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Abstract—New equations for Laplace transform inversion are obtained. The equations satisfy the causality
principle. The impulse response of a channel is determined in order to analyze dispersion distortions in inho-
mogeneous media. The impulse response excludes the possibility that the signal exceeds the speed of light in
the medium. The transmission bandwidth, the angular spectrum, and the Doppler shift in the ionosphere are
computed.

DOI: 10.1134/S106456241906022X
1. The solution of fundamental problems in radio
engineering, radio physics, electrodynamics, remote
sensing, computer science, electrical engineering, and
other fields is based on the Laplace transform [1]. The
frequency response to monochromatic signal trans-
mission is usually found in the theory [2]. A promising
approach relies on the impulse function as applied to
analyzing time distortions of signals [3].

The goal of this paper is to use the duality principle
[4–6] and the parametric method of analytic continu-
ation to derive a new Laplace-transform equation and
to determine an impulse response that satisfies the
causality principle and rules out the possibility of
exceeding the speed of light in free space. The image of
the impulse response is the frequency response of the
dispersive medium to a monochromatic signal.

The Laplace transform  of a real function of
time, , has the form

(1)

Relations that hold for  were obtained in [4–6],
namely,
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where i is the imaginary unit and  are the
cosine and sine Fourier transforms of the image func-
tion  on the real axis of the variable :

(3)

The original function  for the image  exists for
t > 0 if the functions  determined by Eqs. (2)
coincide:

(4)

In (3) we introduce a real parameter  by making

the substitutions  and :

(5)

The imaginary parameter values  are substituted
into (5). Assuming that there exists a well-defined
analytic continuation , we find from (2) and (5)
that
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(6)

The original function  in (6) is represented by the
cosine/sine Fourier transforms of the even function

 and the odd function  –
V(–iω) of frequency ω, respectively.

Substituting  given by (1) into (6) and
assuming that the order of integration can be changed,
we obtain

(7)

where  is the delta function and the upper and
lower signs before the second term on the right-hand
side of (7) correspond to the functions  and  in
(2). According to (4) and (7), for , the functions

 are associated with a unique original function
.

Because of the influence exerted by the terms
, for t < 0, the functions  in Eq. (7) do

not vanish, which contradicts the causality principle.
The duality principle (2) makes it possible to satisfy
the causality condition , by specifying

 in the form . From (2), (6),

and (7), we derive the following relations for the
inverse Laplace transform:

(8)

(9)

where the functions  are defined in (6). In the lower
limit of integral (9), zero was replaced by , since the
integrand is an even function.

An inversion formula is derived from (9) by using
the bilateral Fourier transform (provided that  and

 are an even and an odd function of ω, respectively):
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The image  is recovered from (10) by integrat-
ing the left- and right-hand sides with infinite limits
and the kernel  and taking into account the
equality :

(11)

Equations (1), (9) and (1), (10) are pairs of transforms
from the original to the image and, on the contrary,
from the image to the original.

2. For a monochromatic signal in the case of a time
dependence, the frequency transfer characteristic of a
radio channel is defined as [5]

(12)

where  is the refractive index,  is the ele-
ment of the ray trajectory ,  is the phase delay
on the ray ,  is the radio wave amplitude at the
point L in the absence of medium inhomogeneities,

 is the amplitude taking into account the radio
wave attenuation caused by refraction  and
absorption , and  is the speed of electromagnetic
waves in free space. The integral in (12) is taken along
the ray  (Fig. 1a). The position of  in the
medium depends on the radio wave frequency . The
refractive index  and, hence,  are even functions
of . Below, we find the original  of the fre-
quency channel transmission function 

Assume that the medium is spherically symmetric
with the center at the point O. The target parameter 
is constant along the trajectory  in the plane 
(  is the length of the perpendicular drawn from the
center O to the tangent at the current point of ).
For fixed , the function  satisfies the rela-
tions
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Fig. 1. (a) Schematic view of radio waves propagation through a disperse spherically symmetric layered inhomogeneous medium
for a communication line consisting of a navigation satellite  and a receiver  on the Earth. The center of symmetry is at the
point . The line segment indicates the position of the horizontal line near the receiver . The parameters (b) 
(c) , and (d)  ( ) computed as functions of the site angle  and the frequency f for a signal transmitted from a
satellite moving in a circular orbit at an altitude of 20 000 km. Curves 1–7 correspond to the frequency f equal to 60, 210, 360,
660, 810, 1110, and 1410 MHz, respectively.
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(13)

where  is the central angle with vertex at the point 
between the directions  and  and  are
the distances , , and . The derivative  is
not involved in (13), since the differentiation of the
first equation in (13) yields  for fixed θ,

. Let us find the impulse function  relating
the response  at the output L to the signal  at
the input of the channel  in the Duhamel integral:

(14)
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The function  is represented in the form

(15)

where  and  in the presence and absence
of dispersion, respectively. In the absence of disper-
sion, n, , and  in (12) and (15) do not depend on
frequency and  is the delta function:

. The medium does not introduce
and distortions, and the signal  (14) at the
receiver input  preserves the emitted form  with a
delay equal to Φ.

