢𝑥𝑧 = 𝑢𝑧𝑥 = 1
2
𝜕𝑢𝑧
𝜕𝑥

, 𝑢𝑦𝑧 = 𝑢𝑧𝑦 =
1
2
𝜕𝑢𝑧
𝜕𝑦

(1)

The energy density of the crystal is given by

𝑤 = 𝑤𝑀 +𝑤𝐻 +𝑤𝑀𝑈 +𝑤𝑈 , (2)

where 𝑤𝑀 is the magnetic energy density, 𝑤𝐻 is the sum of Zeeman
energy and magnetic dipole–dipole interaction energy, 𝑤𝑀𝑈 is the
density of magnetoelastic interaction, 𝑤𝑈 is the elastic energy density.
The magnetic density 𝑤𝑀 has the following form

𝑤𝑀 = 𝑤𝑎 +𝑤𝑒 (3)

namely, it is the sum of the magnetic anisotropy 𝑤𝑎 and the exchange
interaction:

𝑤𝑒 =
1
2
𝛼𝑖𝑘

𝜕𝐌
𝜕𝑥𝑖

⋅
𝜕𝐌
𝜕𝑥𝑘

. (4)

Here 𝛼𝑖𝑘 is the tensor of the exchange interaction coefficients, diagonal
in cubic ferrites: 𝛼𝑖𝑘 = 𝛼𝛿𝑖𝑘.

The vectors M and H are represented as the sum of the static
(equilibrium) part and the small dynamic term that appear due to the
acoustic wave as

𝐇(𝑡) = 𝐇𝑖 + 𝐡(𝑡), 𝐌(𝑡) = 𝐌0 +𝐦(𝑡) , (5)

where 𝐇𝑖 is the vector of internal static magnetic field of the crystal, 𝐌0
is the vector of static magnetization and 𝐡 ≪ 𝐇𝑖, 𝐦 ≪ 𝐌0. Neglecting
higher order we obtain 𝑤𝑎 ≈ 𝐾1(𝑚∕𝑀0)2 for the anisotropy energy.
We consider the crystal with a positive magnetic anisotropy constant
𝐾 > 0, which means that the easy anisotropy axes are along the main
1
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axes of the cubic unit cell. Due to the assumed dependence of M on
𝑟 = (𝑥, 𝑦, 𝑧), through a dynamic term to a field of the form 𝑀 ∼ 𝑒𝑖(𝑘𝑟),
xpression (5) gives the following estimate 𝑤𝑒 ∼ 𝛼𝑀2𝑘2, where 𝑘
s the wave number. Hence, according to the following definition of
he effective magnetic field: 𝐇eff = −𝜕𝑤∕𝜕𝐌 [38,39], we obtain the
xpressions for estimating the contributions of the magnetic anisotropy
nd exchange interaction in the field 𝐇𝑖 of the crystal as

𝑎 ∼ 2𝐾1
|𝑀|

𝑀2
0

≈ 2
𝐾1
𝑀0

, 𝐻𝑒 ∼ 𝛼𝑀𝑘2 (6)

It follows from Eq. (6) that the static contribution of 𝐻𝑎 only leads
to renormalization of the external magnetic field 𝐻0 to the value 𝐇𝑖 =
𝐇0 + 𝐇𝑎, called the internal magnetic field. Thus, when deriving the
initial equations of magnetoacoustics, there is no need to include the
magnetic anisotropy at intermediate stages. It is more convenient to do
this at the end by resorting to the above renormalization of the static
field.

In addition, comparing the exchange interaction in garnets [38,40]
with the values of the internal magnetic fields 𝐇𝑖 for the regions of
omogeneous magnetization (domains), it is always possible to select
uch a spectral region where 𝐻𝑒 ≪ 𝐻𝑖. For YIG, for example, we have
𝑖 < 103 Oe, and exchange stiffness 𝐷 = 𝛼𝑀0 ∼ 5 ⋅ 10−9 Oe cm2.
herefore, according to Eq. (6), we have 𝐷𝑘2 ≪ 𝐻𝑖 if 𝑘 < 105 cm−1.
o, assuming in what follows that we are in just such a part of the
pectral region where the exchange interaction can be neglected, we
ill take in Eq. (3) 𝑤𝑒 = 0. Also taking into account the anisotropy
y renormalizing 𝐻𝑖, this allows us to take 𝑤𝑀 = 0 in Eq. (2). In this
pproximation, a domain wall can be considered as a structureless and
xtremely thin boundary, which considerably simplifies the treatment
f this problem.

Next, for 𝑤𝐻 we have [39]:

𝐻 = −𝐌 ⋅𝐇 + 1
8𝜋

𝐇2 .

ere, the second term is the energy density of the magnetic dipole
nteraction caused by the demagnetizing fields that appear due to the
imited size of the crystal. In what follows, we assume that the crystal
s infinite (in practice, this corresponds to the sample size 𝐿 ≫ 2𝜋∕𝑘)
nd do not take this second term into account. As for the first term, it
epresents the usual Zeeman energy.

So, taking into account 𝑤𝑀 = 0, 𝑤𝐻 ≈ −𝐌 ⋅ 𝐇, and including the
agnetostatic approximation and renormalization of 𝐻𝑖, the required

nergy densities are given by

𝐻 = −𝐌0 ⋅𝐇𝑖 (7)

𝑤𝑀𝑈 = 4𝑏44𝑀0(𝑚𝑥𝑢𝑧𝑥 + 𝑚𝑦𝑢𝑧𝑦)

= (2𝛽∕𝑀0)(𝑚𝑥𝑢𝑧𝑥 + 𝑚𝑦𝑢𝑧𝑦) (8)

