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1. Introduction

Spin effects in a 2D electron gas (2DEG) are the subject of
intensive studies to search new principles for the operation of
spintronic devices.[1,2] To manipulate the spin by an electric field,
the Rashba[3] and Dresselhaus[4] spin–orbit interaction (SOI) are
used, which are often present together in many systems.

A study of the SOI parameters is mainly based on measure-
ments of magnetotransport phenomena: Shubnikov–de Haas
oscillations, the anisotropic spin photocurrent, the anisotropy
of the Raman effect, the weak antilocalization, the anisotropic
spin relaxation by the Hanle effect, and the Kerr and Faraday
effects. Interesting methods for studying the parameters of
SOI, based on the geometric focusing of the electron beam by
a transverse magnetic field in the presence of in-plane magnetic

field were considered recently.[5,6] These
techniques are described in more detail
in the reviews.[7–10]

Determining the SOI parameters is not
an easy task, often requiring in addition to
precision measurements, the special geom-
etry of the samples.[11] Many methods give
only the ratio between the Rashba and
Dresselhaus constants or allow one to
determine only one type of spin splitting,
so useful techniques are needed to define
the SOI parameters.

Recently, we showed[12] that applying a
parallel magnetic field to 2DEG with SOI
results in sharp peaks of a density of states
controllable by this field due to saddle
points of the energy dispersion (van
Hove singularity).[13] Such sharp features
must manifest themselves in transport
properties. One of the main problems in
the study of anisotropic transport is that

in this case the relaxation time approximation cannot be used
to solve the Boltzmann kinetic equation.[14–16] A method allowing
to solve this problem in the semiclassical approximation for low
temperatures and elastic scattering of electrons by impurities
with a short-range potential was developed in the article.[17]

The point is that the integral kinetic equation is the Fredholm
integral equation with a degenerate kernel. Therefore, it reduces
to an algebraic one and can be exactly solved. It was shown[17,18]

that in 2DEG with the Rashba SOI and an in-plane magnetic
field, the van Hove singularities lead to sharp dips in the longi-
tudinal conductivity and spin polarization induced by a charge
current (Aronov–Landa–Geller–Edelstein effect;[19,20] see a mod-
ern interpretation of this effect in ref. [21]).

The interplay of the SOI and a parallel magnetic field in 2DEG
is of considerable interest, because the magnetic field allows one
to manipulate the Fermi contours in a controllable manner,
which is an effective tool for studying electronic states and scat-
tering processes. When the magnetic field is oriented at an arbi-
trary angle with respect to the plane of the 2DEG, the spectrum
and orbital motion of the electrons undergoes a substantial
change.[22] That is why the in-plane magnetic field is attractive,
because a change in its intensity does not disturb the orbital wave
functions, but changes the Fermi contours. This allows one to
study the influence of the Fermi-contour topology on the electron
transport.
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A 2D electron gas with spin–orbit interaction (SOI) is known to form an
anisotropic system with van Hove singularities controllable by a parallel magnetic
field. The conductivity tensors of this system in the presence of both Rashba and
Dresselhaus SOIs is studied. It is found that the diagonal elements of the
conductivity tensor have sharp dips when the Fermi level passes through the
singularity point of a spectrum. The energy position of these dips at different
orientations of the magnetic field allows one to determine both SOI constants
and the Landé g-factor. The dependencies of the surface charge concentration on
the Fermi level show a sharp change in the slope near the minimum of the
spectrum due to the jumps of the density of states, while the van Hove
singularities are not noticeable. In a zero magnetic field, the conductivity tensor
has off-diagonal terms which change the sign when the Fermi level passes the
saddle points of the spectrum. The off-diagonal terms evidence the appearance of
the Hall voltage caused by the anisotropy of the Fermi surface and the scattering
process.
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In this work, we expand the scope of the previous work by
including both the Rashba and Dresselhaus-type SOIs. We exam-
ine a 2D gas of noninteracting electrons with the Rashba and
Dresselhaus SOIs in the presence of a parallel magnetic field.
The magnetic field leads to the appearance of the van Hove sin-
gularities[12] in the density of states, which strongly affect the
transport properties and enhance the anisotropy of the Fermi
contours. We calculate the conductivity tensor and study how
it changes with increasing magnetic field at a given Fermi level
or changing the Fermi level at a constant magnetic field. It was
found that the diagonal components of the conductivity tensor
have sharp dips occurring when the Fermi energy passes
through the van Hove singularities. Moreover, the direction of
the highest conductivity changes near this energy. The presence
of two SOIs leads to the anisotropy of the Fermi surface and the
anisotropy of scattering even in a zero magnetic field. This leads
to the nonzero off-diagonal terms of the conductivity tensor,
which indicates the appearance of a Hall voltage without a mag-
netic field. The inclusion of a magnetic field enhances this effect.
Using the results of the article,[23] in which the dispersion of
2DEG with Rashba and Dresselhaus SOIs in a parallel magnetic
field was studied in detail, we show how to determine the SOI
parameters and the Landé factor from measurements of the
dependencies of the conductivity on the magnetic field or the
position of the Fermi level near van Hove singularities for differ-
ent orientations of the magnetic field.