In the case of dispersion, low frequencies are
absent because of the influence of the ionosphere.
Substituting  given by (15) into (1) as

, changing the order of integra-
tion with respect to , and making the substitutions
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, , we obtain two Hilbert transforms

with the singular point 

(16)

i.e., it follows from (1) that the frequency transfer

function (12)  is the image of the original

function (15) . Substituting  given by (15)
into the Duhamel integral, assuming that, at the input
to the ionosphere, the function has the form of a

damped sinusoid  and
changing the order of integration, in a similar manner,
we find the signal in the ionosphere: f(t) = exp[–αt –

. This signal propagates with
phase velocity along the phase path and with group
velocity along the envelope. The first derivative of

 determines the distance to the given point in the
ionosphere, while the other derivatives determine the
shape of the dispersion line at this point. This can be
shown using the dispersion equation for radio waves in

the ionosphere: , where 

is the plasma frequency expressed in radians,  is a

dimensional coefficient, and  is the concentration

of electrons. At the stationary point  of integral (16),

the equation  = 0 holds, which
has the form

(17)
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quency , respectively. The quantity  depends on the

phase path  and its frequency derivative . Impor-

tantly, for the chosen dispersion law,  determined

by the relations
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The first equation in (17) determines the argument

 of  depending on the frequency at the station-

ary point . The spectral components of the signal
with different frequencies arrive at the observation
point L at different times. The derivative of the argu-
ment  with respect to frequency is given by the rela-

tion . According to (17), the delay derivative

 depends on the first and second derivatives of the

phase path with respect to frequency. According to
(17), the phase of the frequency transfer function

 near the stationary point  of
integral (16) is

(19)

The quantity  in (19) is physically

interpreted as the transmission bandwidth of the ion-

osphere at the given frequency . If the bandwidth of

modulated radio waves  satisfies the

condition , then the signal is substantially dis-
torted by the ionosphere. Under the reverse inequality

, according to [2], all the derivatives of the

phase  in (17), except for the first one, can be

neglected and  can be represented in the form

, where  is the carrier

frequency of the narrow-band signal. In this case, the
signal is transmitted nearly without distortions, and
the integration with respect to frequency in (17) gives

the dependence of  on time in the form of a delta
function:

(20)

where  and  are the group time delay and the group

velocity of the narrow-band pulse at the frequency .

The parameters  and  depend on .

For a rigorous analysis of the ionospheric distor-

tions introduced into the signal, the function 
has to be substituted into the Duhamel integral (14) in
integral form (16).

3. The eikonal  in (12) depends on the target

parameter , which is constant
on the trajectory of radio wave propagation, i.e., on

the ray  in the plane , and is determined by
the relations [5]
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(21)

where  and  are the refractive indices at the

points  and ;  is the angle of refraction of radio

waves on the path ; , , and  are the dis-

tances , , and ; and  is the target parame-

ter of the line  with respect to the center of symme-

try  (Fig. 1a). In Eq. (21),  is equal to the sum of

the length  of the circular arc  of radius  and

the differences of the tangent segments  to

the ray  drawn at the points L, G. The refractive

parameter  in (21) depends on the vertical gra-

dient of the refractive index  and describes the

difference of the phase path  from the length

. For fixed values of the frequency  and the

parameters , the phase path  in (13)

satisfies the equation , which corre-

sponds to Fermat’s principle.

The harmonic components of the signal propagate
through the medium along different trajectories,
which are associated with correspond different values
of the target parameter . This causes a broadening

 of the angular spectrum of radio waves and

introduces distortions into the signal. The broadening

 in the plane  at the receiver (transmitter)

 is determined for  and the fre-

quency band :

(22)

(23)

In (22) and (23),  is the angle with vertex at the

point L(G) between the direction toward the center O
of spherical symmetry and the tangent to the trajec-
tory at the point L(G) (Fig. 1a). The width of the angu-
lar spectrum is reduced away from the center of sym-
metry.

Figures 1b–1d show the computed characteristics
of ionospheric radio waves on the satellite–Earth path
as functions of the site angle  and the frequency f (the
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satellite moves in a circular orbit at an altitude of

20 000km). The electron density  was deter-
mined using the Chapman formula

with , d1 = 100 km, and

χ = 0, where  is the electron density in the layer
maximum, h1 and d1 are the height and the thickness

of the layer, and  the Sun’s zenith angle.

Figure 1b presents the maximum correction to the

Doppler frequency  expressed
in Hz in the daytime ionosphere. At a frequency of
400 MHz, this quantity is at most 0.6 Hz. Figure 1c

shows the ionospheric transmission bandwidth 

in MHz. The value of  is doubled as the angle 

increases from 1ο to 89ο. As the frequency increases, 

grows according the formula , where the

parameter  is inversely proportional to the integral

electron density on the path .

Figure 1d shows the width  of the angular spec-
trum of radio waves (in microradians) for a signal

bandwidth of 1 MHz. The quantity  exhibits a pro-
nounced dependence on . At a frequency of

400 MHz,  reaches 10 μrad at  and then

decreases by three orders of magnitude at .

4. The results obtained above are of theoretical and
practical importance. Relying on them, the impulse
transfer function can be used to compute signal prop-
agation through dispersive media, in lines of radio
communication, radio navigation, and radio control,
and in other information channels. Dependences of
the transmission bandwidth, Doppler shift, and the
width of the radio wave spectrum on the navigation
satellite–Earth path were determined. Two new equa-
tions for Laplace transform inversion were obtained
using the duality principle and the parametric method
of analytic continuation. The inverse transform satis-
fies the causality principle. The impulse response of a
dispersive medium shows that the signal velocity can-
not exceed the speed of light.

The features of the obtained transforms as applied
to modulated signals propagating through inhomoge-
neous media with various types of dispersion will be
studied in a future publication.
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