𝑈 = 2𝜆44(𝑢2𝑧𝑥 + 𝑢2𝑧𝑦) =
𝜆44
2

(∇𝑢𝑧)2 =
𝜆44
2

𝑘2𝑢2𝑧 , (9)

where 𝛽 = 2𝑏44𝑀2
0 is the constant of magnetoelastic interaction, 𝜆44 is

the element of the shear modulus tensor, 𝑢𝑥𝑧 = 𝑢𝑧𝑥 = 1
2
𝜕𝑢𝑧
𝜕𝑥 , 𝑢𝑦𝑧 = 𝑢𝑧𝑦 =

1
2
𝜕𝑢𝑧
𝜕𝑦 .
Let the small dynamic terms 𝐡, 𝐦 depend only on the coordinates in

the incidence plane of the wave, i.e. 𝑥𝑦-plane. Taking into account the
smallness of these terms and the orientation of the static fields along the
𝑧-axis, we take 𝑀𝑥,𝑦 = 𝑚𝑥,𝑦, 𝑀𝑧 ≈ 𝑀0, 𝐻𝑥,𝑦 = ℎ𝑥,𝑦, 𝐻𝑧 ≈ 𝐻𝑖. The static
fields 𝐇𝑖, 𝐌0 can be considered homogeneous: 𝐻𝑖,𝑀0 = 𝑐𝑜𝑛𝑠𝑡, due to
the fact that the demagnetizing fields are not taken into account. Such
linear approximation imposes restriction on the amplitude of shear
waves as 𝑢𝑧 < 10−9 cm, which follows from numerical estimates.

To describe our problem, we combine the equation of motion from
elasticity theory with the Landau–Lifshitz equations for magnetic mo-
ments [41,42]:

𝜌
𝜕2𝑢𝑧 = 𝜆44∇2𝑢𝑧 +

𝛽 ( 𝜕𝑚𝑥 +
𝜕𝑚𝑦

)

(10)
3

𝜕𝑡2 𝑀0 𝜕𝑥 𝜕𝑦
𝜕𝑚𝑥
𝜕𝑡

= −𝛾
[

𝑚𝑦𝐻𝑖 + 𝛽
𝜕𝑢𝑧
𝜕𝑦

−𝑀0ℎ𝑦
]

,

𝜕𝑚𝑦

𝜕𝑡
= −𝛾

[

𝑚𝑥𝐻𝑖 + 𝛽
𝜕𝑢𝑧
𝜕𝑥

−𝑀0ℎ𝑥
]

,
(11)

where 𝜌 is the density of the YIG crystal.
Eqs. (10), (11) must be supplemented by Maxwell’s equations, that,

due to the small value of the speed of acoustic waves as compared with
the speed of light, can be treated in the quasi-static approximation [39]:

∇ ⋅ 𝐛 = 0, ∇ × 𝐡 = 0, 𝐛 = 4𝜋𝐦 + 𝐡 , (12)

where 𝐛 is the induction of the dynamic magnetic field. Introducing the
magnetostatic potential 𝜑 such that

𝐡 = −∇𝜑 , (13)

nd using Eq. (12) we obtain
2𝜑 = 4𝜋∇ ⋅𝐦 . (14)

Eqs. (10)–(14) represent the starting point of our treatment of shear
aves in a ferromagnetic crystal.

. Pressure by acoustic wave on domain wall

The pressure exerted by the shear wave on the DW, incident on the
omain wall at an angle 𝜃 with respect to the normal to the DW plane,
an be written as [37]:

𝟎 = 𝑤0[(1 − 𝑇 )𝐢 + 𝑅𝐢′] cos 𝜃 (15)

here 𝑤0 = 𝑤𝑈 +𝑤𝑀𝑈 is the density of the energy carried by the wave
see Eqs. (8), (9)), 𝑇 , 𝑅 are the transmission and reflection coefficients,
espectively, 𝐢 is the unit vector in the direction of the incident wave
n the DW and 𝐢′ is the unit vector in the direction of the reflected
ave from the DW. Taking into account that 𝑅 + 𝑇 = 1, Eq. (15) can

be written in the form

𝑃0 = 2𝑤0𝑅 cos2 𝜃 . (16)

For the numerical calculation of Eqs. (15)–(16), it is necessary to
express the components of the dynamic magnetization in terms of the
known variables. They can be easily found from Eqs. (11) as follows:

𝑚𝑦 =
𝛾𝛽

𝜔2 − 𝜔2
𝑘

[−𝜔𝑘𝑥 − 𝑖𝑘𝑦𝜔0]
{

1 +
𝜔𝑚𝜔0

(𝜔2 − 𝜔2
0)

}

𝑢𝑧 , (17)

𝑚𝑥 =
𝛾𝛽

𝜔2 − 𝜔2
𝑘

[−𝜔𝑘𝑦 − 𝑖𝑘𝑥𝜔0]
{

1 −
𝜔𝑚𝜔0

(𝜔2 − 𝜔2
0)

}

𝑢𝑧 . (18)

Let us now calculate the speed of the DW motion under the action
of a sound wave. For generality, we also add an external magnetic field
𝐻0 that creates and extra pressure on the DW as 𝑃𝐻 = 2𝑀0𝐻0 [43]. In
the case when the DW is not at rest, the pressure on it from the wave
depends on the relative velocity of the wave and DW and is equal to
𝑃𝑣 = 𝑃0(1−𝑉𝐷𝑊 ∕𝑣𝑔𝑟), where 𝑉𝐷𝑊 is the DW velocity, 𝑣𝑔𝑟 > 0 the group
velocity of the acoustic wave. The dissipative function of DW moving
with velocity 𝑉𝐷𝑊 has the form

𝛷𝑑 = −2𝜆
𝛾2

√

𝐾1
𝛼

𝑉 2
𝐷𝑊 ,

where 𝜆 is the damping parameter [42]. Using 𝛷𝑑 , we obtain the
braking force of the DW per unit area as

𝑃𝜆 = −𝜇𝑉𝐷𝑊 , where 𝜇 = −2𝜆
𝛾2

√

𝐾1
𝛼

From the condition of the steady-state motion 𝑃𝑣 + 𝑃𝐻 + 𝑃𝜆 = 0, we
obtain the DW velocity as

𝑉𝐷𝑊 = 𝑣𝑔𝑟
1 − 2𝑀0𝐻0∕𝑃0 . (19)

1 + 𝜇𝑣𝑔𝑟∕𝑃0
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The formula for the steady-state velocity, obtained by taking into
account the displacement by the applied field only, follows from Eq.
(19) at 𝑃0 → 0 and has exactly the same form as in [42]:

𝑉𝐻 =
𝛾2𝑀0𝐻0

𝜆

√

𝛼
𝐾1

Thus, to obtain the DW velocity in the presence of acoustic waves,
t is necessary to calculate the reflection coefficient of the waves from
he domain wall, which in turn depends on the DW velocity.

