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Abstract. We have analyzed the radio occultation (RO) results of ~100 sounding sessions of 

the high-latitude (>65°N) lower ionosphere of the Earth’s northern hemisphere, which were 

carried out on 22–23 June 2015 at the GPS-frequency of 1545.42 MHz (L1 band) in the 

FORMOSAT-3/COSMIC experiment. Coronal plasma ejections that reached the Earth in this 

period provoked a class G4 magnetic storm (strong geomagnetic storm with planetary Kp-

index equal to 8), which in turn caused significant ionospheric fluctuations of radio waves on 

the sounding paths: navigation (GPS) satellites – low-orbit (FORMOSAT-3/COSMIC) 

satellites. For the first time, the analysis of FORMOSAT-3/COSMIC radio frequency 

measurements revealed the absorption of L1 radio waves in the lower high-latitude ionosphere 

of the Earth. The absorption value is ~3 dB in the range of 60-90 km and in some cases reaches 

~10 dB at altitudes from 90 to 95 km. It is shown that it is possible to obtain the absorption 

coefficient of GPS-frequency radio waves in the Earth's ionosphere at these altitudes from 

experimental data of FORMOSAT-3/COSMIC.  

1.  Introduction 

In the summer of 2015 (June 22–23), coronal mass ejections (CME) toward the Earth took place on 

the Sun (one giant and several small ejections). This event was recorded by many spacecraft and 

ionospheric stations [1–4]. The most powerful ejection was identified by a magnetometer as a jump of 

interplanetary magnetic field (IMF) from ~10 to ~40 nT, and it was also noted by SWEPAM (Solar 

Wind Electron, Proton, and Alpha Monitor) instrument as a sudden increase in solar wind density 

from ~20 to ~45 particles/cm3 with a corresponding increase in pressure to values above 50 nPa [1]. 

The impact of the CME with the bow shock was expected on June 22, 2015 at ~ 18.36 UT, after a 

smaller shock at ~05.40 UT. The geomagnetic conditions on June 22–23, 2015 during the storm 

(density, speed and pressure of the solar wind; components Bx, By, Bz of the interplanetary magnetic 

field and the IMF vector angle) are presented in detail in figure 1 of work [1]. The Boyle index 

associated with the strong southward component of the IMF vector [1, see figure 1e], sent a “yellow 

alert” signal at 06.04 UT and a “red alert” at 18.34 UT before the CME impacted the bow shock. 

Coronal mass ejections were accompanied by powerful X-ray fluxes, which were detected by the 

geostationary GOES-13 and -15 spacecraft (figure 1, left panel). These ejections provoked a strong 

magnetic storm of class G4 on Earth (G4 = Kp – 4). The right panel of figure 1 presents estimates of 

the planetary Kp-index for period June 22–23, 2015, taken from the space weather data archive (URL: 

ftp://ftp.swpc.noaa.gov/pub/warehouse/). 

The aim of this work is to analyze L1 radio signals (carrier frequency 1575.42 MHz), emitted by 

transmitters from GPS satellites and recorded by receivers onboard low orbital FORMOSAT-

mailto:v.e.andreev@gmail.com
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3/COSMIC satellites, in order to determine the small-scale structure of the Earth’s high-latitude 

ionosphere at altitudes from 50 to 110 km during geomagnetic storms in June 2015. 

Figure 1. X-ray fluxes (left panel) recorded on June 22–23, 2015 by GOES-13 and -15 geostationary 

spacecraft, and planetary Kp-index estimates (right panel) (this figure was taken from the space 

weather data archive: ftp://ftp.swpc.noaa.gov/pub/warehouse/) 

2. Selecting the radio occultation sessions of the FORMOSAT-3/COSMIC satellites 

Radio soundings the Earth’s atmosphere and ionosphere with aid the satellite-satellite communication 

links (when high-orbital (GPS/GLONASS) and low-orbital satellites are used) were carried out earlier 

in different combinations, for example: GPS – MICROLAB, GPS – GRACE, GPS/GLONASS – 

METOP, GPS – CHAMP, GPS – FORMOSAT-3/COSMIC and others. Detailed analysis of these 

experimental results was made in the works [5–7]. To obtain parameter estimates of the small-scale 

structure in the Earth’s lower ionosphere during above mentioned geomagnetic storm, we selected 

from the large FORMOSAT-3/COSMIC database about 100 radio occultation measurements carried 

out from June 22 to 23, 2015. The selected RO sessions were performed at latitudes from 65°N to 

88°N and they covered an altitude interval from 50 to 110 km. 

