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Long-range perturbation of helical edge states by nonmagnetic defects
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We study the electronic states that are formed due to the tunnel coupling between helical edge states (HESs)
and bound states of nonmagnetic point defects in two-dimensional topological insulators in the general case of
broken axial spin symmetry. It is found that the coupling of HESs and a single defect leads to the formation of
composite HESs composed of the bound states and a set of the conventional HESs. Their spectral density near
the defect has a resonance shifted relative to the energy level of the bound state. But of most importance is a
long-range perturbation of the HESs around the defect, which is a cloud consisting of both Kramers partners
of conventional edge states. Therefore each of the composite HESs contains both the right- and left-moving
conventional HESs. The amplitude of this perturbation decreases inversely with the distance from the defect.
In a system of many defects, this perturbation leads to a long-range coupling between bound states of different
defects mediated by the HESs and causes amazing effects. We study these effects for a two-defect system where
the proposed mechanism of indirect coupling leads to a splitting of the resonances of isolated defects even if the
distance between them is very large. As a result an asymmetric structure of two-peak resonance arises that very
unusually changes with the distance between the defects.
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I. INTRODUCTION

Helical edge states (HESs) with a gapless spectrum are a
hallmark of quantum spin-Hall systems that have attracted
much interest over a decade [1–3] starting from pioneering
prediction of HESs [4–6] and their experimental observation
[7]. HESs are a pair of counterpropagating, spin-polarized
channels located at the edges of the sample in which the spin
of an electron is locked to its momentum. Since the system
is symmetric with respect to the time reversal, HESs are a
Kramers doublet and therefore elastic scattering of electrons
in these states is impossible [1–3,8,9]. However, experiments
show that in reality backscattering does occur in the absence
of magnetic impurities and the rate of this process is much
higher than might be expected [10–12]. A physical mecha-
nism that would explain quantitatively or at least qualitatively
the observed suppression of conductivity has not yet been
established, though it is evident that two factors are important:
the presence of impurities or other structure defects and
breaking the axial spin symmetry due to spin-orbit interac-
tion (SOI). Difficulties in solving this problem are probably
associated with a lack of understanding of how electrons in
edge states interact with nonmagnetic defects. This motivated
us to study in more detail the electronic structure and spin
texture of the edge states coupled to isolated nonmagnetic
defects in two-dimensional (2D) topological insulators (TIs)
with broken axial spin symmetry.

In the absence of axial spin symmetry, the spin is not
a good quantum number, and the eigenstates are classified
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by their Kramers index that determines also the direction of
motion. In the framework of a minimal four-band model, such
as the model of Bernevig, Hughes, and Zhang (BHZ) [13],
they are described by fourth-order spinors with a certain set
of two spin and two orbital (pseudospin) components. Such
helical states are often called generic ones [14].

In TIs with isolated defects, there are two types of generic
states with the energy within the band gap. First, there are
HESs that are localized near the edge and have a well defined
projection of the momentum along it. They were widely
studied in the literature [14–16]. The second type of generic
states is bound states induced by point defects and impurities.
The presence of the bound states is important, since they are
formed in almost any potential of the defect [17–19], unless it
is too smooth or too small. For the systems with broken axial
spin symmetry these types of states are not so widely studied.
Their spectrum and spinor wave function were calculated only
in some specific cases [15,20,21].

An interesting situation arises when a defect is located
close to the edge, and the bound states interact with a contin-
uum of edge states. In essence, this situation is similar to the
configuration interaction of localized states with a continuum
in the Fano-Anderson theory [22,23]. Previously, we showed
that in this case new edge states are formed that flow around
the defect and have a resonance of local density of states
[24], but we did not study their electronic structure and, most
importantly, did not study these states under conditions of
broken axial spin symmetry, when a strong change in their
spin structure can be expected.

It is important that in systems with broken axial spin
symmetry, the spinor structures of the edge and bound states
are very different, if only because their spatial configurations
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are very different: Edge states move along a straight line while
bound states are circular. Therefore we can expect that the
coupling of these states will lead to a strong perturbation of
the continuum of edge states.

In this paper, we study the effects of the tunnel coupling
between HESs and one or more defects, using the general
restrictions imposed on the four-rank spinors of the edge and
bound states by the time reversal symmetry. Specific calcula-
tions, where necessary, are performed within the framework
of the BHZ model. We show that the coupling between
conventional HESs and bound states leads to the formation of
a Kramers doublet of propagating states, which are composed
of the bound states and a wide set of the conventional HESs.
The amplitude of these composite states in the vicinity of the
defect has a certain resonant structure. The set of the HESs
forms a cloud that extends far from the defect. In the case
of several defects, a new mechanism of an indirect coupling
between defects through the edge states appears, which can
couple the defects at large distance, giving rise to significant
changes in the structure of the resonances.

The structure of the paper is as follows. In Sec. II we
introduce the generic HESs and bound states and present a
theory of the composite HESs in the case where there is a
single defect. Section III is devoted to the composite HESs in a
system of two defects. Here we find the wave functions of the
composite HESs, introduce the notion of the indirect coupling
between defects mediated by edge states, study the spectrum
of the wave-function amplitude, and discuss the effects of
the indirect coupling. Section IV summarizes main results.
In Appendix A we derive an expression for the tunneling
Hamiltonian coupling the HESs and bound states. Appendix B
contains details of the calculation of the wave function for the
system of two defects coupled to HESs.

II. HELICAL EDGE STATES COUPLED TO A DEFECT

We begin with a short reminder of how HESs and bound
states are described in the 2D TIs with broken axial spin
symmetry within a four-band model, such as the BHZ model.