. Reflection of the wave from domain wall

Having determined the DW velocity in general, we will now con-
ider the reflection of the wave from a static DW (interaction at the
nitial moment of time) as well as from the moving one. The Bloch wall
s a transition region with a thickness 𝛥 ≈

√

𝛼∕𝐾1 [38]. In the adopted
exchangeless approximation, the value of 𝛼 can be taken arbitrarily
small. This serves as the basis for adopting a structureless geometric
model of an infinitely thin Bloch wall corresponding to the limit 𝛼 → 0,
𝛥 → 0.

Taking into account the exchange interaction and, accordingly, the
finite thickness of the domain wall and its structure [44], significantly
complicates the problem even in the simplest case of normal incidence.
However, only in the case of a very broad DW or for very high-
frequency sound, the efficiency of the interaction between the acoustic
wave and DW is expected to noticeably decrease.

The geometry of the problem is shown in Fig. 1. A geometrically
thin structureless Bloch wall has the instantaneous coordinate 𝑦𝐷𝑊 and
he velocity 𝑉𝐷𝑊 . Considering the spontaneous magnetizations 𝐌(𝑗)

0
nd internal magnetic fields 𝐇(𝑗)

𝑖 in the domains, we define them as

𝑀 (𝑗)
0 = (−1)𝑗+1𝑀0, 𝐻 𝑗

𝑖 = (−1)𝑗+1𝐻𝑖,

𝑀0 > 0, 𝐻𝑖 > 0 ,
(20)

here 𝑗 = 1 for 𝑦 > 𝑦𝐷𝑊 , 𝑗 = 2 for 𝑦 < 𝑦𝐷𝑊 .
In addition to the condition 𝑘𝛥 ≪ 1, we also assume a weak

ependence of the DW internal structure on the external stimuli, pro-
ided the system is far from phase transitions [45]. To exclude the
agnetostrictive (Cherenkov) instability of the DW, we will assume

hat |𝑉𝐷𝑊 | < 𝑐𝑡, where 𝑐𝑡 is the shear wave velocity.
Elastic displacements 𝐮(𝑗)𝑧 (𝑗 = 1 for 𝑦 > 0, 𝑗 = 2 for 𝑦 < 0) and

he potentials 𝜑𝑗 of the fields in the corresponding domains will satisfy
qs. (10), (11), where, taking into account Eq. (20), the replacement
0 → (−1)𝑗+1𝑀0, 𝜔0 → (−1)𝑗+1𝜔0, 𝜔𝑚 → (−1)𝑗+1𝜔𝑚 is carried out.
oreover, 𝜔0 = 𝛾𝐻𝑖, and 𝜔𝑚 = 4𝜋𝛾𝑀0. We also replace 𝑢𝑧 by 𝑢(𝑗)𝑧 in

2) and assume ℎ𝑗 = −∇𝜑𝑗 . From Eqs. (10) and (11) we obtain for
armonic waves
∇2𝑢𝑗 + (𝜌𝛺2∕𝜆∗𝛺)𝑢𝑗 = 0 ,

∇2𝜑𝑗 = (−1)𝑗+1
4𝜋𝛾𝛽𝜔0

𝛺2 − 𝜔2
𝑘

∇2𝑢𝑗 ,
(21)

where 𝛺 is the frequency of the incident or refracted wave, 𝜆∗𝛺 =
𝜆44 + 𝛾𝛽2𝜔0∕[𝑀0(𝛺2 − 𝜔2

𝑘)]. Obviously, the right side of the second
equation (21) is sensitive to a change in the direction of spontaneous
magnetization in domains, which ensures the possibility of refractive
interaction of the wave with DW.

Now, in view of the indicated ‘‘magnetic discontinuity’’ at 𝑦 = 𝑦𝐷𝑊 ,
the solution of the second equation (21) is not reduced to the solution
for a single-domain crystal. In addition to the terms proportional to
𝑢(𝑗)𝑧 , the potentials 𝜑𝑗 as solutions of (21) will have additional compo-
nents 𝛷𝑗 that are not directly related to shear waves in the domains.
Therefore, representing 𝜑𝑗 in the form

𝜑𝑗 = (−1)𝑗+1
4𝜋𝛾𝛽𝜔0
2 2

𝑢𝑗 +𝛷𝑗 , (22)
4

𝛺 − 𝜔𝑘
it can be seen on the basis of the second of Eqs. (21) that 𝛷𝑗 is a solution
to the Laplace equation

∇2𝛷𝑗 = 0 . (23)

The formation of magnetostatic fields corresponding to the poten-
tials 𝛷𝑗 can be explained by the fact that magnetic poles will be
induced on the domain wall as a ‘‘magnetic discontinuity’’ under the
action of the incident shear wave. The poles oscillate in time and
are distributed along DW in agreement with the spatial periodicity
of the shear displacement field on the wall. The potentials 𝛷𝑗 will
thus represent the stray fields of the indicated magnetic poles on both
sides of the wall (see Fig. 1(b)). The localization of the sources of the
scattering fields on the wall and the requirement that the solution of
the Laplace equation (23) be bounded in the entire considered space
show that the scattering fields should weaken with distance from the
wall, roughly within 1∕𝑘𝑥.

