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1. Introduction

Bound electron pairs (BEPs) appearing despite their Coulomb
repulsion have attracted a great deal of interest for a long time
mainly in connection with problems of superconductivity.[1–3]

But recently, a new direction of these studies has arisen related
to a possibility of Coulomb pairing of electrons in such modern
materials as topological insulators (TIs),[4] Dirac semimetals,[5]

graphene and bigraphene,[6–9] carbon nanotubes,[10] and 2D
systems with strong spin–orbit interaction.[11] Similar bound
states of two fermions are also studied in systems of cold atoms
in optical traps, where they are called doublons.[12–14]

An electron pairing in most systems is caused by the peculiari-
ties of the electronic spectrum, which results in a negative effec-
tive reducedmass of two particles. An idea of such a pairing dates
back to the work of Gross et al.,[15] in which BEPs formed by
quasiparticles with an energy near the maximum of the band
spectrum were observed. Further studies have shown that in
materials with a more complicated structure of electronic states,
the probability of a negative reduced mass to appear is much
higher. In these materials, the electronic states are characterized
not only by a spin, but also by atomic orbitals (pseudospin).
The minimal, four-band model contains two such orbitals.
The presence of orbital degree of freedom provides many oppor-
tunities for the formation of a negative effective reduced mass.

Therefore, many types of BEP states can
exist in TIs and graphene.

BEP is a new and as yet poorly studied
type of composite quasiparticles, which
can have quite unexpected properties.
BEPs are bosons with a charge 2e and a
spin 1 or zero with energies in a bandgap.
Therefore, BEPs can transfer the charge
and spin when band electrons do not.
Unusual collective phenomena can also
be expected in a system with BEPs, because
they are charged composite bosons. Thus,
the study of transport properties and collec-
tive phenomena arising due to BEPs is a

challenge. The first step to be taken in this direction is to find
out how long BEP can live.

In a recent article,[16] we developed a model of the BEP radia-
tive decay, which allowed us to estimate their intrinsic radiative
lifetime. But, an important question of how the repulsive
interaction of electrons in the final state into which the BEP
decays affects the probability of transition remains unclear.
In the problem of BEP decay, this interaction plays an important
role, because the spatial correlation of electrons in the final state
largely determines the overlap of the two-particle wave functions
of the initial and final states.

This question is specific for two-electron complexes, but does
not arise for excitons, because both quasiparticles disappear
upon decay of exciton. This is a feature due to which the decay
of BEP is very different from the decay of excitons, well studied in
the literature.[17–20] It can be expected that if the electron–electron
(e–e) interaction in the final state is repulsive, then the decay
probability decreases, but if the interaction is attractive, the decay
probability increases with increasing interaction strength. The
answer to the question of whether electrons attract or repel each
other is not trivial, because the relative motion of the particles in
the Coulomb field is determined by the reduced effective mass,
the sign of which depends on the orbital composition of the wave
function of the pair unbound electrons. The latter in its turn is
determined by solving the corresponding equation of motion.

In this article, we propose a detailed theory of radiative decay
of BEPs in 2D materials described by the four-band model of
Bernevig et al. (BHZ).[21] This is a rather general model, which
is applied to many materials in both topological and trivial
phases. We develop an approach to study the effect of the e–e
interaction on a pair of unbound electrons and the BEPs decay
rate. We come to two fairly general conclusions. First, pairs of
bound electrons decay much more slowly than excitons in direct
band semiconductors. This happens precisely, because the wave
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function of the final state is strongly delocalized. Second, the
interaction of electrons in an unbound state, into which the pair
transits after decay, leads to an ambiguous effect: it can both
increase and reduce the probability of the BEP decay.

The structure of the article is as follows. In Section 1, we
describe briefly both bound and unbound two-electron states
involved in BEPs radiative decay. Section 2 presents the study
of intrinsic radiative decay of BEPs. The Appendix gives the
details of the model and calculations.

