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The pair interaction of particles depends not only on the their
charge and mutual distance but also on their spins and
momenta. This well-known fact of the relativistic quantum
mechanics[1] is still too poorly studied for the electrons in crys-
tals. However, it becomes important for modern materials with a
strong Rashba spin–orbit interaction (SOI).

In the relativistic quantum mechanics, the pair interaction of
the electrons moving with small velocity v=c � 1 is described by
the Breit–Pauli Hamiltonian.[1] The pair interaction Hamiltonian
derived from it in the frame of the k ⋅ p approximation[2] has a
form very similar to the original Breit–Pauli Hamiltonian with
an important difference that the material-dependent coefficients
appear in each of its terms.

Of most interest is the SOI component of the pair interaction
because it couples the spin and orbital degrees of freedom, which

can essentially affect the dynamics of inter-
acting electrons and result in new collective
states. The pair SOI (PSOI) produced by
the Coulomb fields Eðri � rjÞ of interacting
electrons has the following form[3]

HPSOI ¼
α

ℏ

X
i6¼j

ðpi � Eðri � rjÞÞ ⋅ σi (1)

where pi is the momentum of the ith
electron, σ is the Pauli vector, and α is a
material-dependent SOI constant. Having
been calculated within k ⋅ p approximation,
when the Coulomb field is assumed to be a
smooth function on the scale of the lattice
constant, the value of α is the same as the
Rashba constant of the material.

The most interesting feature of the PSOI
is that it creates attraction between the elec-
trons in certain spin configurations tied to
their momenta. A completely unusual
property of such an attraction is the fact

that it is determined directly by the electric field and, therefore,
for the Coulomb interaction, it is especially large at small distan-
ces between the particles and rapidly decreases at large distances.
Thus, the pair interaction we consider here is attractive on a
small scale and repulsive on the large distance. The bound elec-
tron pairs (BEPs) formed as a result of this interaction[4–6] are
drastically different from other composite particles, which are
currently widely studied in bulk materials,[7,8] low-dimensional
systems,[9–13] and even for cold atoms in optical lattice.[14]

Another feature of the PSOI is that it depends on the config-
uration of the Coulomb field which acts between electrons and
can be controlled by a gate in low-dimensional systems. To find
out how the field configuration affects BEPs and, in particular,
their binding energy characterizing the stability of the pairs, we
focus here on considering the two-body problem, which can be
solved exactly. Considering the possible implementations, the
study of isolated pairs is of interest for low-dimensional struc-
tures, such as quantum dots and quantum cavities. The proper-
ties of isolated pairs are also worth studying for 2Dmaterials with
not very high Fermi energy, when the Fermi wave vector is small
on the scale of the reciprocal value of the region size, where the
pair attraction prevails. In this case, the electrons near and below
the Fermi energy as well as the pairs strongly repel each other;
therefore, the Cooper instability does not occur.

In a 2D system symmetric at the in-plane reflection, PSOI is
created by the electric field acting in the plane of the system.[5,6]

On the contrary, in 1D systems, PSOI is created only by a normal
component of the field, which arises when the axial symmetry of
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The bound electron pairs (BEPs) arising due to the pair spin–orbit interaction
(PSOI) in 2D structures are explored with a gate that allows the BEPs to be manip-
ulated. The gate breaks the in-plane reflection symmetry of the pair Coulomb field
and creates a one-particle Rashba spin–orbit interaction. It is found that the
normal component of the electric field substantially affects the BEPs but the key
role in forming the BEPs belongs to the in-plane component. The ground state of
a BEP with zero total momentum, which is doubly degenerate in the absence of
the gate, splits into two states. One of them is tunable by varying the gate voltage,
whereas the other is on the contrary robust. The tunable BEP has a higher binding
energy which grows as the gate voltage increases, with its orbital and spin
structure changing continuously. At large negative voltage, the tunable BEP
decays. The orbital and spin structure of the robust BEP does not depend on the
gate voltage. Its energy level crosses the conduction band bottom at high gate
voltage of any polarity, but the robust BEP remains bound and localized even
when in continuum.
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the system is broken, for example, by a proximate gate. In this
case, PSOI originates from image charges induced by the inter-
acting electrons at the gate[15] and also leads to BEP formation.[4]

The spectrum of the BEPs together with their spin structure is
quite different, depending on whether the PSOI is produced
solely by the in-plane field or by the normal electric field.
Despite the difference in the electric field configuration in both
cases, one can still classify the BEPs according to the nature of
the electron motion, which produces the PSOI, to arrive at two
distinct types of BEPs.

The relative motion of electrons in the pair creates the relative
BEPs. In the symmetric 2D case, the relative BEPs are triplet-like
states with parallel spins, with the ground state of the BEP being
doubly degenerate. In contrast, the relative BEPs in the 1D gated
wire are of a mixed singlet–triplet type.

