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Specific features of the conductivity and spin susceptibility tensors of a two-dimensional electron
gas with Rashba and Dresselhaus spin-orbit interactions
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The two-dimensional electron gas with spin-orbit interactions (SOIs) of Rashba and Dresselhaus types is
known to form an anisotropic system with a Van Hove singularity in the density of states. Moreover, the
“amplitude” and the energy position of this singularity depend on the ratio of the constants of Rashba α and
Dresselhaus β SOIs, γ = β/α. Here the dependencies of the conductivity and spin susceptibility tensors on the
position of the Fermi level are calculated for a wide range of γ . It is shown that if only the lower spin subband
is filled the diagonal elements of the conductivity tensor have dips that appear when the Fermi level passes the
singularity point both for γ < 1 and γ > 1. The amplitude of these features and their energy position depend on
γ and, in particular, for the state of persistent spin helix γ = 1 they disappear. When only the lower spin subband
is filled, the off-diagonal elements of the conductivity tensor are nonzero, that is, there is a Hall voltage due to
the anisotropy of the Fermi surface and the scattering. In the region of filling of two spin subbands the ratio
of diagonal and nondiagonal components of the spin susceptibility tensor is equal to γ and in the conductivity
tensor, the off-diagonal terms vanish.

DOI: 10.1103/PhysRevB.104.085413

I. INTRODUCTION

Two-dimensional electron gas (2DEG) with spin-orbit in-
teraction (SOI) has been the object of intensive research, both
experimental [1–8] and theoretical [9–19], for many years.
Although the energy spectrum of a 2DEG with a SOI has
been well studied [19], recently it was shown [20] that the
joint SOIs of Rashba and Dresselhaus lead to the appearance
of a saddle point in the spectrum and to the logarithmic Van
Hove singularity (VHS) in the density of states [21]. The
energy position of the singularity depends on the ratio of
the SOI constants γ . The energy spectrum in this setting
was studied in more detail in Ref. [22]. It is easy to verify
that with the standard dispersion law near the saddle point
E ≈ Es + cxk2

x − cyk2
y , the density of states has the form

Ns(E ) ≈ Nso(γ ) − 1√
cxcy

ln |E − Es|. (1)

Here Nso is a smooth part of density of states. For simplicity,
we use dimensionless units which are explained below in
the framework of the considered model. An important point
is a factor in logarithmic VHS, which is determined by the
curvatures of the saddle point. The singularity of the density of
states manifests in transport phenomena when the following
inequality is fulfilled:

Nso � 1√
cxcy

. (2)

Otherwise the singularity becomes undetectable both in the
density of states and in transport phenomena.
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In recent works [23,24], the conductivity and spin sus-
ceptibility in the Aronov-Lyande-Geller-Edelstein (ALGE)
effect [25,26] as a function of the position of the Fermi level
have been studied in detail for the 2DEG system with the
Rashba SOI. It was shown that in the case of low electron
concentrations, when only one spin subband is filled, these
dependencies have an unusual form. The conductivity is pro-
portional to EF /Eso + (EF /Eso)2, and the spin susceptibility
is proportional to EF /Eso, where EF is the Fermi energy and
Eso = mα2/(2h̄2) is the characteristic energy of the Rashba
SOI (m is the effective electron mass). These dependencies
calculated at low temperatures with allowance for the second
spin subband for scattering by a short-range impurity potential
are shown Fig. 1. The conductivity tensor Gi j was calcu-
lated using both the kinetic Boltzmann equation and quantum
analysis based on the Kubo formula. The main result is an
unconventional dc conductivity, when only the lower spin
subband is filled and the Drude conductivity when the second
spin subband is filled [23]. The ALGE effect was considered
using the semiclassical Boltzmann transport theory [24].