A. Helical edge states

HESs were studied in recent years [14–16,25] and their
main properties were understood. There are two sets of coun-
terpropagating HESs

�k,σ (x, y) = 1√
L

�̃k,σ (y) exp (ikx − iεk,σ t ), (1)

labeled by the momentum k and the Kramers index σ = ±,
which also indicates the propagation direction. Here x is the
coordinate along the edge, y > 0 is normal coordinate, εk,σ

is the energy, �̃k,σ is a four-rank spinor describing the y
dependence of the wave function, and L is a normalization
length.

The energies of the right- and left-moving HESs are related
to each other due to the time reversal symmetry

εk,σ = ε−k,−σ . (2)

The dependence of the energy on k is very close to linear,
εk,σ ≈ σvk, with v being velocity. The spinors �̃k,σ (y) with

opposite σ are also related as components of the Kramers
doublet. They can be written in the form:

�̃k,+(y) = �̃k (y) ≡

⎛⎜⎝ψ1,k (y)
ψ2,k (y)
ψ3,k (y)
ψ4,k (y)

⎞⎟⎠, �̃k,−(y) =

⎛⎜⎜⎝
−ψ∗

3,−k (y)
−ψ∗

4,−k (y)
ψ∗

1,−k (y)
ψ∗

2,−k (y)

⎞⎟⎟⎠.

(3)
In the literature, a simplified model is often used in which

the four-component wave function is effectively replaced by
a two-component one describing a state with spin rotated by
an angle that depends on the momentum [14–16]. In this way,
the essential features of the HESs are well captured for weak
SOI, if the HESs are considered as one dimensional. In our
case, this approach is not constructive, since it ignores the
dependence of the wave function on the normal coordinate
y, while it is important for us to calculate the overlap integrals
of the edge and bound states. In addition, the bound states, in
any case, are four-rank spinors.

The y dependence of the wave function is presented by a
sum of four exponentially decaying terms, in accordance with
the order of the differential equations describing �̃k,σ (y):

ψi,k (y) =
∑
j=1,4

Ci, j (ε, k)e−κ j y , (4)

where κ j (ε, k) is a complex value with positive real part. The
coefficients Ci, j are determined by a system of four linear
equations, which follows from the corresponding Schrödinger
equation. The determinant of this system gives the dispersion
equation defining εk,σ for the HESs. We use this procedure
for specific numerical calculations of the wave functions and
matrix elements.

B. Bound states

Bound states in the presence of SOI are studied much less
than HESs. They were studied mainly by numerical calcu-
lations for a number of specific situations, such as defects
with a short-range potential [20], a Coulomb impurity in a
quantum dot [21], and a quantum disk of large radius [15].
Nevertheless, it is clear that there is a set of states �n,λ

characterized by a quantum number n, which indicates the
energy level, and the Kramers index λ = ±. Further in this
paper, for simplicity, we restrict ourselves to one (ground)
energy level ε0 and the corresponding Kramers doublet of
states which can be written in the form

�+(r, ϕ) =

⎛⎜⎝ φ1(r)
iφ2(r)e−iϕ

iφ3(r)e−iϕ

φ4(r)

⎞⎟⎠, �−(r, ϕ) =

⎛⎜⎝ iφ∗
3 (r)eiϕ

−φ∗
4 (r)

φ∗
1 (r)

−iφ∗
2 (r)eiϕ

⎞⎟⎠,

(5)
where r and ϕ are polar coordinates with the center at the
defect. These wave functions obviously describe states circu-
lating clockwise and counterclockwise around the defect. The
functions φi(r) are defined by straightforward solution of the
Schrödinger equation, which can be performed numerically.
Such calculations will be required in what follows for quan-
titative estimates. They will be carried out for a defect with a
short-range potential using the previously developed method
[18,20,24].
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FIG. 1. A point defect coupled to HESs and the electron transi-
tions mixing the HESs and the bound states.

C. Helical edge states coupled to a defect

When the HESs are coupled to a defect located at some
distance from the edge, the total system can be described by
the tunneling Hamiltonian

H =
∑
k,σ

|k, σ 〉εk,σ 〈k, σ | +
∑

λ

|λ〉ε0〈λ|

+
∑
k,σ,λ

(|k, σ 〉wk,σ ;λ〈λ| + H.c.) , (6)

where the first term is the HES Hamiltonian, the second term
is the Hamiltonian of the bound states with the energy ε0, and
the third term is the Bardeen’s tunneling Hamiltonian. The
sketch of a defect coupled to HESs and tunnel transitions are
shown in Fig. 1.

1. Tunneling matrix

In contrast to the case when the z projection of the spin is
well defined, the tunnel matrix is not diagonal in the Kramers
indices σ and λ. Therefore, the tunneling Hamiltonian mixes
the right and left-moving HESs with both Kramers partners
of the bound states. The tunneling matrix wk,σ ;λ satisfies the
relation

wk,σ ;λ = σλw∗
−k,−σ ;−λ , (7)

which follows from the time reversal symmetry.
In what follows, in addition to the general relation (7),

we will need a more detailed idea of how the matrix wk,σ ;λ

depends on k. This information can be obtained using the ex-
plicit form of the tunneling Hamiltonian. We have shown that,
under fairly general assumptions, the tunneling Hamiltonian
coupling the HESs and the defect simply coincides with the
bulk Hamiltonian of the 2D TI. The proof of this statement is
given in Appendix A.

As a model for specific calculations we will use the BHZ
model [13] with SOI caused by the bulk inversion asymmetry
[26]. Therefore the matrix elements wk,σ ;λ will be calculated
using the BHZ Hamiltonian. Details of the model and calcu-
lation method are also given in Appendix A.