The motion of an electron pair as a whole forms the convective
BEPs. Their binding energy crucially depends on the total
momentum of the pair and the spin structure is more compli-
cated. In symmetric 2D systems, the convective BEPs do not pos-
sess a definite spin. In contrast, in the gated 1D wire, the spin
projection is well defined so that Sz ¼ �1, its sign being deter-
mined by the direction of the center-of-mass momentum.

Of great interest is the problem of BEPs in 2D systems with a
metal gate, because one can anticipate a unique opportunity to
control their binding energy and the spin state. This raises the
question of how the properties of BEPs change in such struc-
tures. The main effects are because the symmetry of the
Coulomb fields inherent in the two cases mentioned previously
is broken in such structures. The electric field has both in-plane
and normal components, the interplay of which creates a nontriv-
ial configuration of the effective magnetic field acting on the elec-
tron spin. The BEP spin state is not predefined, but rather should
be determined self-consistently, together with its orbital struc-
ture via the quantum-mechanical equations of motion consider-
ing the particular field configuration.

Due to the symmetry breaking of the electric fields, it is no
longer possible to separate the relative motion of the particles
from the motion of the center of mass; therefore, the relative
and convective states are mixed. In this article, we solve this intri-
cate problem in the case when BEP has a zero total momentum
without any restrictions on the relative magnitude of the tangen-
tial and normal components of the electric field. As a result, we
came to the conclusion that the in-plane component plays a key
role in the formation of BEPs, and the presence of a normal com-
ponent leads to the radical reconstruction of BEPs.

Specific calculations are carried out for amodel system that con-
sists of an atomically thin layer of material with a strong Rashba
SOI separated by a spacer from a charged metallic gate, as shown
in Figure 1. The presence of the gate affects both the spatial con-
figuration and the magnitude of the Coulomb field of the interact-
ing electrons. In addition, the external voltage applied to the gate
creates one-particle Rashba SOI.We explore how these factors gov-
ern BEP formation, their spectrum, and spin structure.

The normal field lifts the degeneracy of the relative BEPs to
produce two kinds of BEPs having very different properties.
Our most interesting finding is that there appears a robust
BEP that remains unchanged with the variation of gate potential.
At a large enough gate voltage of any sign, the robust BEP gets
into the continuum of the band states, where it remains

localized. On the contrary, the BEP of the other kind is tunable
by the gate voltage. The positive voltage applied to the gate
increases its binding energy, whereas the negative voltage moves
the energy level of the tunable BEP to the continuum, where it
decays.

Consider two electrons at positions ri in the 2D system. In the
two-particle basis fj ""i, j "#i, j #"i, j ##ig, the system wave func-
tion represents a Pauli spinor of the fourth rank,
Ψðr1, r2Þ ¼ ðΨ"",Ψ"#,Ψ#",Ψ##Þ⊺. Introduce the relative electron
position r ¼ r1 � r2, the center-of-mass position
R ¼ ðr1 þ r2Þ=2, and the corresponding momenta p ¼ �iℏ∇r
and P ¼ �iℏ∇R. The PSOI Hamiltonian, built as the
Kronecker sum of the terms in Equation (1), is equal to

HPSOI¼

α

2ℏ

0
BBBBBB@

4EτðrÞ
r ðr�pÞz �ξþþΞþ ξþþΞþ 0

�ξ�þΞ�
2EτðrÞ

r ðr�PÞz 0 ξþþΞþ

ξ�þΞ� 0 �2EτðrÞ
r ðr�PÞz �ξþþΞþ

0 ξ�þΞ� �ξ�þΞ� �4EτðrÞ
r ðr�pÞz

1
CCCCCCA

(2)

with ξ� ¼ ½FðrÞ, γ��þ and Ξ� ¼ FðrÞΓ�. The normal field
FðrÞ ≡ EnðrÞ for the particular geometry considered in Figure 1
is given by Equation (7), Supporting Information. Then,
Γ� ¼ Py � iPx and

γ� ¼ py � ipx ¼ ℏe∓iϕ
�
� ∂r �

i
r
∂ϕ
�

(3)

The anticommutator ½Â, B̂�þ ¼ Â B̂þB̂ Â is introduced to
maintain the hermiticity of the Hamiltonian while projecting
Equation (1) to the 2D subspace.

A single-particle SOI contribution can be included in
Equation (2) by adding the field

Fg ¼ 4πng þ Enð0Þ (4)

produced by the gate surface charge density ng and the electron’s
own image, to the normal field FðrÞ, so that the total normal field
becomes FðrÞ ¼ EnðrÞ þ Fg .