In structures with Rashba SOI a volume symmetry is usu-
ally broken, that is, there is also the Dresselhaus SOI [1–5].
Hence a saddle point and a Van Hove singularity appear in the
energy spectrum and the density of states, respectively [20].
This leads to a significant change in their transport properties.
This work is devoted to study the dependencies of the con-
ductivity and spin susceptibility tensors of the ALGE effect
on the position of the Fermi level in a 2DEG with Rashba and
Dresselhaus SOIs for the case of scattering by impurities with
a short-range potential at low temperatures. The calculations
are based on the method developed in Ref. [27]. It was shown
that the kinetic Boltzmann equation in this formulation is the
Fredholm equation with a degenerate kernel which can be
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FIG. 1. Dependencies of the conductivity Gi j and spin suscepti-
bility χi j tensor components on the position of the Fermi level for
2DEG with Rashba SOI. The energy here and below is normalized
to Eso, and the normalization of conductivity and susceptibility are
given below (see Figs. 4 and 5). Gxy = Gyx = 0 and χxx = χyy = 0.

easily reduced to a linear equation and solved exactly. As a
test of the efficiency of the developed method, we reproduced
the results of the papers [23,24] for the conductivity and spin
susceptibility of 2DEG with the Rashba SOI (see Fig. 1). In
this work, we calculate the conductivity tensor and the spin
susceptibility of the ALGE effect as a function of the position
of the Fermi level for 2DEG with Rashba and Dresselhaus
SOIs for a wide range of γ .

We list the main results obtained in the work. In the litera-
ture, there were no convincing calculations of the conductivity
and spin susceptibility tensors for 2DEG with the Rashba and
Dresselhaus spin-orbit interaction, especially for a low 2DEG
concentration, when only the lower spin subband is filled. The
method developed in a paper [27], allowed us to calculate
these tensors with the required accuracy. As a result, we
managed to find out that the Hall voltage can exist without a
magnetic field. Note that recently an anomalous Hall voltage,
that is, a voltage without a magnetic field, was observed in a
twisted bilayer graphene [28]. In addition, it is surprising that
the ratio of the SOI constants can be determined from the ratio
of spin susceptibilities. In the state of a persistent spin helix
there is no Van Hove singularity.

II. HAMILTONIAN AND ELECTRONIC STATES

We consider a two-dimensional electron gas without inver-
sion symmetry, allowing SOI that is linear in the electron wave
vector. The most general form of linear coupling includes both
Rashba and Dresselhaus contributions and has the following
form [29,30]:

H = p2

2m
σ0 + α

h̄
(pxσy − pyσx ) + β

h̄
(pxσx − pyσy). (3)

Here p = (px, py) is the electron momentum, px and py

being its components along the [100] and [010] directions of
a zinc-blende crystal, respectively, and σx and σy are Pauli
matrices. There are two types of eigenstates, which we will
denote by the index λ = ±. Their energies and wave functions

are of the form

ελ(k) = k2 + 2λg(k, γ ) (4)

and

ψkλ(r) = 1√
2S∗

(
1

iλeiϕ

)
ei(kxx+kyy). (5)

Here and below, we used dimensionless quantities: ε is energy
normalized to the characteristic energy of the Rashba SOI
Eso; k is a wave vector normalized to kso = αm/h̄2; g(k, γ ) =√

(kx − γ ky)2 + (ky − γ kx )2, S∗ is a sample area.
The phase ϕ(k) is determined by the following relations:

sin ϕ = (ky − γ kx )

g(k, γ )
, (6)

cos ϕ = (kx − γ ky)

g(k, γ )
. (7)

A change in the SOI constants ratio leads to a great vari-
ety of Fermi contours and their significant rearrangement.
A typical energy landscape corresponding to the dispersion
law (4) is shown in Fig. 2 for two values of γ . Accord-
ing to expression (4), the energy landscape in the k space
is centrosymmetric ελ(k) = ελ(−k). Fermi contours have
mirror symmetry along two axes kx = ±ky. In the lower
spin subband, there are two minima with the same energy
ε−,m = −(1 + γ )2, spaced apart in k space and having co-
ordinates ±[(1 + γ )/