We have not considered the Coulomb interaction, although at
present it also attract a lot of attention of researchers.[24,25] This is
justified when the SOI energy Eso is higher than the Coulomb
energy of the electron–electron interaction Eee. Materials and
structures with a large Eso of the order of 0.1 eV are found
and been actively investigated now. It is enough to mention
BiTeI, the LaAlO3=SrTiO3 interface, and surface alloys. For
example BiTeI with energy Eso ¼ 0.1 eV, at the maximal
concentration at which only the lower spin subband is
filled n0 ¼ 1.9� 1013 cm�2, the Coulomb energy
Eeeðn0Þ ¼ 0.04 eV.[26,27]

2. Hamiltonian and Electronic States

In this section, we give the Hamiltonian and wave functions that
are used to calculate transport properties. The spectrum of 2D
electrons with the Rashba and Dreselhause SOIs in an in-plane
magnetic field was considered in ref. [12,28]. In more detail, the
spectrum was studied in a recent article.[23]

The Hamiltonian has the following form

H ¼ p2

2m
σ0 þ

α

ℏ
ðpxσy � pyσxÞ þ

β

ℏ
ðpxσx � pyσyÞ �

g�

2
μBBσ (1)

where p ¼ ðpx , pyÞ is the electron momentum, m is the effective
mass, α and β are the constants of Rashba and Dresselhouse
SOIs, σx and σy are Pauli matrices, B ¼ Bðcos ζ, sin ζ, 0Þ is a
magnetic field strength, μB is the Bohr magneton. g� is the effec-
tive Landé factor, which is assumed to be isotropic and indepen-
dent of B. The vector potential A is written in the gauge
A ¼ ð0, 0, yB cos ζ � xB sin ζÞ.

There are two types of eigenstates, which we will mark by the
index λ ¼ �. Their energies and wave functions have the form

ελðkÞ ¼ k2 þ 2λgðk, b, γÞ (2)

and

ψkλðrÞ ¼
1ffiffiffiffiffiffiffi
2S�

p
� 1
iλeiφ

�
eiðkxxþkyyÞ (3)

Here and in the following we use dimensionless quantities:
ε is the energy normalized to the characteristic SOI
energy Eso ¼ mα2=ð2ℏ2Þ; k is the wave vector normalized
to kso ¼ αm=ℏ2; b ¼ gμBBℏ2=ð2mα2Þ— dimensionless magnetic

field, gðk, b, γÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkx � γky � byÞ2 þ ðky � γkx þ bxÞ2

q
, γ ¼ β=α,

S� is a normalization area.
The phase φðkÞ is determined by the relations

sinφ ¼ ðky � γkx þ bxÞ
gðk, b, γÞ (4)

cosφ ¼ ðkx � γky � byÞ
gðk, b, γÞ (5)

Without a magnetic field, the energy landscape in k-space is
centrosymmetric ελðkÞ ¼ ελð�kÞ and has two symmetry axes:
kx ¼ �ky. In the lower spin subband, there are two minimums,
εm� , with the same energy εm� ¼ �ð1þ γÞ2 in different points
�ðð1þ γÞ= ffiffiffi

2
p

, ð1þ γÞ= ffiffiffi
2

p Þ of the k-space, as well as two saddle
points, εs�, with energy ε�s ¼ �ð1� γÞ2 and coordinates ð�ð1�
γÞ= ffiffiffi

2
p

,∓ð1� γÞ= ffiffiffi
2

p Þ in the k-space. The Dirac point (in which
two spin subbands intersect) for γ < 1 is located at an energy of
εD ¼ 0 in a point with coordinates (kx ¼ 0, ky ¼ 0) of the k-space.