2. Bound and Unbound Pairs of Interacting
Electrons

The two-electron problem is considered here for materials
described by the symmetric BHZ model.[21] The model presents
single-particle electronic states in the frame of the k ⋅ p theory
using four-band basis ϕ ¼ ðjE "i, jH "i, jE #i, jH #iÞT , where
jE "i and jE #i are the superpositions of the electron–hole
and light-hole states with the moment projection mJ ¼ �1=2;
jH "i and jH #i are the heavy-hole states with mJ ¼ �3=2.
The single-particle Hamiltonian that determines the spinor of
the envelope functions reads

Ĥ0ðk̂Þ ¼
�
ĥðk̂Þ 0
0 ĥ�ð�k̂Þ

�
(1)

ĥðk̂Þ ¼
�
M � Bk̂2 Ak̂þ
Ak̂� �M þ Bk̂2

�
(2)

where k̂ is the quasi-momentum operator, k̂þ ¼ k̂x þ ik̂y,
k̂� ¼ k̂x � ik̂y. A, B, and M are the BHZ model parameters:
A describes the hybridization of the electron and hole bands,
M is the mass term, and B is the parameter of the dispersion
in the electron and hole bands, which are assumed to be
symmetric. In the following, we use dimensionless units by
normalizing all energies to jMj and distances to ri ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffijM=Bjp
.

In the topological phase MB > 0 and the parameter,
a ¼ A=

ffiffiffiffiffiffiffiffiffiffiffijMBjp
essentially affects the dispersion in the conduc-

tion and valence bands: for a > 2, the band dispersion is
quadratic near the extremes with positive effective mass at the
conduction band bottom; for a ¼ ffiffiffi

2
p

, the band dispersion is
nearly flat at the extremes of the bands, and for a <

ffiffiffi
2

p
, the dis-

persion has a Mexican-hat shape.
The Hamiltonian of two interacting electrons has the form

Ĥð1, 2Þ ¼ Ĥ0ðk̂1Þ � Ĥ0ðk̂2Þ þ Vðr1 � r2Þ ⋅ Î16�16 (3)

where VðrÞ is a pair e–e interaction potential.
Two-particle wave functions are represented by a 16-rank

spinor that defines the envelope functions in the basis ϕ ⊗ ϕ.
Within the BHZ model, the relative motion and the motion of
the center-of-mass are not separable. Nevertheless, as the system
is translational-invariant, in the center-of-mass frame with
R ¼ ðr1 þ r2Þ=2 and r ¼ r1 � r2, the wave function can be written
in the form

ΨðR, rÞ ¼
X
m

Ψm,Kðr,φÞeimφ ⋅ eiKR (4)

where K is the total momentum of the pair, and the functions
Ψm,Kðr,φÞ describe the relative motion, with r and φ being polar
coordinates relative to the center of mass. For a given quantum
number m, there can be several functions corresponding differ-
ent radial quantum numbers.

In this article, we will focus on the case when, in the bound
state, K¼ 0, and the total momentum of the unbound electrons
is small, K� 1. This is justified, because the momentum of
unbound pairs of electrons is equal to the momentum of a
photon, which is very small. The calculation of bound states is
performed in the same way as in the previous study.[4] When cal-
culating unbound states, we consider the K-dependent part of the
Hamiltonian (3) as a perturbation.

As the Hamiltonian (3) does not contain any spin-dependent
terms, the z-component of the spin Sz is conserved. Therefore,
there are two kinds of eigenstates with different spins, which are
singlets with Sz¼ 0 and triplets with Sz¼�1. Because of the
spin conservation, the Schrödinger equation with Hamiltonian
(3) splits into uncoupled systems of equations for four-rank
spinors of the singlet and triplet states.[4]

Here, we consider, in detail, the singlet bound and
unbound states described by a spinor of the form
ΨsðrÞ ¼ ð0, 0,ψ3,ψ4, 0, 0,ψ7,ψ8ÞT in both trivial and topological
phases. The calculation of the wave functions Ψs is described in
Appendix A. Triplet wave functions are calculated in a similar
way, but the details of their calculation are omitted, because these
states, as we have found, do not interact with photons and, there-
fore, are dark.

The interaction potential is modeled by a step function

vðrÞ ¼ v0Θðr0 � rÞ (5)

where v0 and r0 are the amplitude and radius of the e–e interac-
tion potential.

It was found that there are two kinds of the singlet bound
states, which differ in the composition of their band orbitals.
In the BEPs of the first kind, both electrons are mainly in the
same band, namely, in the valence band for the repulsive inter-
action and in the conduction band for the attractive interaction.
In the BEPs of the second kind, both electrons are mainly in
different bands. Figure 1 shows the dependencies of the singlet
BEP energy on the amplitude v0 and radius r0 of the interaction
potential for both kinds of states.

