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A B S T R A C T

The results of an investigation of the Bragg gratings inscription processes in weakly-doped fibers with different
dopants without preliminary hydrogen-loading are presented in this work. The Bragg grating inscription in
nitrogen weakly-doped fibers is demonstrated for the first time. The features of the inscription dynamics in this
type of fiber are presented in comparison with the germanosilicate analogue—the Corning SMF-28e tele-
communication fiber.

Introduction

Nowadays, fiber Bragg gratings are widely used as optical filters and
mirrors for fiber lasers as well as sensors of physical quantities. The
inscription of Bragg structures in the core of optical fibers is usually
carried out by means of ultraviolet (UV) laser irradiation and spatial
interferometers or phase masks, which create the necessary periodic
pattern in the core of the optical fiber. For efficient inscription of such
gratings, the fiber should have the photosensitive property, which can
be achieved by incorporating an additional amount of dopants, such as
germanium and boron, in the core [1,2]. However, such a method leads
to a change in the waveguiding properties of the optical fiber and can
cause additional unwanted losses when combining Bragg sensors into
arrays using a standard telecommunications optical fiber. Another
widely used way to increase photosensitivity, applicable to weakly
germanium-doped fibers, including standard telecommunication ones,
is to load them with molecular hydrogen [3]. Such a method of Bragg
grating fabrication is in some cases more preferable. When the sensors
connected to the telecommunication extension line, no additional loss
arises in the splice point. However, this method has its drawbacks. The
Bragg gratings inscribed in hydrogen-loaded fibers have low stability
and are unable to work under elevated temperatures [4]. In addition,
during the fabrication process, additional procedures are required, such
as saturating the fibers with molecular hydrogen and stabilizing the
grating parameters after inscribing. In some cases, the optimal solution
for the fabrication of Bragg gratings is their direct inscribing in standard
telecommunication fibers with a low doping level or in fibers close to
them in waveguiding properties. Such properties are satisfied by
Corning’s standard fiber SMF-28e or its analogues from other manu-
facturers. The possibility of inscribing Bragg gratings in such fibers
without the use of molecular hydrogen was previously shown [5]. In
addition, such gratings showed greater stability of their parameters at

elevated temperatures [6].
However, for a number of tasks, special sensors and fibers with high

radiation and thermal resistance are required [7]. Fibers with a ger-
manium-doped core, which include standard telecommunication fibers,
do not meet these requirements. An alternative to them can be optical
fibers with a nitrogen-doped core [8]. Such fibers were previously
shown to have increased ionizing radiation resistance [9,10], and Bragg
gratings based on them are able to withstand high temperatures
[11–13] and ionizing radiation dose [14,15]. However, the inscription
of Bragg gratings in nitrosilicate fibers is possible only with the help of
high-energy UV radiation with a photon energy of about 6.4 eV and
higher. This requirement is satisfied by an ArF-excimer laser with a
wavelength radiation of 193 nm. Nitrogen-doped optical fibers exhibit
relatively low photosensitivity, so the Bragg gratings are usually in-
scribed in heavily-doped fibers, which obviously have poor field
matching with standard telecommunication fibers.

In this paper, we show for the first time the possibility of Bragg
gratings inscription in weakly-doped nitrosilicate optical fibers. A two-
step inscribing mechanism has been discovered in this kind of fiber. The
Bragg gratings inscription dynamics for a nitrogen-doped optical fiber
and its germanosilicate analogue—the Corning SMF-28e tele-
communication optical fiber—are compared.