The presence of a parallel magnetic field leads to a greater vari-
ety of the Fermi contours and their substantial rearrangement.
A typical energy landscape corresponding to the dispersion
Equation (2) is shown in Figure 1. The magnetic field displaces

Figure 1. The energy landscape defined by the Equation (2) in k-space.
Blue and yellow surfaces correspond to λ ¼ þ and λ ¼ �, respectively,
and their intersection is a Dirac point. The ratio of the SOI constants
γ ¼ 0.3, the magnetic field strength b ¼ 0.3, and direction ζ ¼ π=2.
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both saddle points and minimums in energy and in the k-space.
The characteristic dependencies of the energy of critical points
(minimums and saddle points) on an orientation of the magnetic
field are shown in Figure 2. It is seen that when the magnetic
field is in the direction of ζ ¼ π=4, the difference in the energy
minimums is maximal while the energies of the saddle points
coincide. At ζ ¼ 3π=4, vice versa, the energy minimums coincide
and the difference in the saddle point energies is maximal, with
the scale of the energy difference increasing with magnetic field.

In addition to numerical calculations of the characteristic
energies shown in Figure 2, analytical results for ζ ¼ π=4 and
ζ ¼ 3π=4 are also very useful to find the SOI parameters and
g-factor. Expressions for critical points can be easily obtained
by transferring the origin of the coordinate axis in k-space to
a Dirac point and investigating the obtained dispersion law in
this space.[23] As a result, we obtain the following expressions
for critical points of the spectrum.

For small magnetic fields b < bc1 in the direction ζ ¼ π=4, we
have two energy minimums

εm�1,2 ¼ �ð1þ γÞ2∓2b (6)

and two saddle points with the same energy

εs�1,2 ¼ �ð1� γÞ2 þ b2=ð4γÞ (7)

For b ¼ bc1 the minimum εm�2 transforms to a saddle point,
which disappears when b ¼ bc2.

In the case of a small magnetic field b < bc1, and ζ ¼ 3π=4, the
energy landscape in k-space has two minimums with equal ener-
gies

εm�3,4 ¼ �ð1þ γÞ2 � b2=ð4γÞ (8)

and two saddle points spaced in k-space

εs�3,4 ¼ �ð1� γÞ2∓2b (9)

In a magnetic field b ¼ bc1, the minimums εm�3,4 and the sad-
dle point εs�3 turn into one degenerate critical point (minimum),
and for the fields b > bc1 right down to the fields b ¼ bc2 there
remain one minimum and one saddle point with energies

εm,s
�3 ¼ �ð1� γÞ2∓2b (10)

For both directions ζ ¼ π=4 and ζ ¼ 3π=4, there are two criti-
cal fields at which a substantial rearrangement of the spectrum
occurs

bc1 ¼ 4γ (11)

and

bc2 ¼
� ð1þ γÞ2, f or ζ ¼ π=4
ð1� γÞ2, f or ζ ¼ 3π=4

(12)

In addition, for the angle ζ ¼ π=4, the restriction γ 6¼ 1 arises
due to the requirement εm�1,2 < εd. Moreover, for γ ¼ 1, the sad-
dle point is absent. For the angle ζ ¼ 3π=4, the region of mag-
netic fields, where a second singularity εs�4 appears, is limited by
the inequality b ≤ ð1� γÞ2, which arises from the requirement
k�s4 ≥ 0. Here k�s4 is the module of the vector k where the
energy εs�4 is achieved.

Despite the great variety of Fermi contours and their variation
depending on the value and direction of the magnetic field, as
well as the ratio of the SOI parameters, only the critical points
are actually important for a single-particle density of states.
The saddle points result in the van Hove singularities and mini-
mums cause the jumps in the density of states. The characteristic
densities of states are shown in Figure 3 for the cases with and
without a magnetic field. In panel (c), we present also the depen-
dence of the surface concentration on the position of the Fermi
levelQSðεFÞ calculated for the same parameters as in panel (b). It
is noteworthy that the jump in the density of states causes a
noticeable change in the slope of the dependence QS versus
εF , while the sharp peaks in the density of states due to the saddle
points are almost invisible.