The wave function of the ground states of the singlet BEPs
with the angular quantum number m¼ 0 can be written as
(the indexes m¼ 0 are omitted)

Ψs
bsðrÞ ¼ C½ψ3ðrÞðjE " E #i � jE # E "iÞ

þ ψ4ðrÞeiφðjE " H #i þ jH # E "iÞ
þ ψ7ðrÞe�iφðjH " E #i þ jE # H "iÞ
þ ψ8ðrÞðjH " H #i � jH # H "iÞ�

(6)

where C is a normalization constant.
Figure 2 and 3 show the results of numerical calculations of

the envelope functions ψ iðrÞ of the singlet BEP spinors of the
first and second kinds, respectively, with m¼ 0. The wave func-
tions of the singlet BEPs of both kinds consist of the same set of
basis functions. But, their envelope functions are different, and
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the spatial distributions of the densities of two kinds of BEPs are
different. The density of the BEP of the first kind is located
mainly in the interaction region. The density of the BEP of
the second kind is distributed around the periphery of the inter-
action region.

Now, we turn to pairs of electrons that interact with each other,
but do not form a bound state. There are two types of such states
into which the BEP can decay: one with both electrons in the
valence band, and the other with one electron in the valence band
and the other in the conduction band. First of all, we find the
energies of these states. As the motion of the electrons forming
a pair is not limited to any finite region of space, the energy can
be defined by the asymptotics of the wave function at infinity
where the interaction vanishes and the electrons can be consid-
ered as noninteracting. If there is no interaction, the momentum

of each electron has a definite value k1,2, and the energy of the
pair can be found as the sum of the single-particle energies
defined by the Hamiltonian (1)

εk,λ ¼ λ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðτ þ k2Þ2 þ a2k2

q
(7)

where λ is the band index, λ ¼ þ relates to the conduction band,
and λ ¼ � relates to the valence band. τ is introduced to separate
the topological (τ ¼ �1) and trivial (τ ¼ 1) phases. The momenta
k1,2 can be written in terms of the center-of-mass momentum k
and the relative momentum k, k1,2 ¼ k� K=2.

Thus, the energy of an unbound electron pair is determined by
the momentum k, the relative momentum of free electrons k at
infinity, and indexes of the bands λ1,λ2

bs
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Figure 1. Solid lines: Dependences of the ground state energy εbs of the singlet BEPs of the first kind in the topological phase: a) on the radius of the
potential r0 for various amplitudes v0 (shown next to the lines) and b) on the amplitude of the potential v0 for various radii r0 (shown next to the lines).
Dashed lines show these dependences for BEPs of the second kind.
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Figure 2. Radial dependence of the spinor components of the BEP of the first kind with parameters: energy ε=2 ¼ 0.69, a¼ 2.1, v0¼ 3.0, r0¼ 3.0, and
m¼ 0 in the topological phase.
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Figure 3. Radial dependence of the spinor components of the BEP of the second kind with parameters: energy ε=2 ¼ 0.963, a¼ 2.1, v0¼ 3.0, r0¼ 3.0,
and m¼ 0 in the topological phase.
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ελ1, λ2K,k ¼ λ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
τ þ

�
K
2
þ k

��
2
þ a2

�
K
2
þ k

�
2

s

þ λ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
τ þ

�
K
2
� k

��
2
þ a2

�
K
2
� k

�
2

s (8)

and does not depend on the spin. But, the wave function, of
course, depends and will be also labeled by the spin indexes
s1,2 of the electrons and be written as Φλ1, λ2

K,k,s1, s2
.

Details of the Φv,v
K,k,",# calculation are given in Appendix A.

Of interest are the components with angular quantum number
m¼ 1, because the BEPs with angular quantum number m¼ 0
decay into these states (see in the following). The results of
numerical calculation for the interacting and noninteracting
pairs of unbound electrons with the same energy are shown
in Figure 4, where the spinor components ϕiðrÞ of the states with
m¼ 1 are presented as the functions of the relative position of
the electrons. The total singlet two-particle wave functions of
unbound states Φv,v

K,k that are used as follows for the calculation
of the decay rates are found antisymmetrizing the functions
Φv,v

K,k,",# with respect to the particle permutation.

3. Radiative Decay of the BEPs

To determine the radiative decay rate of BEPs, we obtain the two-
particle Hamiltonian Hintð1, 2Þ of the interaction of the pair of
electrons with electromagnetic field within the electric dipole
approximation by substitution k1,2 ! k1,2 þ ðe=ℏcÞA into the
two-electron Hamiltonian of the BHZ model (see Appendix B).

The decay rate is studied in the standard way using Fermi’s
Golden rule and considering Hintð1, 2Þ as a perturbation.