It is clear from Eq. (7) that only two components of the
tunneling matrix, wk,+;+ and wk,+;−, are independent. They
describe the tunnel transitions between one of the Kramers
components of the HESs and the components of the Kramers
doublet of the bound states. In the limiting case of the weak
SOI (� � |M|, with M being the mass term in the BHZ model
and � being the SOI parameter), one can roughly say that the

FIG. 2. Tunneling matrix elements wk,+;+ and wk,+;− as func-
tions of the HES energy. The matrix elements are normalized to |M|
and shown without the normalization length factor L−1/2. Numerical
parameters used in the calculations are � = 0.3|M|, a = 5, d =
12

√
B/M.

matrix element wk,+;+ describes the transitions with the same
spin, and wk,+;− describes the spin flip transitions. We have
studied the matrix elements wk,+;+ and wk,+;− as a function
of k.

The main parameters of the model, which largely deter-
mine the spin-flip transitions, are the SOI parameter �/|M|
and the parameter A of the band hybridization, which is also
normalized a = A/

√|BM|. In many cases, the parameter a
plays the essential role since it determines the edge state ve-
locity and one of the two lengths of the edge-state penetration
deep into the sample.

The calculations show that the k dependence of the tun-
neling matrix elements significantly varies with position of
the defect relative to the edge, d . This is because the dif-
ferent components of the spinors �̃k,σ and �λ vary with
the coordinate y differently. Nevertheless, there is a general
pattern: Matrix elements increase when the energy of the
HESs ε approaches the edges of the gap due to an increase
in the length of the HES penetration into the bulk. But when
the energy enters the band, the matrix elements fall sharply,
because the penetration length diverges and the HES disap-
pears. This general regularity can be significantly distorted
by an asymmetry of wk,+;± with respect to the sign of k,
which appears because of the k dependence of the spinor
components. The asymmetry is the strongest for spin-flip
transitions.

The results of the calculations are illustrated in Fig. 2
for the model parameter a = 5, which is close to that of
HgTe/CdHgTe heterostructures, and � = 0.3|M|, which is
a reasonable theoretical estimate of � [27,28]. The distance
from the defect to the edge is d = 12

√
B/M, where

√|B/M|
is the characteristic length of the BHZ model, which charac-
terizes also the localization of the bound states. The energy
level of bound states depends on the potential of the defect
and can be located anywhere inside the band gap. The results
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shown in Fig. 2 are obtained for the energy level near the Dirac
point.

It is seen that both components of the tunneling matrix
are of the same order of magnitude and hence the Kramers
doublets of the edge and bound states are very effectively
mixed. Of course, such strong mixing occurs when the SOI is
strong. In the first approximation, the mixing matrix element
is linear in �.

2. Wave functions

Eigenfunction � of the Hamiltonian (6) can be constructed
in the basis of the HESs and the bound states

� =
∑
k′,σ ′

Ak′,σ ′ |k′, σ ′〉 +
∑
λ′

Bλ′ |λ′〉 . (8)

From the stationary Schrödinger equation H� = E� we get
the following equation system for the coefficients Ak,σ and Bλ:

εk,σ Ak,σ +
∑
λ′

wk,σ ;λ′Bλ′ = E Ak,σ , (9)

ε0Bλ +
∑
k′,σ ′

w∗
k′,σ ′;λAk′,σ ′ = E Bλ. (10)

The equations are solved by the methods of the theory of
the Fano-Anderson model [22,23]. In this way we arrive at the
following two wave functions:

�λ = �λ + 1

v

∑
σ ′

∑
k′

P wk′,σ ′;λ

K − σ ′k′ �k′,σ ′

+ ZK
∑
σ ′

wσ ′K,σ ′;λ �σ ′K,σ ′ , (11)

where P denotes the principal value, K = E/v is the wave
vector of the edge states with the energy E (for simplicity we
put h̄ = 1 hereinafter), and

ZK = E − ε0 − �K
FK

. (12)

Here the self-energy function �K is

�K = 1

v

∑
k′

P |wk′,+;+|2 + |wk′,+;−|2
K − k′ , (13)

and

FK = |wK,+;+|2 + |wK,+;−|2 . (14)

We expect that there should be two wave functions of the
edge states coupled to the defect �K,R and �K,L, correspond-
ing right- and left-moving states. They satisfy the following
conditions at infinity:

�K,R

∣∣∣
x→∞

= Const �K,+, (15)

�K,L

∣∣∣
x→−∞

= Const �K,−. (16)

To satisfy these boundary conditions, the wave functions �K,R

and �K,L are represented as a linear combination of the
functions �λ:

�K,R(L) =
∑
λ′

Bλ′,R(L)�λ′ . (17)

The coefficients Bλ′,R(L) are easy to find from Eqs. (15) and
(16), and we get the following expressions for the right- and
left-moving wave functions

�K,R = BK

{
w∗

K,+;+�+ + w∗
K,+;−�− + FKZK�K,+

+ FK
v

∑
k′

P
[
ρ1(K, k′)
K − k′ �k′,+ + ρ2(K, k′)

K + k′ �k′,−

]}
,

(18)

�K,L = BK

{
−wK,+;−�+ + wK,+;+�− + FKZK�−K,−

− FK
v

∑
k′

P
[
ρ∗

2 (K,−k′)
K − k′ �k′,+−ρ∗

1 (K,−k′)
K + k′ �k′,−

]}
,

(19)

where

ρ1(k, k′) = (w∗
k,+;+wk′,+;+ + w∗

k,+;−wk′,+;−)/Fk, (20)

ρ2(k, k′) = (w∗
k,+;−w∗

−k′,+;+ − w∗
k,+;+w∗

−k′,+;−)/Fk . (21)