Therefore, if, as a first approximation, we focus on a change in
the density of states, then we can suppose that the transport prop-
erties have the peculiarities due to jumps and peaks in the den-
sity of states when the Fermi level is in the lower spin
subband.[17,18,27,29–32] So we will consider the concentration
region when the Fermi level is below the Dirac point, although
the 2DEG concentration can be quite large for materials with a
large SOI.[27]

In the following section, we show that the critical points in the
spectrum lead to peculiarities in the transport properties of the

(a)

(b)

Figure 2. Dependencies of the characteristic energies (minimum εm�1,2 and
saddle points εs�1,2) on the angle of of the magnetic field orientation
ζ(rad.): a) for the ratio of the SOI parameters γ ¼ 0.3 and b ¼ 0.1;
b) for γ ¼ 0.3 and b ¼ 0.3.
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system when the Fermi level is changed at a given magnetic field
or when the magnetic field is changed at a given Fermi level.

3. Boltzmann Kinetic Equation

The electron current is studied using the semiclassical approxi-
mation. For a small uniform electric field ℰ, the distribution
function f ðkÞ is determined by the Boltzmann equation.[33]

The anisotropy of the energy dispersion leads to the scattering
anisotropy, so the collision integral cannot be simplified by intro-
ducing a relaxation time. This problem was discussed in detail in
the literature.[14–16,34,35]

We consider the scattering by impurities with a short-range
potential VðrÞ ¼ V0δðrÞ. The concentration of impurities N is
assumed to be sufficiently small so that their potentials do not
overlap and the scattering by different impurities are not
correlated. Using the wave functions (3) and calculating the
scattering probability in the Born approximation, we obtain
the following equation for the nonequilibrium part of the distri-
bution function Δf λðkÞ
X
λ
0

Z
d2k

0

π
ð1þ λλ

0
cos½φðkÞ � φðk0Þ�ÞδðελðkÞ

� ελ0 ðk0ÞÞ½Δf λðkÞ � Δf λ0 ðk0Þ� ¼
eℰvλðkÞ

R
∂f 0
∂ε

(13)

where dimensionless quantities are used. The electric field ℰ is
normalized to Esokso=e, group velocity vλ ¼ ∇kελ, f 0 is the equi-
librium distribution function, R is the numerical parameter:
R ¼ V2

0N=α2.
We rewrite the nonequilibrium part of the distribution func-

tion in the following form

Δf λðkÞ ¼
eℰ
R

ℱλðkÞ
∂f 0
∂ε

(14)

The function ℱλðkÞ is determined by the equation, which can
be easily obtained in the case of zero temperature by integrating
with respect to the modulus of k in Equation (13). In this case, the
integration is performed over the Fermi contours. As in some
cases the contours have complex shapes, kðϕÞ is a multi-valued
function of ϕ, so we have to divide the contours into parts for
which kðϕÞ becomes a single-valued function. Each part is marked
by the index r, which can vary from 1 to 4 depending on the shape
of the Fermi contour. We will add this index to the notation of the
functions defined on the corresponding Fermi contours. It is note-
worthy that the similar behavior was considered in the case of SOI
only of Rashba type (see ref. [17] for more details).

The function ℱλ,rðkÞ on the corresponding part of the Fermi
contour k ¼ kλ,rðϕÞ is defined by the equation

X
λ
0
, r

0

Z
dϕ

0

π
ð1þ λλ

0
cos½φλ,rðϕÞ � φλ

0
, r

0 ðϕ0 Þ�Þ

Mλ
0
, r

0 ðϕ0 Þ½ℱλ,rðϕ, θÞ �ℱλ
0
, r

0 ðϕ0
, θÞ� ¼ Gλ,rðϕ, θÞ

(15)

where

Mλ,rðϕÞ ¼
�
k=

∂ελðkÞ
∂k

�
k¼kλ,r ðϕÞ

(16)

φλ,rðϕÞ ¼ φðkÞjk¼kλ,r ðϕÞ (17)

Gλ,rðϕ, θÞ ¼
vλðkÞ cos½ξðkÞ � θ�

R

����
k¼kλ,r ðϕÞ

(18)

Here ξðkÞ is the angle between vλ,rðϕÞ and the x axis, θ is the
angle between ℰ and the x axis. The values Mλ,rðϕÞ, φλ,rðϕÞ, and

(a)

(b)

(c)

Figure 3. Characteristic densities of states as a function of energy without
and with a magnetic field: a) b ¼ 0, γ ¼ 0.3; b) γ ¼ 0.3, b ¼ 0.2, ζ ¼ π=2.
In both figures, curve 1 shows the total density, and curve 2 is the density
of states in the lower spin subband; their intersection means the appear-
ance of a second spin subband (Dirac point). c) The surface charge density
as a function of energy for the same parameters as in (b). We note that the
energy is normalized to Eso, and the normalized density of states above the
Dirac point is No ¼ m=ðπℏ2Þ.
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Gλ,rðϕ, θÞ are determined on the corresponding Fermi contours.
They can be easily calculated using Equation (2).