√
2, (1 + γ )/

√
2], as well as two saddle

points with energy ε−,s = −(1 − γ )2 and coordinates [±(1 −
γ )/

√
2,∓(1 − γ )/

√
2]. Reducing the potential to canonical

form near saddle points gives us the following expression for
the dispersion law:

εs1,2 = −(1 − γ )2 + 2q2
x − 4γ (qy ± 1)2

(1 − γ )2
, (8)

where qx = (kx + ky)/
√

2 and qy = (kx − ky)/
√

2. This
means that the density of states near the saddle points is given
by relation (1), with the smooth part and the factor in the
logarithmic term depending on γ :

Ns(E ) ≈ Nso(γ ) − |1 − γ |√
2γ

ln |ε − εs|. (9)

This result demonstrates that there are two singularities in
the density of states with coinciding energies and shows the
change in the amplitude of the singularity as a function of
the SOI constants ratio γ . In particular, from (9) one can see
that there is no Van Hove singularity in the state of persistent
spin helix (γ = 1). These results are confirmed by numerical
calculations of the density of states Ns(ε) (see Fig. 3). To cal-
culate the density of states numerically, the following relation
is used:

Ns(ε) = 1

π2
lim

�ε→0

∑
λ

Sλ(ε + �ε) − Sλ(ε)

�ε
. (10)

Here Sλ(ε) is the area of the region in the k space, satisfying
the inequality ελ(k) � ε.

The Dirac point (point of tangency of two spin subbands)
for γ �= 1 is located at energy εD = 0 at a point with coordi-
nates (kx = 0, ky = 0) in k space. For γ = 1, the Dirac point
is transformed into a line kx = ky (see Fig. 2).
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FIG. 2. A section of the energy landscape defined by Eq. (4) in
the k space. The blue and yellow surfaces correspond to λ = + and
λ = −, respectively, and their intersection is a Dirac point. Ratio of
SOI constants γ = 0.1 and γ = 1.

Numerical calculations of the one-particle density of states
also show that there is a density jump corresponding to the
minimum of the dispersion law and a VHS corresponding to
the saddle point, and the amplitude of this singularity is given
by the relation |1 − γ |/√2γ . This, in particular, indicates that
the VHS disappears at γ = 1 and reappears at γ > 1 with an
amplitude increasing with the SOI constants ratio γ . Despite
the wide variety of Fermi contours and their variation depend-
ing on the ratio of the SOI constants [20,22,27], the filling
of the second spin subband makes the single-particle density
of states independent of energy and equal to No = m/(π h̄2).

FIG. 3. Typical energy dependencies of the density of states for a
wide range of SOI constant ratios γ (a),(b). NS is normalized to No =
m/(π h̄2). The dependence of Nso from formula (1) on γ is shown
in (c).

This is clearly seen from the calculations shown in Fig. 3 and
from earlier calculations [20]. Thus, although the anisotropy
of the Fermi contours is preserved, their multicomponent
nature leads to this result. In this sense, we can talk about
the conditional disappearance of an anisotropy in the system
when filling above the Dirac point.

When calculating the density of states, we use the exact
dispersion law, so the value of Nso in formula (1), of course,
has a conditional meaning. In particular, its value may depend
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on the direction of the energy change, as in our case. To the
right of the VHS value Nso is approximately equal to 1, and to
the left Nso is determined by the graph in Fig. 3(c) and equals
the jump Ns(ε) at the beginning of the spectrum.

III. BOLTZMANN KINETIC EQUATION AND ITS
SOLUTION

Electron transport is studied using the semiclassical ap-
proach. For a small uniform electric field E , the distribution
function f (k) is determined by the Boltzmann equation.
The anisotropy of the dispersion law leads to the scattering
anisotropy; therefore, the collision integral cannot be simpli-
fied by introducing the relaxation time. This problem has been
discussed in detail in the literature [9,12–14].

