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ABSTRACT 

We report on random lasing observed with 5-m-long Er-doped fiber comprising an array of weak fiber Bragg gratings 

(FBGs) inscribed in the fiber core and uniformly distributed over the whole fiber length. The laser design ensures 
domination of dynamical population inversion grating over the FBGs in total distributed feedback enabling laser 

stabilization and nonlinear laser line filtering of the natural laser Lorentzian linewidth down to sub-300-Hz range, both 

observed in the experiment.     

Keywords: Random fiber laser, fiber Bragg gratings array, artifice Rayleigh fiber, dynamical population inversion 

grating  

1. INTRODUCTION  

Random fiber lasers have recently become a topic of great interest for researchers around the world due to the fact that 

they are able to produce light with unique performance characteristics without imposing stringent requirements on the 

optical resonator [1-7]. Traditionally, random fiber lasers are implemented using long (10–100 km) Raman or Brillouin 
fiber amplifiers possessing inhomogeneous gain line broadening and comprising weak stationary (“frozen”) scattering 

centers uniformly distributed over the fiber length (Rayleigh scattering). Current trends in random fiber lasers are 

associated with transition to short laser configurations based on short (~100m) FBG array fibers referred to as artificial 

Rayleigh fibers (the term accepted in distributed fiber sensing) [8-12] and/or using active fibers [13-22]. In comparison 

with traditional random fiber lasers, the use of short Rayleigh fibers provides much lower spectral selectivity to the 

generated light; therefore, in general, such lasers operate much broader laser linewidths. In random lasers comprising the 

active fibers the distributed dynamic population inversion gratings inscribed by the lasing radiation in the active media 

(through the light induced refractive index changes [23-28]) may have a reverse effect on the writing laser radiation via a 

feedback they provide [23]. The integrated reflectivity induced by the dynamical gratings in active fibers could be as 

high as 8% [22]. Factually, during the lasing they are reformatting the random laser cavity initially formed by the 

stationary scattering centers and may drastically affect the laser dynamics [20-22]. Recently, some of us have reported 

random lasing based on Brillouin gain and combined action of stationary and dynamic reflecting structures 
demonstrating an unexpected narrowing of the laser line down to 10 kHz [29, 30]. In that laser system, the effects of 

stationary random lasing and nonlinear laser line filtering provided by the dynamical population inversion grating 

occurred in different fibers, i.e. in 100-m length of a single-mode artificial Rayleigh fiber and a 1-m length of Er-doped 

fiber, respectively. Without the active fiber segment, the laser operated several spectral components. In this paper, we go 

two steps further demonstrating random lasing with sub-300-Hz laser Lorentzian linewidth achieved (i) in a single 5-m 

long artificial Rayleigh Er-doped fiber and (ii) under the population inversion amplification possessing inhomogeneous 
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gain line broadening. In contrast to previous works on random lasing in Er-doped fibers comprising multiple discrete 

FBGs [13-19], in our recent experiment [31] we use numerous gratings inscribed over the whole Er-doped fiber length 

and exhibiting very low individual reflectivity. Such laser design ensures domination of the reflectivity imposed by 

dynamical population inversion grating over weak stationary reflection centers, thus enabling effective nonlinear 

filtering immediately in the fiber cavity and Lorentzian laser linewidth narrowing down to sub-300-Hz frequency range.  

2. EXPERIMENT 

The experimental configuration of the random laser is shown in Fig. 1.  

 

 
Figure 1. The experimental configuration of the random laser. 

 

 
 

Figure 2. Optical absorption losses in the Er3 +-doped optical fiber. 
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The artificial Er-doped Rayleigh fiber (FBG array fiber) has been fabricated from the preform using the IRE fiber 

drawing tower equipped with an KrF-excimer laser. The fiber preform with Er3+-doped germanium-free silica core has 

been manufactured by the surface plasma chemical vapor deposition (SPCVD) method [32]. The refractive index fiber 

profile is provided by adding aluminum into the core silica glass network. The fiber core diameter is 6 μm, cladding 

diameter is 125 μm, core/cladding refractive index step difference is ~0.0045, numerical aperture is ~ 0.11, peak light 

absorption at 976 nm and 1530 nm is 13 and 20 dB/m, respectively. Absorption spectrum of fiber is shown in Fig. 2.  
Multiple weak uniform 1-cm-long FBGs with an individual peak reflectivity of ~0.00003% at ~1547.6 nm are inscribed 

in the fiber core by the KrF- laser at 248 nm (the pulse energy density is ~400 mJ/cm2, pulse duration is 10 ns, repetition 

rate is 10 Hz) through a phase mask with a grating’s pitch of 1070 nm, in-situ, one-by-one, immediately during the fiber 

drawing process (the drawing speed is 6 m/min) [9-12]. All FBGs are uniformly distributed over the fiber length with 

100% fill factor (i.e. without an overlap and gap between the neighboring gratings). The total reflectivity measured with 

3-m fiber length exhibits a ~0.01% peak at 1547.6 nm with ~0.2 nm spectrum FWHM width (Fig.3 (bottom inset)). The 

fiber longitudinal profile measured at 1547.6 nm by the optical frequency domain reflectometer (OFDR) [33] Luna 4400 

is shown in Fig. 3.  

 

 
Figure 3. The OFDR trace of the Er-doped artificial Rayleigh fiber (~60 m), a zoom of the OFDR trace (top); Reflectivity 
spectrum of the fiber (~3m) (bottom). 

 

The observed regularity with the period of ~1/cm highlights the inscribed FBG array (Fig.3 (top inset)). It is worth 

noting that due to the phase-based principle of the OFDR commonly used in fiber sensing [34-37], a noncoherent 

luminescence (noise) induced by the interrogating signal does not make a significant contribution to the recorded traces. 