Equation (15) is a linear Fredmholm equation with a degen-
erate kernel and it can be solved analytically. Representing its
kernel as the sum of the products of the functions of ϕ and
ϕ

0
(these functions are actually sines and cosines), we come to

the following form of the function ℱλ,rðϕ, θÞ
ℱλ,rðϕ,θÞ

¼ Gλ,rðϕ,θÞ þAðθÞ þ λBðθÞ cos½φλ,rðϕÞ� þ λℭðθÞ sin½φλ,rðϕÞ�
Aþ λB cos½φλ,rðϕÞ� þ λC sin½φλ,rðϕÞ�

(19)

The coefficients A, B, C can be directly calculated from
Equation (15), as the electron dispersion law is known (2).
However, the coefficients A, B, and ℭ are determined by inte-
grals containing unknown functions ℱλ,rðϕ, θÞ. To obtain a sys-
tem of equations that will allow us to find the coefficients A, B,
and ℭ, we substitute Equation (19) into Equation (15).

As a result, we obtain a system of linear algebraic equations for
these coefficients. To find the conductivity it is enough to carry
out a calculation for the orientation of the electric field in the x
and y directions (θ ¼ 0 and θ ¼ π=2). It should be noted that the
determinants of the resulting systems are zero, the additional
determinants are also zero. This indicates the compatibility of
the obtained systems and the lack of equations for determining
the desired coefficients (A,B, andℭ). Therefore, one of the equa-
tions in each resulting system is replaced by the equation of elec-
troneutrality

X
λ, r

Z
dϕMλ,rðϕÞℱλ,rðϕ, θÞ ¼ 0 (20)

Now we are convinced that the determinants of the obtained
systems for the orientations of the electric field θ ¼ 0 and θ ¼
π=2 are not equal to zero, and can solve the problem. We find
the corresponding coefficients A,B, and ℭ, substitute them into
Equation (19), and determine the nonequilibrium electron distri-
bution for these orientations of the electric fields in the form (19).
Amore detailed description of solving the kinetic equation can be
found in ref. [17].

4. Conductivity Tensor

Using Equation (19) for the distribution function, we find the
dimensionless components of the conductivity tensor normal-
ized to e2=ðhRÞ

Gxx ¼
X
λ, r

Z
dϕ
2π

Mλ,rðϕÞvλ,rðϕÞ cos½ξλ,rðϕÞ�ℱλ,rðϕ, 0Þ (21)

Gyy ¼
X
λ, r

Z
dϕ
2π

Mλ,rðϕÞvλ,rðϕÞ sin½ξλ,rðϕÞ�ℱλ,rðϕ, π=2Þ (22)

Gxy ¼
X
λ, r

Z
dϕ
2π

Mλ,rðϕÞvλ,rðϕÞ cos½ξλ,rðϕÞ�ℱλ,rðϕ, π=2Þ (23)

Gyx ¼
X
λ, r

Z
dϕ
2π

Mλ,rðϕÞvλ,rðϕÞ sin½ξλ,rðϕÞ�ℱλ,rðϕ, 0Þ (24)

The results of the conductivity tensor calculations are pre-
sented in Figure 4. Two measurement modes are described:
1) the Fermi energy is changed at a fixed magnetic field
b ¼ 0, here ðGxx ¼ Gyy,Gxy ¼ GyxÞ see Figure 4a, and 2) the
value of the magnetic field along the direction ζ ¼ 0 is changed
at a fixed Fermi energy εF ¼ �0.5, here ðGxy ¼ GyxÞ see
Figure 4b. The density of states approximately has the form
shown in Figure 3a.