We consider scattering by impurities with a short-range
potential V (r) = V0δ(r). The impurity concentration N is as-
sumed to be sufficiently low so that the scattering by different
impurities is not correlated. Using the wave functions (5) and
calculating the scattering probability in the Born approxima-
tion, we obtain the following equation for the nonequilibrium
part of the distribution function � fλ(k):

∑
λ′

∫
d2k′

π

(
1 + λλ′ cos[ϕ(k) − ϕ(k′)]

)
δ[ελ(k) − ελ′ (k′)]

× [� fλ(k) − � fλ′ (k′)] = eEvλ(k)

R

∂ f0

∂ε
. (11)

Here dimensionless quantities are used. Electric field E is
normalized to Esokso/e, group velocity vλ = ∇kελ(k), f0 is the
equilibrium distribution function, and R is the only numerical
parameter that appears in this system: R = V 2

0 N/α2.
We rewrite the nonequilibrium function in the following

form:

� fλ(k) = e|E |
R

Fλ(k)
∂ f0

∂ε
. (12)

The function Fλ(k) is determined by an equation that in the
case of zero temperature can be easily obtained by integrating
modulo k in Eq. (11). In this case, integration is performed
over the Fermi contours. Since in some cases the contours
have complex shapes, k(φ) is a multivalued function of φ,
so we have to divide the contours into parts for which k(φ)
becomes a single-valued function. Each part can be marked
with an additional index r, which can vary from 1 to 4 de-
pending on the shape of the Fermi contour. With this in mind,
we will add this index to the notations of the functions and
integrals defined on the Fermi contours. The Fλ,r (k) function
defined on the Fermi contour part k = kλ,r (φ) is defined by
the following equation:

∑
λ′,r′

∫
dφ′

π
(1 + λλ′ cos[ϕλ,r (φ) − ϕλ′,r′ (φ′)])Mλ′,r′ (φ′)

× [Fλ,r (φ, θ ) − Fλ′,r′ (φ′, θ )] = Gλ,r (φ, θ ), (13)

where

Mλ,r (φ) =
[

k

/
∂ελ(k)

∂k

]
k=kλ,r (φ)

, (14)

ϕλ,r (φ) = ϕ(k)
∣∣∣
k=kλ,r (φ)

, (15)

Gλ,r (φ, θ ) = vλ,r (k) cos[ξ (k) − θ ]

R

∣∣∣∣∣
k=kλ,r (φ)

. (16)

Here ξ (k) is the angle between vλ,r (φ) and the x axis, and θ

is the angle between E and the x axis. The quantities Mλ,r (φ),
ϕλ,r (φ), and Gλ,r (φ, θ ) are determined on the contours corre-
sponding to Fermi energy. They can be easily calculated using
Eqs. (4) and (5).

Equation (13) can be solved analytically, since it is a linear
Fredholm equation with a degenerate kernel. Representing its
kernel as the sum of the products of the functions φ and φ′
(these functions are actually just sines and cosines), we come
to the following form of the functions:

Fλ,r (φ, θ ) = Gλ,r (φ, θ ) + A(θ ) + λB(θ ) cos[ϕλ,r (φ)] + λC(θ ) sin[ϕλ,r (φ)]

A + λB cos[ϕλ,r (φ)] + λC sin[ϕλ,r (φ)]
, (17)

where the coefficients A, B, C, A, B, and C are directly de-
termined by (13):

A =
∑
λ,r

∫
dφ

π
Mλ,r (φ), (18)

B =
∑
λ,r

λ

∫
dφ

π
Mλ,r (φ) cos[ϕλ,r (φ)], (19)

C =
∑
λ,r

λ

∫
dφ

π
Mλ,r (φ) sin[ϕλ,r (φ)] ; (20)

A(θ ) =
∑
λ,r

∫
dφ

π
Mλ,r (φ)Fλ,r (φ, θ ), (21)

