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A B S T R A C T

We report on random lasing observed with 5-m-long Er-doped fiber comprising an array of weak fiber Bragg
gratings (FBGs) inscribed in the fiber core and uniformly distributed over the whole fiber length. The laser design
ensures domination of dynamical population inversion grating over the FBGs in total distributed feedback en-
abling laser stabilization and nonlinear laser line filtering of the natural laser Lorentzian linewidth down to sub-
300-Hz range, both observed in the experiment.

Random fiber lasers have recently become a topic of great interest
for researchers around the world due to the fact that they are able to
produce light with unique performance characteristics without im-
posing stringent requirements on the optical resonator [1–7]. Tradi-
tionally, random fiber lasers are implemented using long (10–100 km)
Raman or Brillouin fiber amplifiers possessing inhomogeneous gain line
broadening and comprising weak stationary (“frozen”) scattering cen-
ters uniformly distributed over the fiber length (Rayleigh scattering).
Current trends in random fiber lasers are associated with transition to
short laser configurations based on short (~100 m) FBG array fibers
referred to as artificial Rayleigh fibers (the term accepted in distributed
fiber sensing) [8,9] and/or using active fibers [10–17]. In comparison
with traditional random fiber lasers, the use of short Rayleigh fibers
provides much lower spectral selectivity to the generated light; there-
fore, in general, such lasers operate much broader laser linewidths. In
random lasers comprising the active fibers the distributed dynamic
population inversion gratings inscribed by the lasing radiation in the
active media may have a reverse effect on the writing laser radiation via
a feedback they provide [18]. The integrated reflectivity induced by the
dynamical gratings in active fibers could be as high as 8% [17]. Fac-
tually, during the lasing they are reformatting the random laser cavity
initially formed by the stationary scattering centers and may drastically
affect the laser dynamics [15–17]. Recently, some of us have reported
random lasing based on Brillouin gain and combined action of sta-
tionary and dynamic reflecting structures demonstrating an unexpected
narrowing of the laser line down to 10 kHz [19,20]. In that laser
system, the effects of stationary random lasing and nonlinear laser line
filtering provided by the dynamical population inversion grating

occurred in different fibers, i.e. in 100-m length of a single-mode arti-
ficial Rayleigh fiber and a 1-m length of Er-doped fiber, respectively.
Without the active fiber segment, the laser operated several spectral
components. In this paper, we go two steps further demonstrating
random lasing with sub-300-Hz laser Lorentzian linewidth achieved (i)
in a single 5-m long artificial Rayleigh Er-doped fiber and (ii) under the
population inversion amplification possessing inhomogeneous gain line
broadening. In contrast to previous works on random lasing in Er-doped
fibers comprising multiple discrete FBGs [10–14], in our experiment we
use numerous gratings inscribed over the whole Er-doped fiber length
and exhibiting very low individual reflectivity. Such laser design en-
sures domination of the reflectivity imposed by dynamical population
inversion grating over weak stationary reflection centers, thus enabling
effective nonlinear filtering immediately in the fiber cavity and laser
Lorentzian linewidth narrowing down to sub-300-Hz frequency range.

The experimental configuration of the random laser is shown in
Fig. 1(a). The artificial Er-doped Rayleigh fiber (FBG array fiber) has
been fabricated from the preform using the IRE fiber drawing tower
equipped with an KrF-excimer laser. The fiber preform with Er3+-doped
germanium-free silica core has been manufactured by the surface
plasma chemical vapor deposition (SPCVD) method [21]. The refractive
index fiber profile is provided by adding aluminum into the core silica
glass network. The fiber core diameter is 6 μm, cladding diameter is
125 μm, core/cladding refractive index step difference is ~0.0045,
numerical aperture is ~0.11, peak light absorption at 976 nm and
1530 nm is 13 and 20 dB/m, respectively. Multiple weak uniform 1-cm-
long FBGs with an individual peak reflectivity of ~0.00003%
at ~1547.6 nm are inscribed in the fiber core by the KrF- laser at
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248 nm (the pulse energy density is ~400 mJ/cm2, pulse duration is
10 ns, repetition rate is 10 Hz) through a phase mask with a grating’s
pitch of 1070 nm, in-situ, one-by-one, immediately during the fiber
drawing process (the drawing speed is 6 m/min) [9]. All FBGs are
uniformly distributed over the fiber length with 100% fill factor (i.e.
without an overlap and gap between the neighboring gratings). The
total reflectivity measured with 3-m fiber length exhibits a ~0.01%
peak at 1547.6 nm with ~0.2 nm spectrum FWHM width (Fig. 1(b,
bottom inset)). The fiber longitudinal profile measured at 1547.6 nm by
the optical frequency domain reflectometer (OFDR) Luna 4400 is
shown in Fig. 1(b). The observed regularity with the period of ~1/cm
highlights the inscribed FBG array (Fig. 1(b, top inset)). It is worth
noting that due to the phase-based principle of the OFDR, a non-
coherent luminescence (noise) induced by the interrogating signal does
not make a significant contribution to the recorded traces. However,
only first ~4 m of the fiber are observable in Fig. 1(b) due to high
absorption at the testing wavelength. The artificial Er-doped Rayleigh
fiber (FBG array fiber) is pumped at 976 nm through a wavelength-
division-multiplexer (WDM) by 650mW pump laser diode (Gooch &
Housego). The laser radiation is monitored through the second WDM
arm. To avoid backreflections two free ends of the fiber configuration
(i.e. belonging to WDM and Rayleigh fiber) are angled cleaved. The
laser optical spectrum is centered at ~1547.6 nm as shown in Fig. 1(a,
inset).