It was shown in works [5, 8, 9] that there is a relationship between the power (PL) of the RO signal 

received on a low-orbit satellite, the refractive attenuation of radio waves (X), and the acceleration (aψ) 

of the eikonal (phase-path increase ψ): 

1 – X(t) = maψ = m·d 
2ψ/dt2,  m = rψ/(dp0/dt)2, rψ = LL·LG /L0,  (1) 

where р0 is the impact parameter of radio ray, LL and LG are distances from the receiver (L) and 

transmitter (G) to the ray perigee point respectively, L0 is the distance from transmitter to receiver 

along the straight line [5]. Figure 2 shows two typical altitude profiles of the normalized signal power 

(P) measured by the FORMOSAT-3/COSMIC-6 satellite before geomagnetic storm on June 22, 2015 

and the refractive attenuation of radio waves (X) reconstructed from eikonal data using expression (1). 

Curves shown in figure 2 were obtained by the fifteen points smoothing of experimental data using the 

moving average method. In order to find the dimensionless value P, the power РL of signal received on 

the FORMOSAT-3/COSMIC-6 satellite was normalized to the average power of radio waves (Р0) at 

altitudes more than 300 km, i.e. P = РL/Р0. Above each part of this figure we indicated: numbers of the 

respective satellites from the FORMOSAT-3/COSMIC and GPS groups, the date and local time of the 

measurement session, as well as the coordinates (latitude and longitude) of the probed region. It can be 

seen that in the profiles presented in figure 2, there are quasiperiodic variations of values P(h) and 

ftp://ftp.swpc.noaa.gov/pub/warehouse/
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X(h) which are correlated in height. It was found that the cross-correlation coefficient for these 

variations over the indicated height interval is at least 50%. 

 

 
Figure 2. Altitude profiles of normalized signal power (P), measured before geomagnetic 

storm on June 22, 2015 by the FORMOSAT-3/COSMIC-6 satellite, and refractive attenuation 

of radio waves (X) recovered from eikonal measurements 

 

Figure 3. Altitude profiles of normalized power – P(h), refractive attenuation – X(h) and electron 

concentration –  Ne(h) obtained from the RO data of the FORMOSAT-3/COSMIC-6 satellite 

22.VI.2015 at 21.22 LT in the ionospheric region with coordinates 76.2°N; 58.08°E (left) and 

23.VI.2015 at 13.49 LT in the region with coordinates 88.25°N; 176.6°E (right) 
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Although the beginning of geomagnetic storm from radio occultation data we cannot detect, 

however, from the moment of passage of the powerful X-ray flux (figure 1), fluctuations of the P(h) 

and X(h) values in the interval 80–100 km of the Earth’s high-latitude ionosphere increase. Note that 

the electron concentration Ne increases at night, becoming more than 105 cm–3 (figures 3 and 4). From 

a comparison of the graphs in figure 3 (panels a and c), it can be seen that the altitude position of 

electron concentration maximum in the ionospheric layer practically coincides with the position of 

refractive attenuation minimum of the signal. This corresponds to results obtained in the works [8–10], 

where it was shown that during radio occultation sounding the sporadic E-structures (Es) in the Earth’s 

ionosphere when the propagation vector is parallel to the ionization plane of Es-layer, then the radio 

wave propagation through its central part (the electron density peak) leads to strong defocusing of the 

rays, and when passing through the edges – to their focusing. 

As can be seen from data presented in figure 4, when radio sounding the region of the Earth’s polar 

cap (78.03°N; 96.65°E) at altitudes from 101.5 to 90.3 km (the ray descends from top to bottom), the 

power of decimeter radio waves decreases on average to 0.1 (–10 dB), then returns to 0.5 (–3 dB) and 

further remains at the same level. Radio sounding of another region of the polar cap (78.1°N; 65.02°E) 

showed that the average signal level drops to 0.5 (–3 dB) at an altitude of 89.5 km and then remains at 

that level (see figure 4). An analysis of profiles X(h) in figure 4 shows that the average value <X> is 

<X> = 1 (0 dB), i.e. refractive attenuation in altitude range from 50 to 90 km is practically absent. 

Therefore, we believe that the aforementioned attenuation of signal power P(h) observed in the 

analyzed altitude range can be associated with the radio wave absorption in the Earth’s lower 

ionosphere during geomagnetic storm. 