B(θ ) =
∑
λ,r

λ

∫
dφ

π
Mλ,r (φ)Fλ,r (φ, θ ) cos[ϕλ,r (φ)], (22)

C(θ ) =
∑
λ,r

λ

∫
dφ

π
Mλ,r (φ)Fλ,r (φ, θ ) sin[ϕλ,r (φ)]. (23)

The coefficients A, B, and C can be directly calculated,
since the dispersion law of electrons is known (4). However,
the coefficients A, B, and C are determined by integrals con-
taining unknown functions Fλ,r (φ, θ ). To obtain a system of
equations that will allow us to find the coefficients A, B, and
C, we substitute the expression for them into relation (17). As
a result, we get a system of linear algebraic equations for these
coefficients. To find the conductivity and spin susceptibility
tensors, it is sufficient to carry out the calculation with the
orientation of the electric field in the x and y directions (θ = 0
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FIG. 4. Dependencies of the components of the conductivity ten-
sor on the Fermi energy for different SOI ratios.

and θ = π/2). It should be noted that the determinants of
the resulting systems are equal to zero, as well as additional
determinants. This indicates the compatibility of the obtained
systems and the lack of equations for determining the required
coefficients (A, B, and C). Therefore, in each of the obtained
systems of equations, one equation is replaced by the elec-
troneutrality equation (this procedure is described in more
detail in Ref. [27]).

We make sure that for the orientations of the electric field
θ = 0 and θ = π/2 the determinant of the obtained systems is
not equal to zero and solve them. We find the corresponding
coefficients A, B, and C, which we substitute into Eq. (17),
thereby we determine the nonequilibrium electron distribution
function for these orientations of the electric field.

FIG. 5. Components of the Edelstein conductivity tensor as a
function of the Fermi energy.

IV. CONDUCTIVITY AND SPIN SUSCEPTIBILITY
TENSORS

Using the expression for the distribution function (17), we
find the dimensionless components of the conductivity tensor
normalized to e2/(hR):

Gxx =
∑
λ,r

∫
dφ

2π
Mλ,r (φ)vλ,r (φ) cos[ξλ,r (φ)]Fλ,r (φ, 0),

(24)

Gyx =
∑
λ,r

∫
dφ

2π
Mλ,r (φ)vλ,r (φ) sin[ξλ,r (φ)]Fλ,r (φ, 0).

(25)

The components of the conductivity tensor Gxy and Gyy differ
from Gxx and Gyx, respectively, by replacing Fλ,r (φ, 0) with
Fλ,r (φ, π/2). In Fig. 4 we present the numerical results for
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the dependencies of the conductivity tensor components on
the Fermi energy for different SOI ratios.

The most interesting is the sharp decrease in the conduc-
tivity near the VHS for the SOI ratios in the range defined
by inequality (2), as well as the appearance of off-diagonal
terms of the conductivity tensor. This corresponds to the ap-
pearance of a Hall voltage without a magnetic field due to the
anisotropy of the Fermi surface and scattering events. Note
also that the anisotropy above the Dirac point completely dis-
appears, as well as near the state of constant spin orientation
γ ≈ 1. Note also that the sensitivity of the off-diagonal terms
of the conductivity tensor to the Van Hove singularity is higher
than that of the diagonal ones (see Fig. 4 for γ = 0.95).

Since the off-diagonal terms of the conductivity tensor are
much smaller than the diagonal terms, the question arises of
the reliability of the results obtained. In fact, it is determined
by the accuracy of numerical calculations. It is easily esti-
mated by recalculating A, B, and C included in the expression
for the nonequilibrium distribution function, as well as calcu-
lating the density of states above the Dirac point. As a result,
we find that the accuracy of numerical calculations exceeds
10−5. This allows us to consider the obtained dependencies
Gxy(εF ) = Gyx(εF ) as reliable.