An initial state is a BEP in a state jbsi ¼ Ψbsðr1 � r2Þ with an
energy εbs and an electromagnetic field in vacuum state jΩi,
and a final state is two electrons in one of the possible band states
j f si ¼ Φλ1, λ2

K,k,s1, s2
with an energy ελ1, λ2K,k and one photon with a wave

vector q, a polarization eν, and an energy εq. The total transition
rate is obtained by summing over all possible final states

Γ¼ 2πjMj
ℏ

X
λ1, s1λ2, s2,ν

ZZZ
d3q
ð2πÞ3

d2k
ð2πÞ2

d2K
ð2πÞ2

�
���h f sj⊗ hq,νjHintð1,2Þjbsi⊗ jΩi

���2δðεbs � ελ1,λ2K,k � εqÞδqjj,K
(9)

where qk is an in-plain component of a light wave vector.
We consider here a BEP in an empty crystal, that is, suppose

that the valence band is not filled with electrons, and all states in
the valence band are accessible to electrons when the pair decays.
This allows us to find an upper estimate for the decay rate,
because the filling of the bands leads to a decrease in the decay
rate by about ð1� f Þ2 times, where f is the filling factor. In addi-
tion, filling the bands leads to screening of the e–e interaction,
electron correlation, and other effects that are beyond the scope
of this article.

Two types of final states: one with two unbound electrons in
the valence band, and the other with one electron in the conduc-
tion band and the other in the valence band, are considered by
summing over λ1,λ2. The radiative decay of a singlet BEP with
energy above the middle of the bandgap is possible in both types
of final states of unbound electrons, and we summarize these
rates. However, these BEPs are not very interesting, because
in the more general and realistic case of BHZ model with
asymmetric electron and hole bands, they are metastable.[16]

More stable BEPs with energies below the middle of the bandgap
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Figure 4. Spinor components of the unbound electron pair with m¼ 1 as the functions of the distance between electrons r for interacting, v0 ¼ 2
(solid lines), and noninteracting, v0¼ 0 (dashed lines), electrons in topological phase. The parameters used in calculations are: energy ε=2 ¼ �1.1,
a¼ 2.1, and r0 ¼ 2.0.
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can decay only into two electrons in the valence band due to
energy conservation.

As a result of the conservation of the angular moment, the
BEP in the ground state with m¼ 0 decays into components
of a final two electron spinor with an angular moment
m ¼ �1 (see Appendix B). As the final two-electron states have
a continuous spectrum, a radiative decay of a BEP with an energy
εbs is allowed into two electrons in the valence band with the
emission of photons with an energy in a wide range
εq > εbs þ 2. Therefore, the spectrum of radiative transitions is
very broad, as shown in Figure 5. The shape of these curves
is mainly determined by two factors. The first is the overlap inte-
gral of the BEP wave function and the wave function of the final
pair of free electrons, which decreases rapidly with increasing
momentum of free electrons. Also, the second is the density
of the final electron states and the phase space available for
the emission of photons, which increase with increasing energy.

We have studied how the e–e interaction in the final state
affects the decay time of BEPs in the topological and trivial
phases and found that the effect is different for these phases.
The results are shown in Figure 6. In the topological phase, the
e–e interaction leads to an increase in the decay time when
the interaction is weak (in Figure 6a for v0 < 1.5). However,
the effect becomes opposite, albeit substantially weaker, at strong
e–e interaction. In the trivial phase, on the contrary, the decay
time decreases very weakly with the e–e interaction at small v0
(v0 < 1.5 in Figure 6b) and increases significantly when the inter-
action is strong.

The effect of the e–e interaction in the final state on the decay
time depends on whether the interaction leads to an increase in
the wave function of the unbound pair in the region of small
distances, where the interaction acts and the bound state is local-
ized, or to its decrease. In other words, the effect depends on
whether the unbound electrons attract or repel each other.
Attraction leads to a decrease in decay time, and repulsion leads
to an increase. It is clear that attraction occurs at a negative
reduced effective mass of electrons and repulsion at a positive
one. In turn, the sign of the reduced effective mass is determined
by mixing of the states of the electron and hole bands in the pair
state under given conditions. Thus, the different effect of

e–e interaction in the topological and trivial phases, as well as
in the case of strong and weak interactions, is due to the different
contributions of the electron and hole bands to the spinor of an
electron pair.

Figure 7 shows the radiative decay time versus the interaction
potential radius for the BEPs of the first kind in the TI. The life-
time of BEP decreases in order of magnitude with the increase in
the BEP energy mainly due to the increase in the density of the
photon states with increasing photon energy as well as appearing
the second decay channel for BEPs with energies higher the
middle of bandgap.