The first of Eq. (21) admits a solution in the form of plane harmonic
waves with the dispersion

𝑘2 = 𝑘2(𝛺) =
𝜌𝛺2

𝜆∗𝛺
(24)

Following the usual algorithm for solving refraction problems, we
establish the frequency 𝜔 and the wave vector of the incident wave 𝑘 =
𝐧𝑘, where 𝐧 = (sin 𝜃,−cos 𝜃), 𝑘 = 𝑘(𝜔) is the wavenumber determined
from (24), where 𝛺 is replaced by 𝜔. The wave refracted on the moving
DW is characterized by the frequency 𝜔′ and the wave vector 𝑘′ = 𝐧′𝑘′
with the wave direction defined by 𝐧′ = (sin 𝜃′, cos 𝜃′) and the wave
number 𝑘′ = 𝑘(𝜔′), which is obtained by Eq. (21) by replacing 𝛺 with
𝜔′.

The connection between the frequencies 𝜔, 𝜔′ and the angles 𝜃, 𝜃′
is established from the requirement of phase conjugation of wave fields
on DW. From the equality of the projections of the wave vectors of the
incident and refracted waves at 𝑦 = 𝑦𝐷𝑊 we obtain

𝜔
𝑣
sin 𝜃 = 𝜔′

𝑣′
sin 𝜃′ ≡ 𝑘𝑇 , (25)

while the time synchronization of the oscillation phases on the DW is
provided by the relations

𝜔
(

1 +
𝑉𝐷𝑊
𝑣

cos 𝜃
)

= 𝜔′
(

1 −
𝑉𝐷𝑊
𝑣′

𝑐𝑜𝑠𝜃′
)

≡ �̃� (26)

In Eqs. (25) and (26) 𝑣 = 𝜔∕𝑘 and 𝑣′ = 𝜔′∕𝑘′ are the phase velocities
of the incident and refracted waves, respectively. Taking into account
Eq. (24), one can show the equivalence of Eqs. (25) and (26) to

sin 𝜃′ +
𝑉𝐷
𝑣

sin(𝜃 + 𝜃′)

= sin 𝜃
𝑣

𝑐𝑡

[

1 +
𝜒𝜔2

0

𝜔2𝑓 2(𝜃, 𝜃′) − 𝜔2
𝑘

]1∕2 (27)

𝜔′

𝜔
= 1 +

𝑉𝐷
𝑣

sin(𝜃 + 𝜃′)
sin 𝜃′

≡ 𝑓 (𝜃, 𝜃′) (28)

where 𝜒 = 𝛾𝛽2∕(𝜔0𝜆44𝑀𝑜) is the dimensionless constant of magnetoe-
lastic interaction, 𝑐𝑡 is the speed of transverse sound.

Since 𝜃, 𝜔 and, therefore 𝑣 = 𝑣(𝜔), are known, Eq. (27) defines 𝜃′ as
the solution of this transcendental equation. The corresponding value
of 𝜔′ is calculated by Eq. (28), that indicates the presence of a Doppler
shift in the refracted wave. The first of the two solutions to Eq. (27)
𝜃′ = 𝜋 − 𝜃 exists only for large refraction angles 𝜃′ > 𝜋∕2, and does
not depend on 𝑉𝐷𝑊 . Thus, a refracted wave is described by a set of
values 𝜔, 𝑣, 𝑘, that are identical to the corresponding values of the
incident wave. Moreover, it is obvious that under conditions when the
refraction problem makes sense, this wave should be associated with
the propagation region 𝑦 < 𝑦𝐷𝑊 . As a result, the solution 𝜃′ = 𝜋 − 𝜃
of Eq. (27) will correspond to the directly transmitted shear wave.

The second solution of Eq. (27) (for 𝜃′ ≠ 𝜋 − 𝜃) can be obtained
′
numerically. The resulting dependencies 𝜃 (𝜃) are shown in Fig. 3 for a
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Fig. 2. Dependence of 𝜃′ on 𝜃. Black solid curves are for 𝜔 = 1.005 ⋅ 𝜔𝑘, red dashed
curves are for 𝜔 = 1.01 ⋅𝜔0, curves marked by ‘1’ are for 𝑉𝐷𝑊 ∕𝑐𝑡 = 0.05, curves marked
by ‘2’ are for 𝑉𝐷∕𝑐𝑡 = −0.1, curves marked by ‘3’ are for 𝑉𝐷∕𝑐𝑡 = 0.6, curves marked
by ‘4’ are for 𝑉𝐷𝑊 ∕𝑐𝑡 = −0.6.

number of values 𝑉𝐷𝑊 ∕𝑐𝑡 in the vicinity of the frequency 𝜔0 as well as
frequencies 𝜔 > 𝜔𝑘, respectively, by dashed and solid curves. Positive
values of 𝑉𝐷𝑊 ∕𝑐𝑡 > 0 correspond to the case of reflection of a shear
wave from an approaching domain wall (curves 1, 3), while at 𝑉𝐷∕𝑐𝑡 <
0 (curves 2, 4), the incident wave interacts with the receding domain
wall. The difference between the curves corresponding to different
frequencies at 𝜃′ → 𝜋 − 𝜃 (line 𝜃′ = 𝜋 − 𝜃 in Fig. 3 corresponds
to the law of refraction 𝜃′ = 𝜋 − 𝜃 for a directly transmitted wave)
is explained by the significant frequency dispersion of the refracted
wave due to the Doppler approximation shown in Eqs. (27) and (28)
𝜔′ to 𝜔𝑘 in the case of solid curves. In the vicinity of the FMR, the
frequencies of the incident wave, and even more so of the waves
reflected at 𝑉𝐷∕𝑐𝑡 < 0, are in the region where the frequency dispersion
is practically absent, 𝑣(𝜔) = 𝑣(𝜔′) ≈ 𝑐𝑡. Then, as the curve ‘2’ in
Fig. 3 gives 𝜔′ < 𝜔, from Eq. (27) we always have 𝜃′ > 𝜃, which
means the absence of the indicated bend. The change in the refractive
characteristics of the reflected shear wave due to the motion of the
DW is qualitatively similar to the previously known results obtained for
problems with moving boundaries such as a traveling parameter wave
under conditions of a complex aberration effect [46].