Fig. 2(a) shows the laser threshold pump power as a function of the
fiber length. The minimal laser threshold level (~100mW) is observed
with a long fiber (> 5m), while it increases up to 370mW for 3-m fiber.
Fig. 2 (a, inset) shows the output laser power as a function of the pump

power demonstrating the maximal conversation efficiency of 2.5%
achieved at 300 mW. The recorded traces of the laser output power, like
shown in Fig. 2 (b), exhibit small fluctuations around the average level
highlighting behavior typical for random lasing [1]. The minimal
standard deviation of the output power fluctuation is observed at level
of ~250mW and estimated to be ~2%. This laser operation essentially
differs from pulsations commonly observed with heavily Er-doped fiber
lasers [22].

Fig. 2(b, inset) shows the self-heterodyne RF spectrum of laser ra-
diation measured by RF analyzer (FSH8, Rohde & Schwarz) with an
unbalanced Mach-Zehnder interferometer comprising ~40 MHz
electro-optic modulator and ~50 km delay fiber. The recorded spec-
trum exhibits oscillations in the wings demonstrating that the laser
coherence length is longer than the delay fiber [23]. There are two
kinds of noise contributing to the spectrum: the laser white frequency
noise providing a natural (Lorentzian) laser linewidth, and the 1/f
frequency noise resulting in the approximate Gaussian linewidth [24].
The main cause of the 1/f frequency noise in fiber lasers is temperature
fluctuations induced by pump intensity noise [25]. In the considered
sub-coherent regime, the 1/f noise is partially filtered out from the
measured spectrum [26], so we can just estimate the laser Gaussian
linewidth to be between ~850 Hz and ~4 kHz. Here, the lower limit is
determined by the measured 3-dB spectrum width (~1200 Hz) with the
deconvolution factor of 2 , while the upper limit is set by the resolu-
tion linked to the delay fiber length. The measured 20-dB spectrum
width (~5800 Hz) is weakly affected by the Gaussian noise and in sub-
coherent regime overestimates the FWHM Lorentzian linewidth (the
deconvolution factor is 2 99 ) [27]. Therefore, the natural Lorentzian
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Fig. 1. Experimental setup (a) and laser optical spectrum (a, inset). The OFDR trace of the Er-doped artificial Rayleigh fiber (~60 m) (b), a zoom of the OFDR trace
(b, top); Reflectivity spectrum of the fiber (~3m) (b, bottom).
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Fig. 2. Laser characteristics: the threshold pump power as a function of the fiber length (a), the output power as a function of the pump power (a, inset), a typical
oscilloscope trace (b) and self-heterodyne spectrum (b, inset).
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linewidth is found to be narrower than ~290 Hz. Note, the 1/f noise
could be eliminated by using low-noise pumping [25].

We believe that such strong suppression of the laser Lorentzian
linewidth is caused by the dynamical population inversion grating in-
scribed immediately in the random fiber cavity during lasing. The ob-
served laser features differ drastically from the lasing of a few spectral
components reported earlier with the Er-doped configurations com-
prising discrete FBGs with dominating stationary reflectivity [10].

In summary, we have observed random lasing in a short Er-doped
artificial Rayleigh fiber pumped by the laser diode. The lasing is
achieved due to the population inversion gain and feedback caused by
weak FBGs uniformly distributed over the fiber length. The laser design
ensures domination of the reflectivity imposed by dynamical popula-
tion inversion grating over the stationary FBGs enabling laser stability
and laser Lorenzian linewidth narrowing down to ~290 Hz, while the
Gaussian linewidth is kept < 4 kHz. The proposed random laser is a
simple, compact, and cost-effective solution for many practical appli-
cations.
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