Straightforward calculations show that the wave functions
�K,R(L) satisfy orthogonality relations

〈�K,R(L)|�K′,R(L)〉 = δK,K′ , 〈�K,R|�K′,L〉 = 0, (22)

and the amplitude BK is

BK = 1

FK

√
Z2
K + (L/2v)2

= 1√
(E − ε0 − �K)2 + γ 2

K

,

(23)

with γK = LFK
2v

. The functions ρ1,2 have an important prop-
erty:

ρ1(k, k) = 1, ρ2(k,−k) = 0 , (24)

which follows from the symmetry relations for the tunneling
matrix (7). Due to this property, the wave functions �K,R(L)

have the following asymptotic behavior

�K,R

∣∣∣
x→±∞

� e∓iφK �K,+ , (25)

�K,L

∣∣∣
x→±∞

� e±iφK �K,− , (26)

where φK is the phase that the wave function acquires when
an electron passes the defect,

tan φK = γK
E − ε0 − �K

. (27)

Thus, the composite wave functions �K,R(L) exactly corre-
spond to the definition of the right- and left-moving states at
infinity.

Now it is interesting to clarify how the composite wave
functions are arranged at a finite distance from the defect.
Equations (18) and (19) show that �K,R(L) contain three
components:

(1) a short-scale component localized at the defect,
(2) a long-scale component extending far away from the

defect and vanishing at infinity,
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FIG. 3. Sketch of the spatial dependence of the wave function
components: the short-scale component that is the bound state �,
and the long-scale component that is the cloud formed by the left-
and right-moving conventional HESs.

(3) a propagating component defined by the asymptotics
(26). The spatial arrangement of the short-scale and long-scale
components along the edge is schematically shown in Fig. 3.

The short-scale component is composed of bound states
that are localized directly near the defect. For the right-moving
states

�
(bound)
K,R = BK

(
K,+; +∗�+ + w∗

K,+;−�−
)
, (28)

and similarly for the left-moving states.
The propagating component is formed by the third terms

and the nonzero asymptotic part of the fourth term at |x| → ∞
in Eqs. (18) and (19). For the right-moving states

�
(prop)
K,R = BKFK

[
ZK�K,+ + 1

v

∑
k′

P 1

K − k′ �k′,+

]
, (29)

and similarly for the left-moving ones.
The long-scale component, which we call the cloud, is

formed by the remaining part of the fourth terms in Eqs (18)
and (19). So, in the right-moving composite state, the cloud is
described as follows:

�
(cloud)
K,R = �

(cloud)
+ + �

(cloud)
−

= BKFK
v

∑
k′

P ρ1(K, k′) − 1

K − k′ �k′,+

+ BKFK
v

∑
k′

P ρ2(K, k′)
K + k′ �k′,− . (30)

The cloud is seen to consist of both Kramers partners of the
conventional HESs.

The dependence of the cloud component of the wave
function on the coordinate along the edge can be estimated
using the asymptotics of the integrals in Eq. (30). This is easy
to do, since matrix elements wk,σ ;λ, as functions of k, have
no singularity and vanish at infinity. In addition, according to
Eq. (24) the functions ρ1(K, k′) − 1 and ρ2(K, k′) are equal to
zero in the points where the denominator is zero. Therefore,
the integrands are regular functions and we have

�
(cloud)
±

∣∣∣
|x|→∞

∝ b±(K, Kc)
eiKcx

x
− b±(K,−Kc)

e−iKcx

x
, (31)

where Kc is a cutoff momentum corresponding to the energy
above which wk,σ ;λ drops as shown in Fig. 2. The value
of Kc is determined by the band gap (more precisely, by a

slightly higher energy) and equals approximately Kc ≈ |M|/v.
The function b±(K, Kc) is a four-rank spinor that depends on
two arguments. The explicit expression for b±(K, q) is rather
cumbersome, but it is important that b± is not zero, and its
dependence on K is determined by the matrix elements wk,σ ;λ

and functions �̃k,σ . More detail analysis shows that �
(cloud)
±

can be roughly approximated as

�
(cloud)
±

∣∣∣
|x|→∞

∝ b̃±(K)
sin(Kcx)

x
. (32)

The energy dependence of the cloud amplitude is deter-
mined mainly by the factor BK defined by Eq. (23). The
amplitude has a resonance at the energy E (res) = ε0 + �K.
The resonance energy is shifted by the self-energy �K from
the bound state energy, as usually in the Fano-Anderson model
[23]. The width of the resonance γK is determined by all com-
ponents of the tunneling matrix, therefore the participation of
the spin-flip transitions increases its width.

Of great interest is the fact that in the vicinity of the defect
there is a fairly wide cloud of the conventional HESs with
opposite Kramers indexes. In a sense, it could be said that
due to the tunnel coupling of HESs and a defect, spin flip-
ping or backscattering of conventional HESs occurs, but the
“backscattered” component with the flipped spin disappears
at infinity.

The amplitude of the cloud with the flipped spin can be
quite large. Asymptotically, it is estimated as

�
(cloud)
+→− ∼ BK

√
L

πv
(w++w′+− − w′++w+−)∗�̃−(y)

sin Kcx

x
,

(33)
where w+± is an averaged value of wk,+;± over the interval
[−Kc, Kc], w′+± is an averaged k derivative of wk,+;±, and

�̃− is averaged �̃k,−. In the resonance, the cloud amplitude is

�
(cloud)
+→−

∣∣∣∣
res

∼
(
w++w′+− − w′++w+−

)∗

|wK,+;+|2 + |wK,+;−|2 �̃−(y)
sin Kcx

x
.