Fig. 3 shows typical dependencies of 𝜔′∕𝜔 on 𝜃. The presented be-
havior indicates that the shear wave is reflected from the approaching
DW at a smaller angle 𝜃′ than the angle of incidence 𝜃 (curves 1, 3 in
Fig. 3 lie below the 𝜃 = 𝜃′ line) and, at the same time, show an increase
of frequency due to the Doppler effect: 𝜔′ > 𝜔 (curves 1 in Fig. 3). The
opposite takes place if the wave is reflected by the retreating DW (see
curves 2, 4 in Fig. 3, curve 2 in Fig. 3): 𝜃′ > 𝜃, 𝜔′ < 𝜔.

. Calculation of reflection coefficients

In the case of DW motion under the action of a shear wave,
he domain wall will move away with respect to the incident wave,
.e. 𝑉𝐷𝑊 < 0. We restrict ourselves to the case of reflection. That is, we
estrict the amplitudes of the shear displacement so that the obtained
W velocities are such that the case of large refraction angles (see
ig. 2) cannot be realized. As further calculation shows, this is the case
or the shear displacement amplitudes 𝑢𝑧 < 10−9 cm, at which the linear
5

approximation that we use holds (small dynamic additions 𝐡, 𝐦).
Fig. 3. Dependence of 𝜔′∕𝜔 on 𝜃. Black solid curves are for 𝜔 = 1.005 ⋅𝜔𝑘, red dashed
curves are for 𝜔 = 1.01 ⋅ 𝜔0, curves marked by ‘1’ are for 𝑉𝐷𝑊 ∕𝑐𝑡 = 0.1, curves marked
by ‘2’ are for 𝑉𝐷𝑊 ∕𝑐𝑡 = −0.1.

In the absence of a direct connection, there are, however, boundary
onditions linking the scattering fields of Eq. (23)) with acoustic waves
n the domains. Acoustic boundary conditions are expressed here by
he continuity of 𝑢(𝑗)𝑧 and of the shear stress tensor component 𝐓(𝑗)

𝑦𝑧
orthogonal to the wall:

𝑢(1)𝑧
|

|

|𝑦=𝑦𝐷
= 𝑢(2)𝑧

|

|

|𝑦=𝑦𝐷
, 𝑇 (1)

𝑦𝑧
|

|

|𝑦=𝑦𝐷
= 𝑇 (2)

𝑦𝑧
|

|

|𝑦=𝑦𝐷
. (29)

In addition, it is necessary to add electrodynamic boundary condi-
ions [39] for the continuity of the normal components of the magnetic
nduction vectors 𝑏(𝑗)𝑦 = 4𝜋𝑚(𝑗)

𝑦 + ℎ(𝑗)𝑦 and the tangential components of
he magnetic field strengths ℎ(𝑗)𝑥 on the wall. The latter is equivalent to
he requirement for the continuity of the magnetic potential. Thus, we
lso have
[

4𝜋𝑚(1)
𝑦 −

𝜕𝜑1
𝜕𝑦

]

|

|

|

|

|𝑦=𝑦𝐷

=
[

4𝜋𝑚(2)
𝑦 −

𝜕𝜑2
𝜕𝑦

]

|

|

|

|

|𝑦=𝑦𝐷

,

𝜑1
|

|𝑦=𝑦𝐷
= 𝜑2

|

|𝑦=𝑦𝐷
.

(30)

ased on Eqs. (21), where 𝑀0 → (−1)𝑗+1𝑀0, 𝐻𝑖 → (−1)𝑗+1𝐻𝑖 and also
aking into account Eqs. (13) and (21), it can be shown that in the
ase of harmonic waves the quantities 𝑚(𝑗)𝑦 entering in Eq. (30), and
xpressions for the quantities 𝑇 (𝑗)

𝑦𝑧 can be written as

𝑦𝑧 = 𝑇𝑧𝑦 = 𝜆44
𝜕𝑢𝑧
𝜕𝑦

+ 2𝑏44𝑀𝑜𝑚𝑦

𝑚(𝑗)
𝑦 =

𝛾𝛽
𝛺2 − 𝜔2

𝑘

[

𝑖𝛺
𝜕𝑢(𝑗)𝑧
𝜕𝑥

+ (−1)𝑗+1𝜔0
𝜕𝑢(𝑗)𝑧
𝜕𝑦

]

+
𝜔𝑚

4𝜋(𝛺2 − 𝜔2
0)

[

𝜔0
𝜕𝛷𝑗

𝜕𝑦
+ (−1)𝑗+1𝑖𝛺

𝜕𝛷𝑗

𝜕𝑥

]
(31)

𝑇 (𝑗)
𝑦𝑧 = 𝜆∗𝛺

𝜕𝑢(𝑗)𝑧
𝜕𝑦

+ (−1)𝑗+1𝑖𝛺
𝛾𝛽2

𝑀𝑜(𝛺2 − 𝜔2
𝑘)

𝜕𝑢(𝑗)𝑧
𝜕𝑥

+
𝛾𝛽

4𝜋(𝛺2 − 𝜔2
0)

[

𝑖𝛺
𝜕𝛷𝑗

𝜕𝑥
+ (−1)𝑗+1𝜔0

𝜕𝛷𝑗

𝜕𝑦

]
(32)

The solution of the first of Eqs. (21) and all of the above can be
represented in the form