The spin density induced by the electric field is determined
by the expression

Si = h̄

2

∑
λ

∫
d2k

4π2
〈ψ†

λ,k|σi|ψλ,k〉� fλ(k), (26)

where Si are the spin density components, i = (x, y, z), and σi

are Pauli matrices. We define the spin susceptibility (it is often
called the Edelstein conductivity) as follows:

Si =
∑

j

χi jE j . (27)

Using Eqs. (5), (12), and (17), we find for the spin suscep-
tibility

χyx =
∑
λ,r

λ

∫
dφ

2π
Mλ,r (φ) cos[ξλ,r (φ)]Fλ,r (φ, 0), (28)

χxx = −
∑
λ,r

λ

∫
dφ

2π
Mλ,r (φ) sin[ξλ,r (φ)]Fλ,r (φ, 0). (29)

Here the Edelstein conductivity is normalized to
eh̄/(2παR). The components of the spin susceptibility
tensor χyy and χxy differ from χyx and χxx, respectively, by
replacing Fλ,r (φ, 0) with Fλ,r (φ, π/2). There is no spin
polarization along the z axis, Sz = 0.

The characteristic features of Edelstein’s conductivity as a
function of the Fermi energy largely coincide with the features
of the conductivity. When the inequality (2) is satisfied, all
components of the tensor χi j have a sharp dip when the Fermi
level passes the saddle point. Typical dependencies of this
conductivity are shown in Fig. 5. For Fermi energies above
the Dirac point, the spin susceptibilities saturate, and the

following relations hold:

χxy = − χyx = 0.5, (30)

χyy/χxy =χxx/χyx = γ . (31)

V. CONCLUSIONS

The method developed for studying an anisotropic electron
transport in a 2DEG in the framework of the Boltzmann
kinetic equation [27] is used to calculate the conductivity
tensors of a 2DEG with the SOI of Rashba and Dresselhaus
types in a wide range of their ratios. This method enables us to
accurately find the nonequilibrium distribution function in the
case of scattering by impurities with a short-range potential
at zero temperature, taking into account the transitions both
in one and two different Fermi contours. An important factor
determining the conductivity and spin susceptibility tensors
is the presence of a Van Hove singularity in the density of
states, which arises due to the combined effect of two SOIs.
The energy position of the density of states singularities is
controlled by the SOI constants ratio. The ratio of the spin
susceptibilities, measured at the Fermi energy above the Dirac
point, gives the SOIs ratio. The absence of VHS and uncon-
ventional dc conductivity indicates a state of persistent spin
helix. Note that the depth of the dips near the VHS depends
on the “amplitude” of the singularities. Therefore, only if
inequality (2) is satisfied, the values of Gxx and χxy tend to
zero when Fermi level is near the VHS.

When the second spin subband is filled, the density be-
comes constant. In addition, interband transitions appear; all
this leads to the diagonalization of the conductivity tensor and
the disappearance of off-diagonal terms. Earlier this result was
obtained in [12]. When the Fermi level crosses the saddle
point, the Fermi surface changes significantly [20,22,27], so
it is not surprising that this can lead to a change in sign Gxy.

Changing the sign of the SOIs ratio γ < 0 changes the
position of saddle points and minima in the k space and is
equivalent to the rotation of the axes in the k space by π/2.
In turn, this is equivalent to the fact that in all the above
expressions we can use |γ | instead of γ .

We suppose that the predicted effects can be observed.
Difficulties may be associated with the many-particle effects,
insufficiently low temperature at which the details may erase,
as well as the influence of the fluctuation potential arising with
an increase of the concentration of scattering impurities. All
these limitations for real observations are well known, and
most of them were discussed in detail in [23]. We agree with
the statement of [23] that to observe the predicted features, it
is enough to use 2D structures with a large SOI (e.g., inter-
faces between complex oxides). In the same work, there are
numerous references to experimental 2D systems that meet
the required conditions.
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