Numerical estimate of the decay time for parameters close to
those of quantum well of thickness d ¼ 7 nm on the heterostruc-
tures HgTe/CdHgTe with BHZ parameters A ¼ 3.65 eVÅ,
M ¼ �0.010 eV, B ¼ �68.6 eVÅ2 is as follows. The normalizing
time τN ¼ κℏ=ð4π2e2ÞðjB=MjÞ1=2 is estimated as τN 	 2 ⋅ 10�14 s,
and the decay time is τ 
 10�9 s. It is obvious that the decay time
of BEPs is extremely large than the radiative decay time of
excitons in direct-gap semiconductors. But, it is comparable with
lifetime of indirect excitons, which is long due to the spatial
separation of electrons and holes.[22]

Such a long BEP decay time is mainly due to the structure of
the two-electron wave functions in the initial and final states.
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Figure 5. Radiative transition spectrum for the decay of the BEP of the first
type into two unbound electrons in the valence band in topological phase.
The BEP energy εbs=2 ¼ �0.875, a ¼ 2.1, r0 ¼ 2.0. The wave functions of
two-free-electron states are calculated with v0¼ 0 for the upper (dashed)
and v0 ¼ 1 for the lower lines.
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First, the wave function of the initial and final states weakly
overlaps, because in the initial state, the electrons are localized
near each other, and in the final state, they are free propagating.
Second, the spinor components of both states have different
signs, so some terms in transition matrix elements partially
cancel each other. Therefore, although the BEPs can decay by
radiation of photons with energies in a broad range, the
radiative life time of BEP is large due to a very low oscillator
strength.

In Figure 4 of the previous study,[16] the decay times of BEPs
in topological and trivial phases were presented for various
model parameters. The curves were calculated for the BEP states
with close dependencies of their energies on the interaction
potential v0. Thus, the densities of phase space for the photon
emission were also close. Calculations accounting the e–e inter-
action in the final states do not change those results qualitatively.
Namely, the BEPs in the topological phase with a ¼ ffiffiffi

2
p

and
nearly flat bands in the extrema have the largest decay time.
In the topological phase with a > 2 and a quadratic spectrum
in the extrema, the decay time is much shorter than in the former
case. The large difference of decay times for these states is mainly
a result of different densities of final electron states. In the trivial
phase, the BEP life time is much shorter than in the topological
phase, with other things being equal. These results show that
both the topological properties of the electronic states and the
band dispersion near the extrema play an important role in a
stability of the BEPs, though the e–e interaction affects also
the BEPs decay time.

Triplet BEPs with energies above the middle of the bandgap
decay very slowly into pairs in which one of the electrons is in the
conduction band and the other in the valence band. But, their
decay into pairs of electrons in the valence band is not allowed.
For the singlet BEPs, the latter is the main decay channel. For the
triplet BEPs, the transition amplitudes of the spinor components
for transition into a pair of electrons in a valence band exactly
cancel each other. Therefore, triplet BEPs with energies below
the middle of the bandgap are dark.

4. Conclusion

We studied the radiative decay of the BEPs in 2D materials
described by the BHZ model. BEP lifetime is one of the main
parameters that can determine the role of BEPs in nonequilib-
rium and collective processes in topologically non-trivial materi-
als. Strongly bound triplet BEPs with energies below the middle
of the bandgap are dark: in the second order of perturbation
theory, they cannot decay with the emission of photons. The radi-
ative decay time of bright singlet BEPs is quite large in the scale
of characteristic relaxation times of the electron system. Under
real conditions of the HgTe/CdHgTe heterostructures, the decay
time is estimated at the nanosecond level.

A rather long decay time of BEPs compared to the decay time
of 2D direct excitons results from two factors: small oscillator
strength due to weak overlap of the wave function of the final
free electrons and the wave function of the BEPs, and the restric-
tion of the phase space, where the radiative transition is possible,
imposed by the requirement of the energy and momentum
conservation.

We explored the effect of inter particle interaction on the wave
functions of the pair of unbound electrons to find out how it
changes the BEPs decay time. The e–e interaction noticeably
affects the wave functions of unbound electron pairs and, there-
fore, the radiative decay time. The account of e–e interaction of
free electrons in topological phase results in a noticeably increase
in the BEPs decay time when the interaction is not very strong.
But, when the interaction is large enough to change the compo-
sition of the spinor of a final state, the interaction can reduce the
decay time. The values of the BEP decay times are of the same
order as to those in the previous study.[16]

The topology of the band states as well as the band dispersion
strongly affects the radiative decay rate: the decay time in the
topological phase is essentially longer than in the trivial phase.
Moreover, the dependence of the BEP decay time on interaction
strength is different in two phases. In these phases, the two-
particle wave functions have very different spinor structure. In
the trivial phase, the dominant component of the spinor is that
corresponding the configuration with both electrons in the
hole band. Hence, the matrix element of the transition of elec-
trons to the valence band is relatively large. On the contrary, in
the topological phase, all components of the spinor are of the
same order.