Figure 1. A 2D layer separated from a metallic gate by a spacer made of a
weak dielectric. Normal (En) and in-plane (Eτ) components of the electric
field acting on each electron are created by a neighboring electron and the
polarization charges, as well as the total charge of the gate.
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Later, we restrict ourselves to a particular case of P ¼ 0, when
the BEPs are essentially the relative ones.

The equation of motion for the two-body wave function follows
from the full Hamiltonian

H ¼ HPSOI þ V þ T (5)

which, in addition to the PSOI of Equation (2), contains diagonal
contributions coming from the electron–electron (e–e) repulsion
VðrÞ of Equation (6), Supporting Information, and the kinetic
energy T. In what follows, it is convenient to introduce the shift
eFga in the energy and the potential V. This eliminates the trivial
effect of gate potential and allows us to consider only the effect of
the normal electric field. For simplicity, we consider here a min-
imal model with quadratic band dispersion.

In the absence of the gate, when FðrÞ ≡ 0, the relative BEPs
represent degenerate pairs of triplet states with the spin orienta-
tion tied to the angular momentum direction.[5,6] The lowest-
lying states, corresponding to the minimum possible angular
momentum l ¼ �1, are

Ψ�ðrÞ ¼ ðuðrÞe�iϕ, 0, 0, 0Þ⊺ (6)

and

ΨþðrÞ ¼ ð0, 0, 0, uðrÞeiϕÞ⊺ (7)

The radial wave function uðrÞ is determined from the
Schrödinger equation�
T1 þ VðrÞ � 2α

EτðrÞ
r

�
uðrÞ ¼ ε0uðrÞ (8)

where Tl stands for kinetic energy including the centrifugal
potential

Tl ¼ �ℏ2

m

�
d2

dr2
þ 1

r
d
dr

� l2

r2

�
, l ¼ 0, � 1, : : : (9)

The binding potential produced by PSOI is the last term on the
left hand side of Equation (8). Considering the short-range
asymptotics of the in-plane field Eτ given by Equation (9),
Supporting Information, we see that the BEPs are formed by
the singular attractive potential ∝ � α

χr2, with χ being the 2D sus-
ceptibility of the layer. This overcomes the centrifugal barrier for
a sufficiently large α, let alone a much weaker Rytova–Keldysh
repulsion ∝ log r

2πχ.
The �1=r2 potential leads to a fall to the center,[16] unless a

short-range cut-off is introduced. The regularization of the binding
potential can be caused by mechanisms such as the
Zitterbewegung of electrons in crystalline solids or natural
cutting-off due to averaging the 3D quantities across the layer thick-
ness.We regularize the potential by imposing a zero boundary con-
dition for the wave function at the cut-off length of the order of the
layer thickness.[5,6] Then binding energy can be estimated as

jε̃0j ¼
x21ðλÞ
ðd=aBÞ2

(10)

where x1ðλÞ is the first (largest) zero of the Macdonald function
KiλðxÞ, and the amplitude of the attraction is defined as

λ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4α̃
d=aB

� 1

s
(11)

Here, we introduced a convenient dimensionless SOI con-
stant α̃ ¼ α=ea2B, with the Bohr radius in the material
aB ¼ ϵℏ2=me2. The BEPs appear as soon as α̃ > d=4aB, which
is attainable in materials such as Bi2Se3,

[17] BiTeI,[18,19] or
BiSb monolayers,[20] for which α̃ is of the order of unity.[21]

From now on, the energy with a tilde is given in 2Ry units, with
the Rydberg constant in the material being Ry ¼ ℏ2=2ma2B.
Equation (10) gives jε0j on the level of tens of Rydberg.

The normal field FðrÞ that appears in the presence of the gate
lifts degeneracy. In the lowest order of degenerate perturbation
theory, a perturbation does so by mixing the states with certain
weights defined by its matrix elements.[16] However, the
corresponding matrix elements calculated with the states of
Equation (6) and (7) are all zero. Consequently, a higher-order
approximation should be used which, generally speaking,
involves the scattering states of the Hamiltonian of Equation (5)
in perturbation expansion. Fortunately, this tedious procedure
can be avoided by checking that the state

ΨðrÞ ¼ ðuðrÞe�iϕ, 0, 0, � uðrÞeiϕÞ⊺ (12)

where uðrÞ given by Equation (8) provides the exact solution of
the full Hamiltonian (5) for the arbitrary magnitude of the nor-
mal field FðrÞ. This antisymmetric combination of the unper-
turbed solutions of Equation (6) and (7) obviously does not
include any scattering states, which would depend on the normal
field FðrÞ.

It follows from Equation (8) that neither the radial wave func-
tion uðrÞ, nor the energy ε0 depends on the normal field FðrÞ.
Therefore, the bound state of Equation (12) is robust with its
orbital and spin structure unaffected by the normal electric field
applied to the system. The result is not specific to a particular
sandwich geometry considered here and holds for any profile
of FðrÞ provided that 1) there is no external field parallel to
the layer and 2) the electron pair has a zero total momentum.