(34)
It is clearly seen that the maximum amplitude of the

cloud is determined by the factor, which depends not only on
the magnitude of the tunneling matrix elements but on their
derivatives with respect to k. Particularly, the cloud disappears
if the tunneling matrix does not depend on k. If we evaluate
this factor using the data of Fig. 2, it turns out to be about 0.2.

Thus, the cloud of the spin-flipped HESs is large enough to
produce quite noticeable effects at a finite distance from the
defect. In particular, nontrivial effects can arise in a system
of many defects located near the edge. In the next section we
show that defects can interact with each other through the edge
states at a large distance exceeding very much the radius of the
localization of the bound states.

III. COUPLING BETWEEN DEFECTS THROUGH THE
EDGE STATES

In a system of several defects located near the edge, a
long-range perturbation of the edge states produced by each
defect affects the bound states located at other defects. Thus,
interaction between defects becomes possible, even if they
are located at a large distance from one another, exceeding
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FIG. 4. Indirect coupling between two defects through HESs.

the characteristic length of their direct coupling, which is
determined by the overlap of their wave functions. The idea of
this effect, in a sense, stems from two well-known effects: the
configuration interaction of a localized state and a continuum
[22], and the RKKI indirect exchange interaction of magnetic
moments [29]. In this section we study this mechanism of
indirect coupling for two defects, which allows one to find
out main effects of this interaction.

Consider two, in the general case, different defects, located
near the edge at a distance l from one another along the
edge, Fig. 4. For simplicity, we assume that the distance l is
sufficiently large, so that the overlap of the wave functions of
states localized at different defects is negligible, and that each
defect has only one energy level.

The Hamiltonian of the system is

H =
∑
k,σ

|k, σ 〉εk,σ 〈k, σ | +
∑

λ

|λ〉ε1〈λ| +
∑

μ

|μ〉ε2〈μ|

+
∑
k,σ,λ

(|k, σ 〉wk,σ ;λ〈λ| + H.c.)

+
∑
k,σ,μ

(e−ikl |k, σ 〉uk,σ ;μ〈μ| + H.c.), (35)

where |λ〉 and |μ〉 are Kramers pairs of the bound states at
the different defects with the energy levels ε1 and ε2, and
wk,σ ;λ and uk,σ ;μ are matrix elements describing the tunnel
coupling of the corresponding defect and the HESs. The
factor e−ikl takes into account the displacement of the defects
relative to each other by a distance l along the axis x. This
form of the coupling Hamiltonian implies that the tunneling
matrix for each defect are calculated in the coordinate system
centered on this defect. In the Hamiltonian (35) we neglect
the direct tunnel coupling between the bound states |λ〉 and
|μ〉, assuming that the distance l far exceeds the characteristic
length of the localization of their wave functions, which is of
the order

√|B/M| in the BHZ model.

A. Wave functions of combined HESs

Now we find the eigenfunctions of the Hamiltonian (35).
This problem is solved in the same way as it was done for a
single defect in Sec. II C, but the calculations are more com-
plicated and cumbersome. The basic idea of the calculations
with some details is given in Appendix B.

Results of these calculations are as follows. There are
two Kramers conjugate eigenfunctions describing right- and
left-moving composite HESs. The wave function of a right-
moving HES composed of two bound states and conventional

HESs reads

�K,R = CK,R

{∑
λ

βλ�λ +
∑

μ

γμXμ

+ ZKG+(K,K)�K,+ +
∑

σ

∑
k

P Gσ (K, k)

E − σvk
�k,σ

}
,

(36)

where �λ and Xμ are the wave functions of the bound states
located at different defects and CK,R is the normalization
constant

CK,R = 1

|G+(K,K)|
√

Z2
K + L2

4v2

. (37)

Though equations for the wave function and the normalization
constant are similar in form to the corresponding equations in
the case of single defect, there are the following important
differences.

First, the function ZK, which largely determines the reso-
nance energy, has now a more complicated form

ZK = �1�2 − |�3|2 − |�4|2
�1F2 + �2F1 + 2Re[�3F ∗

3 + �4F ∗
4 ]

, (38)

where

�1,2 = E − ε1,2 − �1,2 (39)

is the energy difference between the eigenenergy E of the
state and the resonant energy of the respective defect, if it is
considered as isolated. The quantities �1,2 are the correspond-
ing self-energies of the isolated defects defined by Eqs. (B8)
and (B9), and �3,4 are new characteristic energies that appear
in the two-defect system. They are given by Eqs. (B10) and
(B11). Four quantities F1,2,3,4 are given by Eqs. (B12)–(B15)
in Appendix B.

Second, the function Gσ (K, k) of two arguments appears
instead of function ρ1,2(K, k). It is defined as

Gσ (K, k) =
∑

λ

βK,λwk,σ ;λ + e−ikl
∑

μ

γK,μuk,σ ;μ , (40)

where the functions βK,σ and γK,σ are given in Appendix B.
The function Gσ (K, k) plays an important role, since it

defines the asymptotics of the wave functions of the right- and
left-moving composite states:

�K,R �CK,R

[
ZK − iL

2v
sgn(x)

]
G+(K,K)�K,+ , (41)

�K,L �CK,L

[
ZK + iL

2v
sgn(x)

]
G−(K,−K)�K,+ . (42)

The wave function of the left-moving composite states differs
from Eq. (36) by the obvious replacement of the signs of K
and σ .