The terms in the BEP–light interaction Hamiltonian, which
determine the oscillator strength of BEPs, are proportional to
the band hybridization parameter a. This parameter determines
not only the matrix element of the optical transition, but also the
band dispersion; therefore, the decay time substantially depends
on a. For a ¼ ffiffiffi

2
p

, the dispersion of the bands in the topological
phase is almost flat. In this case, the BEPs has the largest binding
energy and the longest decay time. It can be expected that BEPs
in such materials are the most stable.

It is important to note that we estimated the lower limit of BEP
lifetime, assuming that the final electron states in the bands are
not occupied. Due to Pauli blocking of transitions to occupied
states, it can be expected that the decay time will be even longer
if we consider the filling of the band states. The filling of the
valence band results not only in reducing the states available
for BEPs decay, but also in screening of the e–e interaction,
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Figure 7. Decay time of the BEP of the first type in the TI versus the inter-
action potential radius. Insert shows the spectrum and allowed decay
channels. The parameters used in the calculations are a¼ 2.1,
v0 ¼ 2.0, and m¼ 0.
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electron correlation, and other effects that are beyond the scope
of this article.

To know the decay time of the BEPs in real structures, a study
of the nonradiative decay and many-particle effects is required.
Nevertheless, our study of the radiative decay time of BEPs shows
a possibility of their manifestations in transport and collective
processes in topologically nontrivial materials.

Appendix

A. Wave Functions

The spinor components of the singlet ΨsðrÞ (the index K¼ 0
is dropped hereinafter) are defined by8>>>>><
>>>>>:

½2vðrÞ � εþ 2τ þ 2k̂2� ψ3ðrÞ þ ak̂�ψ4ðrÞ þ ak̂þψ7ðrÞ ¼ 0

ak̂þψ3ðrÞ þ ½2vðrÞ � ε� ψ4ðrÞ þ ak̂þψ8ðrÞ ¼ 0

ak̂�ψ3ðrÞ þ ½2vðrÞ � ε� ψ7ðrÞ þ ak̂�ψ8ðrÞ ¼ 0

ak̂�ψ4ðrÞ þ ak̂þψ7ðrÞ þ ½2vðrÞ � ε� 2τ � 2k̂2� ψ8ðrÞ ¼ 0

(10)

It is convenient to go to polar coordinates (r,φ) and write the
wave functions as

ΨsðrÞ ¼
X
m

Ψsmeimφ ¼
X
m

0
BBB@

ψ3mðrÞ
ψ4mðrÞeiφ
ψ7mðrÞe�iφ

ψ8mðrÞ

1
CCCAeimφ (11)

The system of Equation (10) reduces to independent systems
of four equations defining the components ψ3m,ψ4m,ψ7m, and
ψ8m for each m.

Matching conditions for the wave functions at the radius
r ¼ r0 of the steplike potential can be obtained by integrating
the equations over the transition region, jr � r0j < δ, assuming
that vðrÞ is a finite value and taking the limit δ ! 0. Thus, we
obtained the following matching equations for singlet-like states

ψ3m

���þ
�

¼ 0

ψ8m

���þ
�

¼ 0

dψ3m

dr
þ iaðψ4m þ ψ7mÞ

���þ
�

¼ 0

dψ3m

dr
þ dψ8m

dr

���þ
�

¼ 0

(12)

The wave functions ΨsðrÞ are determined solving
Equation (10) in two regions r < r0 and r > r0 and then match-
ing the found functions at r ¼ r0 using Equation (12).

Here, we present the calculation details for topological phase
with τ ¼ �1.

In the case of the step potential vðrÞ, Equation (10) is easily
solved in terms of the Bessel functions. The fundamental set
of solutions for the components of the spinor Ψs has the form

ψ3mðrÞ ¼ A�
mFmðQ�rÞ, ψ4mðrÞ ¼ B�

mFmþ1ðQ�rÞ
ψ7mðrÞ ¼ C�

mFm�1ðQ�jrÞ, ψ8mðrÞ ¼ D�
mFmðQ�rÞ

(13)

where the wave numbersQ� are the roots of the dispersion equa-
tion, which has a unified form in both regions

ε̃½ε̃2 � ð1�Q2Þ2 � a2Q2� ¼ 0 (14)

where ε̃ takes different values for the interaction region and the
outer region

ε̃ ¼
�
ε0 � v0, r < r0
ε0, r > r0

(15)

We have denoted here ε0 ≡ ε=2, which is the energy of an elec-
tron pair per particle.