Of greatest interest is a sharp decrease in conductivity near the
van Hove singularity, as well as a change in the direction of
the maximal conductivity. In the absence of a magnetic field,
the diagonal components of the conductivity tensor coincide.
In the presence of a magnetic field, the off-diagonal components
coincide and their value is an order of magnitude smaller
than the diagonal ones. The presence of the off-diagonal compo-
nents in the zero magnetic field means the appearance of the
Hall voltage, with its sign changing near the van Hove singular-
ity. We would also like to note that above the Dirac point the
anisotropy practically disappears, which is consistent with the
results obtained in the absence of a magnetic field.[15] The mini-
mums in the εðkÞ landscape, leading to jumps in the density of
states, cause an increase in the slope of the dependence
Gxx,yyðεFÞ and QSðεFÞ, which makes it possible to determine
these energies.

(a)

(b)

Figure 4. The conductivity tensor components as functions of the Fermi
energy and the magnetic field. a) The Fermi energy is changed at b ¼ 0.
The ratio of the SOI constants is γ ¼ 0.3. b) The magnetic field is changed
at εF ¼ �0.5, with γ ¼ 0.3 and ζ ¼ 0.
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5. Determination of the SOI Parameters and the
g-Factor

We have shown that the critical points of the spectrum lead to the
peculiarities of the conductivity tensor. Therefore, observing
these peculiarities in an experiment, we can determine the
parameters of the SOIs and g-factor. As an example, let us deter-
mine the energies of three saddle points at a fixed magnetic field
for two its orientations ζ ¼ �π=4. These energies εs�1,2,3, with a
corresponding restriction on the value of the magnetic field, are
determined by Equation (9) and (7). Using these relations and
going to the dimensional quantities ðEs

�1,3,4Þ, we easily find

γ ¼ 1þ α1 � ð2α1 þ α21Þ1=2 (25)

Eso ¼ �Es
�3 þ Es

�4

2ð1� γÞ2 (26)

b ¼ ðEs
�4 � Es

�3Þ=ð4EsoÞ (27)

where α1 ¼ 16ðEs
�3 þ Es

�4Þ ðEs
�3 þ Es

�4 � 2Es
�1Þ=ðEs

�4 � Es
�3Þ2.

Another possible option is to find the energy of the saddle
points Es

�1,2 corresponding to the magnetic field in the direction
of ζ ¼ þπ=4 and determined by Equation (9) and use the energy
Em
�3 with magnetic field orientation ζ ¼ 3π=4, which corresponds

to a jump in the density of states and a change in the slope of
Gxx,yyðεFÞ or QSðεFÞ; see Equation (8). Using these relationships,
it is easy to find

γ ¼ ðα2 � 1Þ=ðα2 þ 1Þ (28)

Eso ¼
Es
�2 � Es

�1 � 2Em
�3

2ð1þ γÞ2 (29)

b ¼ ðEs
�2 � Es

�1Þ=ð4EsoÞ (30)

where α2 ¼ ðð2Em
�3 þ Es

�1 � Es
�2Þ=ðEs

�1 þ Es
�2ÞÞ1=2.

Here γ¼ β=α is the ratio of the Dresselhaus and Rashba SOI
constants, α ¼ ð2Esoℏ2=mÞ1=2 and g ¼ 2mα2b=μBBℏ2.

Note that the assumption of the isotropy of the g-factor is not
always satisfied.[36] The proposed method allows us to study the
anisotropy of the g-factor. To do this, the following iteration pro-
cedure can be used. First, using the proposed methods, we deter-
mine Eso and γ, then using critical points, we can restore g0ðζÞ.
The energy distance between critical points strongly depends on
the magnetic field, and for a fixed value of the field, it depends on
the g-factor (see Figure 2). Therefore, measuring the distance
between saddle points, we find g0ðζÞ in the zero approximation.
Substituting this dependence into the kinetic equation and solv-
ing it, we can find g1ðζÞ; repeating this procedure n times, we
find gnðζÞ in nth approximation with a given accuracy.

In a somewhat simplified form, the system under study is a
capacitor with twometal plates (gate and 2DEG), so the charge on
it S�QS is equal to CV where C and V are geometric capacitance
and voltage between plates, respectively. Its connection with the
position of the Fermi level is determined by the relationship

QSðEFÞ ¼
Z

EF

E�m1

NSðEÞdE ≡ C1N0ðEm
�2 � Em

�1Þ

þ C2N0ðEF � Em
�2Þ

(31)

where C1 and C2 are constants of the order of 1/2 and 1 deter-
mined from the density graph (see Figure 3b), being weakly
dependent on the parameter γ. Recall that as soon as the second
spin subband begins to fill, the density of states is No ¼ m=ðπℏ2Þ
(see Figure 3b). Moreover, it is seen from Figure 3c that the pres-
ence of van Hove singularities practically does not affect this
ratio. Thus, by measuring QS or V, we can find the critical points
ðEm

�1,�4Þ, and therefore, according to Equation (25)–(30), we can
determine the SOI parameters and g-factor.