𝑢(1)𝑧 =

𝑈 exp(𝑖𝑘𝑥𝑥)[exp(−𝑖𝑘𝑦𝑦 − 𝑖𝜔𝑡) + 𝑅 exp(𝑖𝑘′𝑦𝑦 − 𝑖𝜔′𝑡)],

𝑦 > 𝑦𝐷 and
𝑢(2)𝑧 =

(33)
𝑈𝑇 exp(𝑖𝑘𝑥𝑥 − 𝑖𝜔𝑡) exp(−𝑖𝑘𝑦𝑦), 𝑦 < 𝑦𝐷
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In order to satisfy the boundary (at 𝑦 = 𝑦𝐷𝑊 ) conditions (29),
30), the quantities 𝛷𝑗 should be represented as a phase exponent,
estricted by coordinate- and time invariants, i.e. 𝛷𝑗 ∼ exp[𝑖𝑘𝑥𝑥− 𝑖(𝜔+
𝑘𝑉𝐷𝑊 cos 𝜃)𝑡]. Therefore, from Eq. (23) we obtain 𝛷𝑗 ∼ 𝑓𝑗 exp(±𝑘𝑗𝑦),
where 𝑓𝑗 (𝑡) is an arbitrary normalizing function of time, chosen for
reasons of boundary condition for 𝛷𝑗 in the form: 𝑓𝑗 = exp(±𝑦𝐷𝑊 𝑘𝑥),
𝑦𝐷𝑊 = 𝑉𝐷𝑊 𝑡.

As a result, we obtain

𝛷1 = 𝐶 exp[𝑖𝑘𝑥𝑥 − 𝑖(𝜔 + 𝑘𝑉𝐷𝑊 cos 𝜃)𝑡] exp(−𝑘𝑥(𝑦 − 𝑦𝐷𝑊 )),

(𝑦 > 𝑦𝐷) , and
𝛷2 = 𝐷 exp[𝑖𝑘𝑥𝑥 − 𝑖(𝜔 + 𝑘𝑉𝐷𝑊 cos 𝜃)𝑡] exp(𝑘𝑥(𝑦 − 𝑦𝐷𝑊 )),

(𝑦 < 𝑦𝐷) .

(34)

Substituting 𝑢(𝑗)𝑧 from (33) and 𝛷𝑗 from (34) into boundary condi-
tions (29), (30), and taking into account Eqs. (31), (32), (27), and (28),
we obtain a system of algebraic equations for unknowns 𝐶, 𝐷, 𝑅, 𝑇 . The
solution of those gives us:

𝑅 = −
𝑖 𝛾𝛽2

𝜆∗𝜔𝑀0
𝛤+(𝜔′, 𝜔) tan 𝜃

(

1 +
𝜆∗
𝜔′
𝜆∗𝜔

tan 𝜃 cot 𝜃′
)

+ 𝑖 𝛾𝛽2
𝜆∗𝜔𝑀0

𝛤+(𝜔′, 𝜔) tan 𝜃
,

𝑇 =

(

1 +
𝜆∗
𝜔′
𝜆∗𝜔

tan 𝜃 cot 𝜃′
)

+ 𝑖 𝛾𝛽2

𝜆∗𝜔𝑀0
𝛤−(𝜔′, 𝜔) tan 𝜃

(

1 +
𝜆∗
𝜔′
𝜆∗𝜔

tan 𝜃 cot 𝜃′
)

+ 𝑖 𝛾𝛽2
𝜆∗𝜔𝑀0

𝛤+(𝜔′, 𝜔) tan 𝜃

(35)

where

𝛤±(𝛺,𝜔) =
𝛺 − 𝜔𝑚𝐹 (𝛺)
𝛺2 − 𝜔2

𝑘

±
𝜔 − 𝜔𝑚𝐹 (∓𝜔)

𝜔2 − 𝜔2
𝑘

,

𝐹 (𝛺) =
𝛺(𝜔′ − 𝜔) + 𝜔0(𝜔′ + 𝜔) − 2𝜔2

𝑘

2𝜔′𝜔 − (2𝜔0 + 𝜔𝑚)(𝜔′ + 𝜔) + 2𝜔2
𝑘

(36)

Eqs. (35), (36) represent the general solution of the boundary
onditions problem of reflection of a shear wave from a uniformly
oving DW [47]. For 𝑉𝐷 → 0 (𝜔′ → 𝜔, 𝜃′ → 𝜃, 𝜆∗𝜔′ → 𝜆∗𝜔) Eq. (35)

ives the solution for the static case:

= −
𝑖 𝛾𝛽2

𝜆∗𝜔𝑀0
(𝜔2 − 𝜔2

𝑘)
−1[𝜔 − 𝜔0𝜔𝑚∕(𝜔 − 𝜔0)] tan 𝜃

1 + 𝑖 𝛾𝛽2
𝜆∗𝜔𝑀0

(𝜔2 − 𝜔2
𝑘)

−1[𝜔 − 𝜔0𝜔𝑚∕(𝜔 − 𝜔0)] tan 𝜃
(37)

It follows from expressions (35), (37) that at normal incidence 𝜃 = 0
the reflection coefficient is zero due to the absence of magnetic poles
on the domain wall as a ‘‘magnetic discontinuity’’. Such poles can
be formed by the magnetostrictive mechanism only in the case of an
oblique incidence of a shear wave. Therefore, in Ref. [37], a bias field
was required for the DW motion at normal incidence of the wave. This
field turns out to be fundamentally necessary for the dispersion laws of
magnetoelastic waves to the right and left of the DW to differ and for
the DW itself to create an inhomogeneity for the wave. Otherwise, at
𝑅 = 0 there will be no motion of the domain wall under the action of
ultrasound. The more detailed discussion and calculation of amplitudes
𝐶 and 𝐷 is given in Appendix.