B. Spectrum of the wave function amplitude

Of greatest interest is the study of the spectral dependence
of the wave function amplitude in the region where the defects
are located, since it is this quantity that substantially depends
on the interactions we are considering. First of all, it is
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FIG. 5. Amplitude CK,R of the helical edge state coupled to two
defects as a function of the energy for two distances l between
the defects. The energy is normalized to |M| and the distance is
normalized to

√
B/M. Inset shows the tunneling matrix elements

used in the calculation as a function of the energy.

important to study the situation when the defects are identical.
In this case, in the absence of interaction between the defects,
one can expect that the amplitude will have a resonance
similar to the resonance of a single defect. In this section, we
show that in fact the spectrum completely changes and in a
very unusual way depends on the distance between defects.

If the defects are identical, the above equations are some-
what simplified due to the fact that uk,σ ;μ = wk,σ ;μ and ε1 =
ε2 = ε0. Direct calculations of the amplitude CK,R as a func-
tion of the energy E with using Eq. (37) lead to results shown
in Fig. 5 for the parameters used in the calculation of the
tunneling matrix of Fig. 2. Similar results were obtained also
for a wide range of the model parameters.

Analytical analysis shows that the general form of the
spectrum of CK,R does not change substantially with varying
the tunneling matrix. It is only important that wk,σ ;λ has no
singularities as a function of k and vanishes outside the band
gap. The main feature of the spectrum is that there are two
peaks of resonances, which are generally asymmetric. Their
position, form, and asymmetry change with varying wk,σ ;λ and
distance l between the defects. This conclusion is confirmed
by numerical calculations for a wide range of parameters.

The origin of the main features of the amplitude spectrum
can be understood from the analysis of the factor [Z2 +
(L/2v)2]−1/2 in Eq. (37), which plays a key role. The ampli-
tude is roughly approximated by the following expression

CK ∝ 1√
Z2
KF 2

K + γ 2
, (43)

which is quite similar to Eq. (23) for the case of a single
defect. But now ZK has the form

ZK = �2 − �2
34

2FK(� + W34)
, (44)

where two important quantities are introduced, �34 and W34,
which characterize the indirect coupling between defects.

The quantity �34 is defined as

�2
34 = |�3|2 + |�4|2 , (45)

which resembles in form a self-energy function, if we look at
Eqs. (B10) and (B11), but refers to two coupled defects, since
it contains products of the matrix elements of both defects and
the distance between them. Another characteristic energy is

W34 = Re[�3F ∗
3 + �4F ∗

4 ] , (46)

which also is determined by the products of the matrix ele-
ments wk,σ ;λ and uk,σ ;μ, and distance l .

Thus CK reads

CK ∝ |� + W34|√(
�2 − �2

34

)2 + 2γ 2(� + W34)
. (47)

Comparison with the numerical calculation carried out using
Eq. (37) shows that Eq. (47) correctly describes the position
of the resonances, and the factor G+(K,K) affects the shape
outside the peaks, in many cases significantly.

To better understand how the characteristic energies �34

and W34 affect the amplitude spectrum, we consider a sim-
plified case when γ � |�34|, which really takes place, as
will be seen later. In this case, it is clear that the resonances
arise when �

(res)
1,2 ≈ ±|�34|, which corresponds to the energy

E (res)
1,2 = ε0 + �K ± |�34|, where �K is defined by Eq. (13).

Thus, �34 describes the shift of the resonances one relative to
the other. The energy W34 makes the shape of the resonances
asymmetric, in particular, asymmetrically changes their height
and width.

Finally, we note that the fact that CK vanishes at the energy
E = ε0 + �K − W34 does not mean that the wave function
also vanishes. The matter is that the expression in braces in
Eq. (36) has a singularity at this point, so that the wave func-
tion remains finite. This is most easily shown by the example
of asymptotic behavior, Eqs. (41), (42). Using Eqs. (37) and
(44) it is easy to see that at the point � + W34 = 0, �K,R does
not vanish.

C. Discussion

Since �34 determines the energy splitting of the resonances
of isolated defects, this quantity can be interpreted as a self-
energy function of the indirect coupling between the defects,
although this term may not be very precise. Therefore, it
is interesting to find out how �34 depends on the distance
between the defects.

With this goal, we should turn to Eqs. (B10) and (B11) that
define �3 and �4. Since in both equations the integrands have
a singularity at vk′ = E and contain the exponential factors
exp(±iKl ), we can expect that �3 and �4, as functions of
the energy, have two oscillating components, one of which
oscillates with the wave vectors K and the other with Kc. The
relative contribution of both components depends on the spe-
cific form of wk,σ ;λ as functions of k. Numerical calculations
carried out with using the tunneling matrix wk,σ ;λ shown in
the inset of Fig. 5 lead to the results presented in Fig. 6(a).
Qualitatively similar results were obtained for other models
of wk,σ ;λ we considered.

It is interesting that �34 varies with the distance l quite
differently than the cloud component of the wave function of
an isolated defect. The energy �34 oscillates with the distance,
approaching a finite constant value in the limit of large l , while
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FIG. 6. (a) The self-energy of the indirect configuration interac-
tion �34 and (b) the energy W34, which determines the asymmetry
of the resonances, as functions of the distance l between the defects
for different values of the energy E . For better viewing, the lines in
the panel (a) are shifted upwards by 0.01 in series with increasing
energy. The energy is normalized to |M|, the distance is normalized
to

√
B/M.

the amplitude of the cloud tends to zero as Eq. (31) shows. In
addition, the form of the oscillations is also different. This
is due to the fact that the cloud is strongly changed in the
presence of two defects. In this case, the composition of the
HESs forming the cloud changes radically since new types of
transitions appear that also perturb the HESs. These are the
transitions between the defects through the HESs. Therefore,
the cloud in a two-defect system is not just a superposition of
clouds of isolated defects. Our analysis shows that the limiting
value of �34 at l → ∞ can be estimated as

�34 ∼ π2(|w+,+|2 + |w+,−|2)(|u+,+|2 + |u+,−|2) , (48)

where the line over w and u means the averaging over k in the
band gap.