Figure 4. Altitude profiles of the normalized power – P(h), refractive attenuation – X(h) and electron 

concentration – Ne(h), obtained from FORMOSAT-3/COSMIC radio occultation data on 22.VI.2015 at 

21.22 LT in the ionospheric region with coordinates 78.1°N; 65.02°E (left) and 23.VI.2015 at 01.41 

LT in the region with coordinates 78.03°N; 96.65°E (right) 

3. Absorption of decimetric radio waves and estimating the effective number of collisions in the 

Earth’s lower ionosphere 
A small absorption (up to –1 dB) of radio waves, which can be seen in the RO data at GPS 

frequencies, was mentioned in the work [6]. The most characteristic features of the high-latitude 

ionosphere (D-region) are special absorption of radio waves in the polar cap, caused by the proton 

invasion with energies of tens MeV and anomalous auroral absorption associated with electron 

precipitations. During periods of solar flares directed toward the Earth, due to a sharp increase in solar 

ionizing X-ray radiation, the sudden ionospheric disturbances occur which manifest themselves as 

ionization increase, mainly in the D- and E- ionospheric regions. Auroral radio wave absorption, 

observed often in the aurora zone during periods of magnetospheric storms and substorms, is 
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associated with precipitations of charged particles (mainly electrons with energies of 20–100 keV) 

from the magnetosphere to the Earth’s lower ionosphere [11]. 

The absorption of L1 band signals was observed very clearly in two radio occultation sessions of 

FORMOSAT-3/COSMIC measurements in the Earth's ionosphere (see figure 4). In one of them, an 

attenuation of the radio wave power reached –10 dB with a return to the level of –3 dB. In other RO 

measurement session it was –3 dB (figure 4, panels a). Using these data and following to the work 

[12], one can determine the vertical profile of the radio wave absorption coefficient (Z) and estimate 

the effective number of electron collisions per unit time (ν) in the Earth’s lower ionosphere. 

The radio wave absorption in the lower ionosphere is due to collisions of electrons with ions and 

neutral molecules. Because of this, part of the energy transmitted by the electromagnetic field to 

electrons is spent on increasing the chaotic motion energy of plasma particles and leads to its heating. 

With each impact, an electron, on average, transfers a momentum m·dr/dt to an ion or molecule, where 

dr/dt is a mean electron speed caused by the electromagnetic field. If ν is the effective number of 

electron collisions per second, then its momentum changes by the value m·ν·dr/dt per unit time. The 

change in momentum due to collisions is equivalent to the action of a certain friction force. Assuming 

that the frequency of the radio waves ω = 2πf satisfies the inequality ω2 >> ν 2, authors of the work [12] 

obtained the following estimate of absorption coefficient Z of radio waves: 
2

3 1

2 2
2.70 10 ,                      [ ] cm ,                     (2)

π

e ee N N
Z Z

mcf f

       

where m is the mass of electron, e is the electron charge, c is the speed of light, the value Ne is 

expressed in cm–3, ν – in s–1, and f – in Hz. When propagating through the ionosphere, the flux of radio 

waves experiences absorption, and the normalized signal power P is equal [12]: 

max max

min min

3

2
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h h

e

h h
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Here, integration is performed along the trajectory of the probing radio ray. As can be seen from 

formula (2), in order to estimate the parameter ν it is necessary to know the vertical profile of 

absorption coefficient and the distribution of electron concentration with height. For this, we have at 

our disposal profiles Ne(h) (figure 4, panels c). Using expression (3), one can solve the inverse 

problem and determine the vertical profile of radio wave absorption coefficient Z(h), as well as 

estimate the value ν in the lower Earth's ionosphere. 

4. Conclusion 

The results of about 100 radio occultation sessions of probing the high-latitude (>65°N) ionosphere of 

the Earth’s northern hemisphere have been analyzed in the work. These FORMOSAT-3/COSMIC 

measurements were carried out on June 22–24, 2015 at the carrier GPS-frequency 1545.42 MHz (band 

L1). It was found that the altitude location of electron concentration maximum in the ionospheric layer 

practically coincides with the altitude position of refractive attenuation minimum of the signal, which 

corresponds to early RO sounding results of sporadic E-layers in the Earth’s ionosphere. 

Based on the analysis of FORMOSAT-3/COSMIC RO measurements carried out during strong 

geomagnetic storm June 22–23, 2015 (class G4), the absorption of decimeter radio waves (L1 band) in 

the Earth’s high-latitude lower ionosphere was detected. The absolute value of absorption is ~3 dB in 

the interval of 60–90 km, and in some cases it reaches ~10 dB at altitudes from 90 to 95 km. It is 

shown that, based on the data obtained, one can find altitude profiles of the absorption coefficient Z of 

radio waves and estimate the effective number of collisions per second ν in the Earth’s lower 

ionosphere. 
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