Note that the binding energy is measured from the bottom of
the conduction band εc , which in the presence of the SOI is
shifted as soon as Fg 6¼ 0. For a pair of electrons, its position
is given by

ε̃c ¼ � 1
4
F2

g (13)

where Fg stands for the gate field Fg of Equation (4) normalized
according to Fg ¼ α̃Fg=F0, with F0 ¼ e=2ϵa2B. In 1D quantum
wires, the BEPs always lie below εc.

[4] This is not, generally speak-
ing, the case in a 2D system. Increasing Fg lowers εc , keeping ε0
intact, so eventually the energy level ε0 gets into the conduction
band. According to Equation (8), the robust BEP remains local-
ized even at ε0 > εc. In other words, there appears a discrete
energy level in the continuum that does not mix with the band
states.

Contrary to Equation (12), the symmetric combination of
Equation (6) and (7) is not a solution at F 6¼ 0. All four spinor
components do arise in the exact solution, which reads as
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ΨðrÞ ¼ ðuðrÞe�iϕ, vðrÞ, � vðrÞ, uðrÞeiϕÞ⊺ (14)

This form ensures the antisymmetry of Ψ with respect to the
permutation of electrons. From the point of view of the pertur-
bation theory, Equation (14) includes the contribution from the
scattering states of Equation (5), which makes it sensitive to the
normal field FðrÞ.

The radial wave functions satisfy the system of equations8>><
>>:

h
T1 þ VðrÞ � 2α EτðrÞ

r

i
u� α

h
2FðrÞ d

dr þ F0ðrÞ
i
v ¼ εu

½T0 þ VðrÞ�vþ α
h
2FðrÞ

�
1
r þ d

dr

�
þ F0ðrÞ

i
u ¼ εv

(15)

which should be solved with zero boundary conditions at r ¼ d
and at infinity. We are mostly interested in the dependence of the
binding energy on the normal electric field.

The analytical treatment of this problem is expounded in
Supporting Information. Here, we solve Equation (15) numeri-
cally with the exact interaction potential and field of Equation (6)
and (7), Supporting Information. To give an estimate of the bind-
ing energy of the tunable state, consider the system based on
Bi2Se3, for which α � 1300 eÅ2,[21] aB � 52Å, and hence
α̃ � 0.47. For a reasonable value of the electric field
Fg¼ 105 V cm�1, the layer thickness of d ¼ 28.7Å, correspond-
ing to three quintuple layers of Bi2Se3, and the distance to the
gate a ¼ 2d, we obtain jεj ¼ 40meV.

In Figure 2, we plot the energy levels of the robust BEP of
Equation (12) and the tunable BEP of Equation (14) versus the
normalized field of the gate for the model system with α̃ ¼ 1,
χ ¼ 0.4aB, d ¼ 0.25aB, and a ¼ aB. In addition, the position of
the bottom of the conduction band is shown. At a large negative
voltage applied to the gate, the tunable BEP gets into the contin-
uum where it decays, whereas the positive voltage facilitates the
pairing by increasing the binding energy. The binding energy of
the robust BEP, measured from εc , decreases when the voltage is
applied to the gate, so at a large gate voltage of any polarity, the
energy level crosses the continuum boundary, but the robust BEP
remains bound and localized even in the continuum.

We studied the BEPs formed by the PSOI in the most realistic
and practically important situation of a 2D system with a gate,

when the PSOI is created by a Coulomb field of interacting elec-
trons, having both in-plane and normal components. We focus
on the effects due to the interplay of these components for a par-
ticular case of a BEP with zero total momentum.

We have found that the normal field lifts the degeneracy of the
pair of bound states created by the in-plane field. One of the
resulting BEPs that has a higher binding energy is tunable by
gate voltage. Its binding energy is significantly increased by
the positive gate voltage, and its spin and orbital structure con-
tinuously transform while changing Fg .

In contrast, the second state demonstrates a totally unexpected
behavior. Its spin and orbital structure does not depend on the gate
voltage, and its energy varies exactly as the potential induced by the
gate at the layer. The binding energy measured from the conduc-
tion band bottom decreases with the gate voltage, so at a large Fg
the energy level gets into the continuum of the band states. It is
interesting that this state remains bound and localized even when
it is in the continuum. The fact that the BEP is so stable with
respect to the normal electric field evidences that the in-plane elec-
tric field of the Coulomb interaction plays a key role in the electron
pairing in competition with the normal component.

The behavior of electrons in the presence of the PSOI in a
many-electron system needs further serious study. One can
expect that because of the unusual form of the pair interaction,
various scenarios are possible, such as the formation of elec-
tronic complexes, spontaneous symmetry breaking, and of
course the formation of superconducting phases.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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