Of course, the distance up to which the indirect coupling
acts is really limited by phase decoherence processes that were
not taken into account. This is clear from the fact that the
characteristic energies �3,4 substantially depend on the phase
shift that the HESs acquire between the defects. This phase
shift is described factors exp[±iKl] in Eqs. (B10) and (B11).
Decoherence processes add a random phase that destroys the
long-range coupling of defects.

FIG. 7. (a) The indirect coupling energies �34 and W34 as func-
tions of the energy E of the state. The distance between defects is
l = 50

√
B/M, the energy is normalized to |M|. For comparison, the

self-energy �K of a single defect coupled to HESs is also shown.

Another characteristic energy of the indirect coupling W34,
that determines the asymmetry of the resonances, also oscil-
lates with the distance l but tends to zero at infinity, Fig. 6(b).
Asymptotically, at l � 1, W34 is approximated as

W34 ∼ −4π (|w+,+|2 + |w+,−|2)(|u+,+|2 + |u+,−|2)

× Kc sin Kcl sinKl + K cos Kcl cosKl(
K2

c − K2
)
l

. (49)

The indirect coupling energies �34 and W34 depend also on
the energy E of the state. This dependence is shown in Fig. 7
in the case of tunneling matrix of Fig. 5. It is seen that the
energy dependence of �34 and W34 is smooth on the scale of
γ , as we supposed.

In addition, Figs. 6 and 7 demonstrate that the self-energy
component �34 really far exceeds W34. The significance of
the indirect coupling energies can be estimated by comparing
them with the self-energy �K of a single defect coupled to
the HESs, which is also shown in Fig. 7. As can be seen,
�34 exceeds �K for reasonable values of the tunneling matrix
elements and distance l .

IV. CONCLUSION

We have studied the electronic states that are formed in a
2D TI as a result of the tunnel coupling of HESs and bound
states localized at nonmagnetic point defects, in the general
case when the axial spin symmetry is broken due to SOI.
Like conventional HESs, the composite HESs are classified
as moving to the right and left, but differ significantly in their
electronic structure in an energy region near the resonances
associated with the levels of the bound state. A composite
HES with an energy E is composed not only of the conven-
tional HES with the wave number E/v, which falls on the
defect from infinity and then goes to the opposite infinity,
and the bound states on the defect. It contains also a set of
the conventional HESs with wave vectors in a wide range
of energy that form a cloud around the defect with a quite
large amplitude near the resonance. The cloud extends over a
considerable distance from the defect. Its amplitude decreases
with distance asymptotically as 1/x.
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Of great interest is the fact that in systems with broken
spin symmetry, the cloud consists of both Kramers partners of
the conventional HESs. This means that, for example, a right-
moving composite HES contains a cloud of the conventional
HESs with the Kramers index (in other words, spin structure)
of the left-moving conventional HESs. Since at infinity, the
spinor structure of composite and conventional right-moving
HESs is the same, one can say that due to the tunnel coupling
to the defect, a spin flip or backscattering occurs around the
defect. The cloud of spin-flipped states exists only when the
axial spin symmetry is broken. If there is no SOI, the cloud, of
course, also exists, but it is composed only of the HESs with
the same spin as the wave at infinity.

The presence of the clouds is interesting in the follow-
ing aspects. First, the clouds can affect the electron-electron
interaction and scattering of electrons with energy near the
resonances. This problem requires a separate study. Secondly,
although the cloud disappears at infinity, it can create nontriv-
ial effects at a finite distance from the defect. One of these
effects has been studied here.

The effect arises in a system of many or several defects
located near the edge. The defects can interact with each
other through the edge states that they perturb. Since the
perturbation of the HESs produced by each defect is extended
over a large distance, an indirect coupling of the bound states
at different defects occurs even if their wave functions do not
overlap.

The indirect coupling has been studied for a system of
two defects coupled through the HESs. The most striking
effect occurs when the defects are identical. The indirect
coupling leads to a splitting of the resonance of the isolated
defects into two peaks, even if the distance between them
significantly exceeds the localization length of the bound
states. The magnitude of the splitting can be unexpectedly
large and reach tenths of the band gap under realistic con-
ditions. It is determined by the self-energy of the indirect
coupling �34, which depends in an unusual way on the dis-
tance between the defects. The splitting energy oscillates with
increasing the distance and tends asymptotically to a constant
value. The oscillations reflect an oscillating structure of the
cloud component of the perturbed HESs in the two-defect
system.

Another effect of the indirect coupling is an asymmetry of
the resonances, which vary in height and width. This feature
is described by another characteristic energy W34, which also
oscillates with the distance, but tends to zero with removing
the defects from one another. Of course, at extremely large
distance the indirect coupling disappears because of phase
decoherence processes not taken into account in this work.
The effects of the indirect coupling may turn out to be most
interesting for topologically nontrivial materials in which
scattering is suppressed.
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APPENDIX A: TUNNELING HAMILTONIAN

Here we propose a Hamiltonian describing the tunnel
coupling between HESs and bound states. Total Hamiltonian
of a bounded 2D system containing a defect can be written in
the form

H = Hbulk + U (y) + V (x, y − d ) , (A1)

where Hbulk is the Hamiltonian of 2D TI, U (y) is the Hamil-
tonian describing the presence of an edge at y = 0, and
V (x, y − d ) is the potential of a nonmagnetic defect located
at x = 0, y = d . To be specific we can consider U (y) as an
infinite wall described by a step function U (y) = U�(−y)
with U → ∞.