6. Conclusion

The approach developed previously to study an anisotropic trans-
port in a 2DEG in the framework of the Boltzmann kinetic equa-
tion[17] has been used to calculate the conductivity tensor of a
2DEG gas with the Rashba and Dresselhause SOIs in a parallel
magnetic field. This method allowed us to find the nonequilib-
rium distribution function for scattering by impurities with a
short-range potential at zero temperature considering electron
transitions both within a single Fermi contour and between dif-
ferent contours. An important factor determining the anisotropy
of the conductivity is the presence of the van Hove singularity
that arises due to the combined effect of the SOI and magnetic
field. The energy position of the singularities is controllable by
the strength and orientation of the magnetic field in a wide range
of the energy.

The conductivity has a sharp dip when the Fermi level passes
through the van Hove singularity. This peculiarities of the con-
ductivity have been known for a long time,[37] and to date they
attract much interest of researchers.[38] Our results agree quali-
tatively with the results obtained for other systems.

It has been shown that the minimums in the dispersion law
ελðkÞ cause a significant change in the slope of the dependence of
the surface chargeQS on εF , while the van Hove singularities are
almost invisible in this dependence. Thus, the measurement of
the surface charge and the conductivity tensor can complement
each other to find the position of the critical points.

Interesting fact is also a change in the direction of the conduc-
tivity anisotropy axis with the Fermi level. The direction of the
maximal conductivity rotates when εF passes near the van
Hove singularity, as in the case when only the Rashba SOI
acts.[17] The conductivity anisotropy leads to the appearance of
a Hall voltage in a zero magnetic field which changes its sign
near the van Hove singularity (see Figure 4a).

Determination of the energy of the conductivity dips or jumps
in the density of states at different orientations of the magnetic
field allows us to define the Rashba and Dresselhaus SOI con-
stants and the Landé factor. Defining of the parameters of the
SOI from changes in the position of the Fermi level or the mag-
netic field strength also makes it possible to find the dependence
of the g-factor on B.

The proposed methods can be easily generalized to the case of
a more complex dispersion law, for example, with a SOI term
cubic in momentum.

Acknowledgements
The author is grateful to V.A. Sablikov for numerous useful discussions
and criticisms. This work was carried out in the framework of the state

www.advancedsciencenews.com www.pss-b.com

Phys. Status Solidi B 2021, 2000553 2000553 (6 of 7) © 2021 Wiley-VCH GmbH

http://www.advancedsciencenews.com
http://www.pss-b.com


task and partially supported by the Russian Foundation for Basic Research,
project No. 20-02-00126.

Conflict of Interest
The author declares no conflict of interest.

Data Availability Statement
Research data are not shared.

Keywords
critical points, in-plane magnetic fields, spin–orbit interactions,
two-dimensional electron gas

Received: November 1, 2020
Revised: February 8, 2021

Published online:

[1] J. Zutic, J. Fabian, S. Das Sarma, Rev. Mod. Phys. 2004, 76, 323.
[2] J. Fabian, A. Matos-Abiague, C. Ertler, P. Stano, I. Zutic, Acta Phys.

Slovaca 2007, 57, 565.
[3] Y. A. Bychkov, E. I. Rashba, JETP Lett. 1984, 39, 78.
[4] G. Dresselhaus, Phys. Rev. 1955, 100, 580.
[5] L. P. Rokhinson, L. N. Pfeiffer, K. W. West, Phys. Rev. Lett. 2006, 96,

156602.
[6] C. Yan, S. Kumar, K. Thomas, P. See, I. Farrer, D. Ritchie, J. Grisoths,

G. Jones, M. Pepper, Phys. Rev. Lett. 2018, 120, 137701.
[7] A. Usher, A. Elliott, J. Phys: Condens. Matter 2009, 21, 103202.
[8] M. A. Wilde, D. Grundler, New J. Phys. 2013, 15, 115013.
[9] S. D. Ganichev, L. E. Golub, Phys. Status Solidi B 2014, 251, 1725.
[10] V. M. Pudalov, arXiv:2008.05451, 2020.
[11] A. Sasaki, S. Nonaka, Y. Kunihashi, M. Kohda, T. Bauernfeind,