6. Numerical modeling

If we look closely at the system of nonlinear equations formed by
Eqs. (19), (27), (28) and (35), we can see that we have three unknowns
𝑉𝐷, 𝑅, 𝜃′, that can be calculated as a function of the amplitude 𝑢𝑧 and
the angle of incidence 𝜃. Let us first define the frequency range that
will be interesting for the calculation. As can be seen from Eq. (37),
in the absence of motion, the reflection coefficient reaches unity for
the FMR frequency 𝜔 = 𝜔0. At this frequency, resonant excitation of
magnetostatic potential fields 𝛷𝑗 (see Eq. (23)) occurs resulting in a
resonant reflection of the wave. The motion of DW affects the resonant
frequency established by the poles of the functions 𝐹 (𝜔), 𝐹 (𝜔′) (36) in
6

Table 1
YIG crystal parameters.

Parameter name Value

Gyromagnetic ratio 𝛾 = 2 ⋅ 107

Shear modulus 𝜆44 = 7.64 ⋅ 1011

Shear wave speed 𝑐𝑡 = 3.8 ⋅ 105 cm/s
Magnetization 𝑀0 = 140 G
Internal field 𝐻𝑖 = 700 Oe
Magnetoelastic interaction constant 𝛽 = 7.4 ⋅ 106 erg/cm3

Ferromagnetic resonance frequency 𝜔0 = 𝛾𝐻𝑖 = 1.4 ⋅ 1010 rad/s−1

(𝜈0 = 2.23 GHz)
Magnetoelastic resonance frequency 𝜔𝑘 ≈ 2.619 ⋅ 1010 rad/s−1

(𝜈𝑘 = 4.17 GHz)
𝛾𝛽2∕𝜆44𝑀0 ≈ 1.023 ⋅ 107 rad/s−1

Magnetostatic frequency 𝜔𝑚 = 4𝜋𝛾𝑀0 ≈ 3.5 ⋅ 1010 rad/s−1

YIG crystal density 𝜌 = 5.2 g/cm3

Fig. 4. Modulus of the reflection coefficient as a function of the amplitude of the shear
displacement for the vicinity of the FMR frequency 𝜔0 = 1.4 ⋅1010 rad/s (𝜈0 = 2.23 GHz).
Here and in the next figure we show frequencies as 𝜔 = 1.0003𝜔0, 1.0015𝜔0, 1.003𝜔0,
1.007𝜔0.

the vicinity of the lower boundary of the Walker frequency spectrum
in accordance with (27), (28) and the equation

𝜔′
𝐹 = 𝜔′ = 𝜔0 + 𝜔𝑚(𝜔 − 𝜔0)[2(𝜔 − 𝜔0) − 𝜔𝑚]−1 (38)

Since the reflection of the shear wave occurs from the DW moving
in the same direction as the wave propagation, we should consider
frequencies somewhat higher than the FMR frequency.

The numerical solution of Eqs. (19), (27), (28), (35) is shown in
Figs. 4 and 5. The material parameters that were used in these calcula-
tions are taken for yttrium iron garnet (YIG) from literature [38,40,41]
and are summarized in Table 1. The choice of the YIG as an ideal
material to be used in our numerical calculations is due to the fact
that it possesses an exceptionally low damping in both magnetic and
elastic systems. Because of this, YIG is widely used in experiments both
in the field of domain wall motion and propagation of magnetoelas-
tic waves [48,49] and as such represents a straightforward basis for
application of our theory.

As can be seen from Fig. 4, for a small detuning of the frequency of
the incident wave from the FMR, shown by solid black line, compara-
tively small values of the amplitude of the acoustic wave 𝑢𝑧 ≈ 10−10 cm
are required for the frequency of the reflected wave to fall on the
resonant frequency determined by formula (38). Moreover, the DW
velocity for this frequency detuning is approximately 0.001 of the speed
of shear waves in YIG. The shape of the resonant reflection peak can
be described as ‘‘classical’’, i.e. to the left of the maximum there is a
positive slope of the curve, and to the right of it is a negative slope.

It can be seen from Fig. 4 that the larger the detuning from the

FMR frequency, the larger the values of the shear wave amplitude are
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Fig. 5. Dependence of the ratio of DW velocity to the speed of sound on the shear
displacement amplitude (cm) for the vicinity of the FMR frequency 𝜔0 = 1.4 ⋅1010 rad/s
(𝜈0 = 2.23 GHz).

Fig. 6. Time dependence of the DW displacement, calculated for 𝜏 = 10−6 s and
𝑧0 = 10−9 cm.

equired to achieve resonance, at which the modulus of the reflection
oefficient reaches unity. In the resonance region, the DW velocity
eaches velocities of the order of several percent of the shear wave
elocity in YIG. In this case, a slope of the peak appears in the form of a
esonance curve in the direction of a decrease in the amplitude of shear
aves. This bistable form of the resonance curve is typical for nonlinear
scillatory systems (see [32]). Magnetoelastic bistability observed in
any magnetic systems (e.g. hematite [33]) at a high power level was

nvestigated both theoretically and experimentally. The bistability is
nduced by the strong coupling between the acoustic and magnetic
ubsystems. In our case, the manifestation of nonlinearity only occurs
or sufficiently large amplitudes 𝑢𝑧 > 2 ⋅ 10−10 cm.

In experiments, it is customary to measure the DW displacement as
function of time, since the control signal has, as a rule, the shape

f a pulse. Fig. 6 shows the magnitude of the displacement of the DW
s a function of time. We set the shape of the time dependence of the
isplacement amplitude in the simplest form

𝑧 = 𝑢𝑧0(1 − exp(−𝑡∕𝜏)) exp(−𝑡∕𝜏) ⋅ exp[−𝑖𝜔𝑡], (39)

here 𝜏 sets the ‘‘duration’’ of the control signal.
It can be seen that for a pulse duration 𝜏 = 10−6 s, the DW moves for

everal micrometers and thus shows average velocity of several meters
er second, which is quite enough to observe it experimentally.