Experiment and samples

In this work, two fibers with the closest parameters were in-
vestigated, namely, a fiber with a germanium-doped silica core Corning
SMF-28e and a nitrogen-doped fiber with a similar core diameter and
aperture. The difference in the refractive indices of the core and the
cladding in both fibers was approximately 0.005, and the core diameter
was about 9 μm. The preform for the nitrogen-doped fiber was syn-
thesized by Surface plasma chemical vapor deposition (SPCVD)
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technology [8,16,17].
The fabrication of the gratings was carried out by means of the well-

known phase mask technology using the radiation of an ArF-excimer
laser with a radiation wavelength of 193 nm and a pulse duration of
about 14 ns. All samples of Bragg gratings were inscribed under abso-
lutely identical conditions; only the laser pulse energy was varied. The
period of the phase mask used in the experiment was 1054 nm. The
length of the Bragg gratings was 5mm. The laser pulse repetition rate
was 50 Hz.

Results and discussions

Fig. 1 shows the dynamics of the changes in the spectrum during the
grating inscription in the SMF-28e fiber (Fig. 1a) and in its nitrosilicate
analogue (Fig. 1b). The gratings were inscribed at the same energy
density of 250mJ/cm2. From the graphs we can see that the grating
inscription dynamics of fibers with different dopants differ greatly.
Thus, in the germanosilicate fiber, the level of the grating’s reflection
increases almost proportionally to the exposure time, whereas in the
case of the nitrogen-doped sample, a significant nonlinearity of growth
dependence is observed.

More clearly, data on the Bragg gratings formation dynamics can be
represented as the dependence of the photoinduced magnitude of the
refractive index modulation on the exposed dose. The magnitude of the
refractive index modulation Δn in the grating of length L and with the
reflection coefficient R can be calculated with formula (1):

=R π n ηL λtanh ( Δ / )B
2

mod (1)

where λB represents the Bragg grating’s wavelength and η represents the
so-called overlap integral, which determines the overlap of the guiding
(fundamental) mode and a fiber core (η < 1). In the case of fibers with
identical waveguide properties, we can consider the modulation of the
effective refractive index Δneff= Δnmod∙η:
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Fig. 2 shows the inscription dynamics at different radiation densities
for the germanium-doped sample (a) and the nitrosilicate fiber (b).

For an optical fiber with a nitrogen-doped core, there is no depen-
dence of the grating’s inscription dynamics on the pulse energy density.
But, it can be seen that at the initial irradiation stage, the photoinduced
changes in the refractive index modulation occurs more slowly, clearly
demonstrating a two-step mechanism in the grating’s formation. A si-
milar two-step mechanism was observed earlier during the inscribing of
gratings in fibers with a hydrogen-loaded, phosphorus-doped core
[18,19]. At the initial irradiation stage, there is, in fact, a “preparation”
of the glass network in which, in the future, significant photo-induced
changes occur. It is obvious that photoinduced defects are associated
with the presence of nitrogen atoms in the silica glass network, which

Fig. 1. Dynamics of the Bragg gratings’ spectrum change during their inscrip-
tion in germanium-doped (a) and nitrogen-doped (b) fibers.

Fig. 2. Dynamics of the effective refractive index modulation change during UV
irradiation with different radiation densities in germanium-doped (a) and ni-
trogen-doped (b) fibers.
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induces the initial absorption of UV radiation [20].
In the case of the germanosilicate analogue, a “classical” recording

dynamic is observed. Note, however, that under our irradiation con-
ditions, no significant dependence of the grating’s formation dynamics
on the energy density per pulse was observed, in contrast to work [6].
This may be due to a different range of energy densities used in which
two-photon processes in this type of glass are negligible. We note,
however, that a relatively low exposure dose density is used to fabricate
effective gratings with a high reflection level in an SMF-28e optical
fiber. Therefore, this technique can be used for the mass production of
sensors in this type of optical fiber without first loading it with mole-
cular hydrogen.

Conclusion

In this paper, the Bragg gratings inscription in nitrogen weakly-
doped silica fibers is demonstrated for the first time. The two-step re-
cording mechanism is demonstrated. A comparison is carried out with
the grating’s inscription dynamics in a hydrogen-free standard germa-
nium-doped telecommunications optical fiber Corning SMF-28e.
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