T. Dollinger, K. Richter, J. Nitta, Nat. Nanotechnol. 2014, 9, 703.

[12] Y. Y. Tkach, JETP Lett. 2016, 104, 105.
[13] L. van Hove, Phys. Rev. 1953, 89, 1189.
[14] J. Shliemann, D. Loss, Phys. Rev. B 2003, 68, 165311.
[15] M. Trushin, J. Shliemann, Phys. Rev. B 2007, 75, 155323.
[16] K. Vyborny, A. A. Kovalev, J. Sinova, T. Jungwirth, Phys. Rev. B 2009,

79, 045427.
[17] V. A. Sablikov, Y. Y. Tkach, Phys. Rev. B 2019, 99, 035436.
[18] V. A. Sablikov, Y. Y. Tkach, Semiconductors 2018, 52, 1581.
[19] A. Aronov, Y. B. Lyanda-Geller, JETP Lett. 1989, 50, 431.
[20] V. Edelstain, Solid State Commun. 1990, 70, 233.
[21] E. L. Ivchenko, S. D. Ganichev, arXiv:1710.09223, 2017.
[22] R. Winkler, Spin-orbit Coupling Effects in Two-Dimensional Electron and

Hole Systems, Springer Tracts in Modern Physics, Vol. 191, Springer,
Berlin/Heidelberg 2003.

[23] I. V. Kozlov, Y. A. Kolisnichenko, Phys. Rev. B 2019, 99, 085129.
[24] S. Maiti, D. L. Maslov, Phys. Rev. B 2017, 95, 134425.
[25] F. Perez, F. Baboux, C. A. Ullrich, I. D. Amico, G. Vignale,

G. Karczewski, T. Wojtowicz, Phys. Rev. Lett. 2016, 117, 137204.
[26] F.-X. Xiang, X.-L. Wang, M. Veldhorst, S. X. Dou, M. S. Fuhrer, Phys.

Rev. B 2015, 92, 035123.
[27] V. Brosco, L. Benfatto, E. Cappelluti, C. Grimaldi, Phys. Rev. Lett.

2016, 116, 166602.
[28] E. P. Nakhmedov, O. Alekperov, Eur. Phys. J. B 2012, 85, 298.
[29] M.-C. Chang, Phys. Rev. B 2005, 71, 085315.
[30] V. A. Sablikov, Y. Y. Tkach, Phys. Rev. B 2007, 76, 245321.
[31] Y. Y. Tkach, V. A. Sablikov, A. A. Sukhanov, J. Phys.: Condens. Matter

2009, 21, 125801.
[32] A. Johansson, J. Henk, I. Mertig, Phys. Rev. B 2016, 93, 195440.
[33] I. Mertig, Rep. Prog. Phys. 1999, 62, 237.
[34] P. Schwab, R. Raimondi, Eur. Phys. J. B 2002, 25, 483.
[35] O. Chalaev, D. Loss, Phys. Rev. B 2008, 77, 115352.
[36] F. Qu, J. van Veen, F. K. de Vries, A. J. A. Beukman, M. Wimmer, W. Yi,

A. A. Kiselev, B.-M. Nguyen, M. Sokolich, M. J. Manfra, F. Nichele,
C. M. Marcus, L. P. Kouwenhoven, Nano Lett. 2016, 16, 7509.

[37] R. Hlubina, Phys. Rev. B 1996, 53, 11344.
[38] M. E. Barber, A. S. Gibbs, Y. Maeno, A. P. Mackenzie, C. W. Hicks,

Phys. Rev. Lett. 2018, 120, 076602.

www.advancedsciencenews.com www.pss-b.com

Phys. Status Solidi B 2021, 2000553 2000553 (7 of 7) © 2021 Wiley-VCH GmbH

http://www.advancedsciencenews.com
http://www.pss-b.com

	Determination of the Rashba and Dresselhaus Spin-Orbit Interaction Parameters and g-Factor from the Critical Points of the Spectrum in a 2D Electron Gas in an In-Plane Magnetic Field
	1. Introduction
	2. Hamiltonian and Electronic States
	3. Boltzmann Kinetic Equation
	4. Conductivity Tensor
	5. Determination of the SOI Parameters and the g-Factor
	6. Conclusion