In fact, some experiments in a similar direction have been car-
ied out, see for example [50], where short laser pulses were used.
7

(

owever, for a reliable and quantitative confirmation of our the-
ry, first, one needs shear acoustic waves. Laser-induced excitation of
hese in low-symmetry crystals and their influence on magnetization
as been recently demonstrated in [51,52]. The microsecond time-
cale pulses that lead to sizeable effects, can be obtained by using a
icrosecond-long bunch of single pulses in succession, e.g. from 80–
00 MHz Ti:sapphire laser, and having in mind long lifetime of the
lastic excitations. However, such excitation produces very broadband
ave packets. Therefore, alternatively, one could use longer pulses
f acoustic waves at specific frequency resonantly generated by inter-
igital transducers [53,54]. Particularly using this last approach, the
ffects of propagating shear acoustic waves on DW should be directly
bservable, including its characteristic dependence of the frequency of
lastic waves and the appearing nonlinear effects.

. Conclusion

To summarize, here we have theoretically shown the possibility
f triggering the motion of a magnetic domain wall by means of an
coustic shear wave incident at an angle onto the plane of DW. In this
ase, the motion of the DW can be induced without the need of an extra
ias magnetic field. It is shown that at sufficiently large amplitudes
f the shear displacement, the speed of the forced motion can reach
everal percent of the speed of sound. This is fully sufficient to be able
o observe this displacement in the experiment. It was found that at cer-
ain angles of incidence and shear displacement amplitudes, resonant
eflection of the acoustic wave occurs and nonlinearity may appear due
o the interaction of the elastic and magnetic subsystems. Nonlinearity
s expressed by a negative slope of the resonance reflection peak and
n s-shaped dependence in the resonance region of the domain wall
elocity on the shear displacement amplitude, which is typical for
onlinear systems. The described approach can in principle be applied
o the description of both weak ferromagnets and antiferromagnets.
or this, however, a system of coupled Landau–Lifshitz equations need
o be solved, which will be a subject of a separate detailed study.

ithin the framework of the described model, we do not consider the
nteraction of a moving domain wall with an acoustic wave (see for
ore details [55,56]). The established behavior of the induced DW
otion can be used to implement the elements of integral spintronics

logic circuits, memory elements, etc.), as well as to increase the
fficiency of information technologies.
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Fig. 7. The dependence of the reflection coefficient (black curve), the amplitudes C
(blue curve) and D (red curve) as a function of the amplitude of the shear displacement,
where 𝜔 = 1.0003 ⋅ 𝜔0.

Appendix

Substituting 𝑢(𝑗)𝑧 from (33) and 𝛷𝑗 from (34) into the boundary
conditions (29), (30), and taking into account expressions (27), (28),
(31), and (32), we obtain a system of algebraic equations for unknown
variables 𝐶,𝐷,𝑅, 𝑇 :

1 + 𝑅 = 𝑇 , (40)

𝜆∗𝜔𝑈 ⋅ (−𝑖𝑘𝑦) + 𝜆∗𝜔𝑅 ⋅ 𝑈 ⋅ 𝑖𝑘′𝑦 − 𝑘𝑥(
𝜔𝑈𝛾 ⋅ 𝛽2

𝑀0(𝜔2 − 𝜔2
𝑘)

+
𝜔′𝛾 ⋅ 𝛽2𝑅

𝑀0(𝜔′2 − 𝜔2
𝑘)
)

−
𝑘𝑥 ⋅ 𝛾 ⋅ 𝛽
(𝜔 − 𝜔0)

𝐶 −
𝑘𝑥 ⋅ 𝛾 ⋅ 𝛽
(𝜔′ − 𝜔0)

𝐶 = 𝜆∗𝜔 ⋅ 𝑈 ⋅ 𝑇 (−𝑖𝑘𝑦)

+𝑘𝑥𝜔 ⋅ 𝑈 ⋅ 𝑇
𝛾𝛽2

𝑀0(𝜔2 − 𝜔2
𝑘)

−
𝑘𝑥 ⋅ 𝛾 ⋅ 𝛽
𝜔 − 𝜔0

𝐷,

(41)

−
4𝜋𝛾𝛽𝜔𝑘𝑥
𝜔2 − 𝜔2

𝑘

𝑈 −
4𝜋𝛾𝛽𝜔′𝑘𝑥
𝜔′2 − 𝜔2

𝑘

𝑈𝑅 −
𝜔𝑚𝑘𝑥

(𝜔 − 𝜔0)
𝐶 −

𝜔𝑚𝑘𝑥
𝜔′ − 𝜔0

𝐶 + 2𝐶𝑘𝑥

= −
4𝜋𝛾𝛽𝜔𝑘𝑥
𝜔2 − 𝜔2

𝑘

𝑈𝑇 +
𝜔𝑚𝑘𝑥

(𝜔 − 𝜔0)
𝐷 −𝐷𝑘𝑥,

(42)

4𝜋𝛾𝛽𝜔0

𝜔2 − 𝜔2
𝑘

𝑈 +
4𝜋𝛾𝛽𝜔0

𝜔′2 − 𝜔2
𝑘

𝑈𝑅 + 2𝐶 = −
4𝜋𝛾𝛽𝜔0

𝜔2 − 𝜔2
𝑘

𝑈𝑇 +𝐷, (43)

where 𝑈 is the amplitude of 𝑢𝑧. The numerical solution of the described
system (40)–(43) for C and D is presented in Fig. 7.

The amplitude D of the magnetic potential 𝛷𝑗 from the other side
of the DW (namely, 𝑗 = 2 for 𝑦 < 𝑦𝐷𝑊 , see explanation after Eq. (20))
is minimal. The minimum of the amplitude C respects to the resonant
transmission of the magnetoelastic wave through the DW. In addition,
we should note that the slope of the resonant curves C and D in the
nonlinear region (the region of large 𝑢𝑧, Fig. 4) is similar to the slope
of the magnetoelastic wave reflection coefficient (Fig. 4).
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