Following the Bardeen method [30], we divide the system
into two subsystems A and B coupled to each other:

H = HA + HB + W, (A2)

where HA = Hbulk + U (y) describes the bulk with the bound-
ary and HB = Hbulk + V (r) describes the defect in the un-
bounded TI, with r being the radial coordinate with respect
to the defect. Eigenfunctions of HA are HESs |k, σ 〉 and
eigenfunctions of HB are the bound states |n, λ〉 at the defect.

Equations (A1) and (A2) clearly show that the tunneling
Hamiltonian is W = Hbulk. As Hbulk we can take, for example,
the BHZ Hamiltonian.

Thus, the tunneling matrix elements are estimated as

wk,σ ;n,λ = 〈k, σ |Hbulk|n, λ〉 = εn〈k, σ |n, λ〉 − 〈k, σ |V |n, λ〉 ,

(A3)
where εn is the bound state energy with the quantum number
n added for generality. In Sec. II C we present the tunneling
matrix elements calculated straightforwardly in the frame
of the BHZ model with the SOI due to the bulk inversion
asymmetry.

The BHZ model presents the electronic states in the basis
(|e ↑〉, |h ↑〉, |e ↓〉, |h ↓〉)T , where |e〉 and |h〉 denote the elec-
tron and hole band states with spin up and down. In materials
with broken bulk inversion symmetry, the Hamiltonian reads
[13,26]

H =

⎛⎜⎜⎝
M−Bk2 Ak+ 0 −�

Ak− −M + Bk2 � 0
0 � M−Bk2 −Ak−

−� 0 −Ak+ −M+Bk2

⎞⎟⎟⎠ ,

(A4)
where M, A, B are well-known parameters of the model, � is
the SOI parameter, k is the momentum, k± = kx ± iky. The
wave functions of the HESs are calculated by the method
described in Sec. II A, and the bound-state wave functions are
calculated in the case of the short-range potential V (r) using
the method developed previously [18,20].

APPENDIX B: HELICAL EDGE STATES COUPLED TO
TWO DEFECTS

This section provides details of the calculation of the wave
functions for the system studied in Sec. II C, where we study
a system of two defects coupled to HESs. The system is
described by the Hamiltonian (35).
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The eigenfunctions of the Hamiltonian (35) are constructed
in the form

� =
∑
k′,σ ′

Ak′,σ ′ |k′, σ ′〉 +
∑
λ′

Bλ′ |λ′〉 +
∑
μ′

Cμ′ |μ′〉 . (B1)

Coefficients Ak,σ , Bλ, and Cμ are determined by the stationary
Schrödinger equation, from which it follows that Ak,σ is
related to Bλ and Cμ by the equation

Ak,σ = 1

E − εk,σ

[∑
λ

Bλwk,σ ;λ + e−ikl
∑

μ

Cμuk,σ ;μ

]
, (B2)

with
1

E − εk,σ

= P 1

E − εk,σ

+ ZKδk,σK . (B3)

Coefficients Bλ and Cμ are determined by a homogeneous
system of four linear equations with matrix

M =

⎛⎜⎝M1 0 M3 M4

0 M1 −M∗
4 M∗

3
M∗

3 −M4 M2 0
M∗

4 M3 0 M2

⎞⎟⎠ , (B4)

where

M1,2 = −�1,2 + ZKF1,2 , (B5)

M3,4 = �3,4 + ZKF3,4 , (B6)

and

�1,2 = E − ε1,2 − �1,2 . (B7)

Here

�1 =
∑

k′
P |wk′,+;+|2 + |wk′,+;−|2

E − vk′ , (B8)

�2 =
∑

k′
P |uk′,+;+|2 + |uk′,+;−|2

E − vk′ , (B9)

�3 =
∑

k′
P

uk′,+;+w∗
k′,+;+e−ik′l + u∗

k′,+;−wk′,+;−eik′l

E − vk′ , (B10)

�4 =
∑

k′
P

uk′,+;−w∗
k′,+;+e−ik′l − u∗

k′,+;+wk′,+;−eik′l

E − vk′ , (B11)

F1 = |wK,+;+|2 + |wK,+;−|2, (B12)

F2 = |uK,+;+|2 + |uK,+;−|2, (B13)

F3 = uK,+;+w∗
K,+;+e−iKl + u∗

K,+;−wK,+;−eiKl , (B14)

F4 = uK,+;−w∗
K,+;+e−iKl − u∗

K,+;+wK,+;−eiKl . (B15)

The requirement that the determinant of the matrix M be
equal to zero gives the equation

M1M2 − |M3|2 − |M4|2 = 0 (B16)

that allows one to determine ZK. The analysis of this equation
shows that there is a single root which is presented by Eq. (38)
in Sec. III A.

As a result of fairly simple but cumbersome calculations of
the coefficients Ak,σ , Bλ, and Cμ, we arrive at Eq. (36) for the
wave function which is presented in Sec. III A. In this equation
the wave function is expressed in terms of auxiliary functions
βK,σ and γK,σ :

βK,+ = (|M3|2 + |M4|2
)
w∗

K,+;+

− M1
(
M∗

3 uK,+;+ + M4u∗
K,+;−

)
eiKl , (B17)

βK,− = (|M3|2 + |M4|2
)
w∗

K,+;−

+ M1
(
M∗

4 uK,+;+ − M∗
3 u∗

K,+;−
)
eiKl , (B18)

γK,+ =M1
(
M1u∗

K,+;+eiKl + M4w
∗
K,+;− − M∗

3 w∗
K,+;+

)
,

(B19)

γK,− = M1(M1u∗
K,+;−eiKl

− M3w
∗
K,+;− − M∗

4 w∗
K,+;+) . (B20)
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