In Equation (13), FmðQ�rÞ can be written as any pair of the
Bessel functions,[4] the choice of which in a specific case is deter-
mined by the values of Q� at given a and ε̃, and by the behavior
of the Bessel function at r ! 0 and r ! ∞. We consider here
a2 > 4.

In the energy interval �1 < ε0 < �1þ v0, the solution of
Equation (10) for bound states can be presented in the following
form

(i) at r < r0

ψ3m ¼ AþJmðkþrÞ þ A�Imðk�rÞ
ψ4m ¼ AþBþJmþ1ðkþrÞ þ A�B�Imþ1ðk�rÞ
ψ7m ¼ AþCþJm�1ðkþrÞ þ A�C�Im�1ðk�rÞ
ψ8m ¼ AþDþJmðkþrÞ þ A�D�Imðk�rÞ

(16)

where

B� ¼ i
ε0 � v0 þ 1∓k2�

ak�

C� ¼ �i
ε0 � v0 þ 1∓k2�

ak�

D� ¼ ε0 � v0 þ 1∓k2�
ε0 � v0 þ 1� k2�

(17)

and

k� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
�
1� a2

2

�
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2
�
a2

4
� 1

�
þ ðε0 � v0Þ2

svuut (18)

(ii) at r > r0

ψ3m ¼ BþKmðκþrÞ þ B�Kmðκ�rÞ
ψ4m ¼ BþKþKmþ1ðκþrÞ þ B�K�Kmþ1ðκ�rÞ
ψ7m ¼ BþLþKm�1ðκþrÞ þ B�L�Km�1ðκ�rÞ
ψ8m ¼ BþMþKmðκþrÞ þ B�M�Kmðκ�rÞ

(19)

where

K� ¼ L� ¼ �i
ε0 þ 1þ κ2�

aκ�

M� ¼ ε0 þ 1þ κ2�
ε0 � 1� κ2�

(20)

and
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κ� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1þ a2

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2
�
a2

4
� 1

�
þ ε20

svuut (21)

The functions (16) and (19) should be matched at the bound-
ary r ¼ r0. Using Equation (12), we get a homogeneous system of
equations for the coefficients Aþ,A�,Bþ,B�. The eigenenergies
are determined by the equation

Dðε0; a, v0, r0,mÞ ¼ 0 (22)

where D is the determinant of this equation system, which is a
function of the energy ε0 and the parameters a, v0, r0,m. The cal-
culated energy spectrum and eigenfunctions of bound states are
shown in Figure 1–3. After antisymmetrizing of the functions Φs

with respect to particle permutation, we get the wave function of
the ground state of BEPs, Equation (6).

The wave functions of the unbound pairs in the presence of
interaction can be calculated similarly as the wave functions of
the bound states. The only difference is that now the energy is a
given quantity defined by Equation (8), and the wave function
does not vanish at infinity. The spinor components of a singlet
state with two electrons in the valence band are defined by
Equation (10), in which the energy is a value defined by
Equation (8) and should be taken in the energy interval
ε0 < �1. For clarity, we denote the wave function of an unbound
pair of electrons as Φv,v

K¼0,k,",# and its spinor components as ϕim.
In the range of r < r0, the solution of Equation (10) can be

presented in the same form as Equation (16) with the replace-
ment of ψ im by ϕim. In the range of r > r0, the spinor compo-
nents of the wave functions Φv,v

K¼0,k,",# can be written as

ϕ3m ¼ GþJmðκþrÞ þ CYmðκþrÞ þ G�Kmðκ�rÞ
ϕ4m ¼ GþKþJmðκþrÞ þ CKþYmðκþrÞ þ G�K�Kmþ1ðκ�rÞ
ϕ7m ¼ GþLþJmðκþrÞ þ CLþYmðkþrÞ þ G�L�Km�1ðκ�rÞ
ϕ8m ¼ GþMþJmðκþrÞ þ CMþYmðkþrÞ þG�M�Kmðκ�rÞ

(23)

Using Equation (12) and (16) with the replacement of ψ im by
ϕim and Equation (23), we get a system of equations for the coef-
ficients Aþ,A�,Gþ,G�,C. We express these coefficients in
terms of Gþ and define the coefficient Gþ from a normalization
condition for the wave function. For a small K� 1, we set
Φv,v

K,k,",# ¼ Φv,v
K¼0,k,",#e

iKR.