However, only first ~4 m of the fiber are observable in Fig.3 due to high absorption at the testing wavelength. The 

artificial Er-doped Rayleigh fiber (FBG array fiber) is pumped at 976 nm through a wavelength-division-multiplexer 

(WDM) by 650mW pump laser diode (Gooch & Housego). The laser radiation is monitored through the second WDM 
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arm. To avoid backreflections two free ends of the fiber configuration (i.e. belonging to WDM and Rayleigh fiber) are 

angled cleaved. The laser optical spectrum is centered at ~1547.6 nm as shown in Fig. 4 (a). Fig. 4 (b) shows the output 

laser power as a function of the pump power demonstrating the maximal conversation efficiency of 2.5% achieved at 300 

mW. 

 

 
Figure 4. The output power as a function of the pump power (a) and laser optical spectrum (b). 

 

 
Figure 5. The dependence of the laser generation threshold on the cavity length. The insert depicts the dependence of the 
gain on the pump power. 
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Figure 5 shows the laser threshold pump power as a function of the fiber length. The minimal laser threshold level 

(~100mW) is observed with a long fiber (>5m), while it increases up to 370mW for 3-m fiber. A small-signal gain of the 

3 m length of our erbium-doped OF without FBGs was measured. The dependence of the gain on the pump power is 

shown in the inset in Figure 5. These measurements were carried out according to the classical scheme described in [38]. 

When the pump power was at a wavelength of 980 nm at 350 mW, the gain of the 1550 nm signal reaches a value σ ~ 

9.6 dB/m with the pump power at 350 mW. 
 

 
Figure 6. Self-heterodyne spectrum. 

 

Figure 6 shows the self-heterodyne RF spectrum of laser radiation measured by RF analyzer (FSH8, Rohde & Schwarz) 

with an unbalanced Mach-Zehnder interferometer comprising ~40 MHz electro-optic modulator and ~50 km delay fiber. 

The recorded spectrum exhibits oscillations in the wings demonstrating that the laser coherence length is longer than the 

delay fiber [39]. There are two kinds of noise contributing to the spectrum: the laser white frequency noise providing a 

natural (Lorentzian) laser linewidth, and the 1/f frequency noise resulting in the approximate Gaussian linewidth [40]. 

The main cause of the 1/f frequency noise in fiber lasers is temperature fluctuations induced by pump intensity noise 

[41]. In the considered sub-coherent regime, the 1/f noise is partially filtered out from the measured spectrum [42], so we 

can just estimate the laser Gaussian linewidth to be between ~850 Hz and ~4kHz. Here, the lower limit is determined by 

the measured 3-dB spectrum width (~1200Hz) with the deconvolution factor of 2 , while the upper limit is set by the 

resolution linked to the delay fiber length. The measured 20-dB spectrum width (~5800 Hz) is weakly affected by the 
Gaussian noise and in sub-coherent regime overestimates the FWHM Lorentzian linewidth (the deconvolution factor is 

2 99 ) [43]. Therefore, the natural Lorentzian linewidth is found to be narrower than ~290 Hz. Note, the 1/f noise could 

be eliminated by using low-noise pumping [41]. 
We believe that such strong suppression of the Lorentzian laser linewidth is caused by the dynamical population 

inversion grating inscribed immediately in the random fiber cavity during lasing. The observed laser features differ 

drastically from the lasing of a few spectral components reported earlier with the Er-doped configurations comprising 

discrete FBGs with dominating stationary reflectivity [13]. Obviously, the laser dynamics is also different from the 

dynamics of fiber lasers based on injection locking or Brillouin scattering mechanisms and possessing similar linewidth 

narrowing [44-51].  
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Figure 7. Typical oscilloscope trace and its zoom (inset). 

 
 

Figure 8. The dependence of the pulse repetition rate on the pump power. 

-0.20 -0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 0.20

0.6

0.8

1.0

-0.1016 -0.1015 -0.1014 -0.1013 -0.1012 -0.1011

0.99

1.00

1.01

1.02

S
ig

n
a

l,
 a

.u
.

Time, S

S
ig

n
a
l,

 a
.u

.

Time, S

150 200 250 300 350

10

20

30

40

50

60

70

F
re

q
u

en
c
y

, 
k

H
z

Pump Power, mW

Proc. of SPIE Vol. 11357  113571Q-6
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 01 Apr 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



 

The recorded traces of the laser output power, like shown in Fig.7, exhibit small fluctuations around the average level 

highlighting behavior typical for random lasing [1]. The minimal standard deviation of the output power fluctuation is 

observed at level of ~250mW and estimated to be ~2%. This laser operation essentially differs from pulsations 

commonly observed with heavily Er-doped fiber lasers [52].  

The characteristics of recorded traces have been obtained by an analysis of the oscilloscope traces (up to three 

waveforms with constant pump power) with fast Fourier transform (FFT) at the pump power in the range of 150–350 
mW. Note that the observed laser intensity modulation is typical for lasers based on Er-doped optical fibers (see [52-53] 

for details). The recorded modulation frequency is 14–70 kHz at the pump power range of 150–350 mW (see Figure 8). 

3. SUMMARY 

In summary, we have observed random lasing in a short Er-doped artificial Rayleigh fiber pumped by the laser diode. 

The lasing is achieved due to the population inversion gain and feedback caused by weak FBGs uniformly distributed 

over the fiber length. The laser design ensures domination of the reflectivity imposed by dynamical population inversion 

grating over the stationary FBGs enabling laser stability and laser Lorenzian linewidth narrowing down to ~290 Hz, 

while the Gaussian linewidth is kept <4kHz. The proposed random laser is a simple, compact, and cost-effective solution 

for many practical applications, including microwave photonics and sensing [54-62].  
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