B. Interaction Hamiltonian of a Pair of Electrons with an
Electromagnetic Field

To get a Hamiltonian of the interaction of a pair of 2D
electrons with an in-plane component of electromagnetic
field AðrÞ ¼ Ageνeigr, we do the standard replacement
k̂ ⇒ k̂þ ðe=hcÞA in the one-particle Hamiltonian (1) and get

Ĥðk̂,AÞ ¼ H0ðk̂Þ þ Ĥintðk̂,AÞ

where

Ĥintðk̂,AÞ ¼
�
ĥiðk̂,AÞ 0

0 ĥi�ð�k̂, � AÞ

�

Here

ĥiðk̂,AÞ ¼
�
2k̂ ⋅ A aAþ
aA� �2k̂ ⋅ A

�

The interaction of a two-particle state with an electromagnetic
field is described by the two-particle Hamiltonian

Ĥintð1, 2Þ ¼ Ĥintðk̂1,Aðr1ÞÞ � Ĥintðk̂2,Aðr2ÞÞ

For a field with a wavelength much larger than a BEP radius,
jgrbj � 1, where g is the light wave vector, and rb is the charac-
teristic BEP radius, and the BEP–field interaction Hamiltonian
can be written as

Ĥintðk̂,AÞ ¼ eigR

0
BB@

H11 H12 0 0
H21 H22 0 0
0 0 H11 �H21
0 0 �H12 H22

1
CCA (24)

Here, H12 ¼ H�
21 ¼ aAþ ⋅ I4�4, and

H11 ¼

0
BB@

2K̂ ⋅ A aAþ 0 0
aA� �4k̂ ⋅ A 0 0
0 0 �2K̂ ⋅ A �aA�
0 0 �aAþ 4k̂ ⋅ A

1
CCA

H22 ¼

0
BB@

4k̂ ⋅ A aAþ 0 0
aA� �2K̂ ⋅ A 0 0
0 0 �4k̂ ⋅ A �aA�
0 0 �aAþ 2K̂ ⋅ A

1
CCA

In addition to usual term kA, the Hamiltonian (24) contains
terms proportional to A� that result from the hybridization
of the e- and h-bands and cause the decay of BEPs (see in the
following).

In the dimensionless form, the vector potential A of vacuum
fluctuations due to which the photon emission takes place is

Aðr, tÞ ¼
X
q, ν

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πe2jBj
VκM2εq

s
eνa

†
q,νeiðεq tþqkrþq⊥zÞ (25)

where κ is the dielectric constant of the material, V is a normali-
zation volume, εq ¼ ℏωq=jMj is a photon energy, q is a photon
wave vector, and eν is a polarization vector. For the light with the
wave vector q ¼ ðqk, q⊥Þ propagating along an arbitrary direction,

q ¼ n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2k þ q2⊥

q
, where n ¼ ðsin θ cos β, sin θ sin β, cos θÞ, the

in-plane components of the vector-potential A contributing to
the emission process are

Aþ ¼ Ax þ iAy ¼
1
2
Aqeiβðcos θ � 1Þeiεqt

A� ¼ Ax � iAy ¼
1
2
Aqe�iβðcos θ ∓ 1Þeiεq t
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Here, the upper and lower signs are for right- and left-
circular polarization, respectively. The transition amplitudes
are defined as

h f sj⊗ hq,νjHintð1,2Þjbsi⊗ jΩi

¼
Z

d2Re�iðK�qkÞR
Z

∞

0
rdr

Z
2π

0
dφ

X
m

½1�ð�1Þm�

� fðϕ3mðrÞ�ϕ8mðrÞÞðaAþψ70ðrÞe�iðm�1Þφ

� aA�ψ40ðrÞe�iðmþ1ÞφÞþ ðψ30ðrÞ�ψ80ðrÞÞ
� ðaA�ϕ7mðrÞe�iðm�1Þφ � aAþϕ4mðrÞe�iðmþ1ÞφÞg

¼ 8π2δðK� qkÞ
Z

∞

0
rdr

X
m

fðϕ3mðrÞ

�ϕ8mðrÞÞðaAþψ70ðrÞδm,�1 � aA�ψ40δm,1Þ
þ ðψ30ðrÞ�ψ80ðrÞÞðaA�ϕ7mðrÞδm,1 � aAþϕ4mðrÞδm,�1Þg

(26)
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