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Abstract—This paper addresses the problem of a rigid body moving on a plane (a platform)
whose motion is initiated by oscillations of a point mass relative to the body in the presence of
the viscous friction force applied at a fixed point of the platform and having in one direction a
small (or even zero) value and a large value in the transverse direction. This problem is analogous
to that of a Chaplygin sleigh when the nonholonomic constraint prohibiting motions of the fixed
point on the platform across the direction prescribed on it is replaced by viscous friction. We
present numerical results which confirm correspondence between the phenomenology of complex
dynamics of the model with a nonholonomic constraint and a system with viscous friction —
phase portraits of attractors, bifurcation diagram, and Lyapunov exponents. In particular, we
show the possibility of the platform’s motion being accelerated by oscillations of the internal
mass, although, in contrast to the nonholonomic model, the effect of acceleration tends to
saturation. We also show the possibility of chaotic dynamics related to strange attractors of
equations for generalized velocities, which is accompanied by a two-dimensional random walk
of the platform in a laboratory reference system. The results obtained may be of interest to
applications in the context of the problem of developing robotic mechanisms for motion in a
fluid under the action of the motions of internal masses.
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INTRODUCTION

One of the interesting and important problems of robotics is to develop mobile devices, including
those moving in the volume or on the surface of a fluid by changing the position of the internal
masses [1–3]. Strictly speaking, the description of the dynamics and control of such systems must
be based on the solution of equations that include hydrodynamical (Navier – Stokes) equations for
a liquid medium. This is a rather complicated problem, which requires considerable computational
resources, and control on this basis in the real-time mode can be difficult. In this connection, it
would be natural to make use of description methods within the framework of finite-dimensional
models [4–9] in cases where such a description can be sufficiently accurate.
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It appears that it may be rewarding to proceed from the models of mechanical systems with
nonholonomic constraints. A good and concrete example is provided by the problem of a Chaplygin
sleigh, which deals with the motion of a rigid body, a platform on the plane (or another surface)
subject to the nonholonomic constraint prohibiting motions for a fixed point on the platform across
the direction prescribed at this point [10–12]. Physically, it can be thought of as the presence of a
support secured to the platform in the form of a skate or a knife edge, which prevents transverse
motions of the point of contact of the body with the plane. The recent papers [13–20] are devoted
to a number of modifications of the classical problem, in particular, to the motion of a Chaplygin
sleigh under periodic external action and under periodic changes of the position of the point
of application of the nonholonomic constraint. In the situation where the motion of the system
is ensured by periodic displacements of the internal mass, the possibility was demonstrated of
unbounded acceleration of the directed motion of the system [16–18] which is, in a sense, an analog
of the well-known effect of Fermi’s acceleration [11–25]. In the case where there is nonzero friction
in the direction of the knife edge which ensures the nonholonomic constraint, there is another
mechanism of unbounded growth of the kinetic energy of the system due to parametric instability,
which takes place under certain conditions in the case of a relatively large amplitude of oscillatory
motion of the internal mass, which constitutes an appreciable portion of the total mass of the
system [5, 17]. The possibility of chaotic dynamics which involves strange attractors in dynamical
equations in the space of generalized velocities is also shown. In this case, motions classified as
two-dimensional random walks [16, 17] take place in the laboratory reference system. The presence
of the modes of chaotic dynamics enables motion control by correctly selected small variations of
the system parameters, as is done within the framework of the area known as chaos control [26].

There are some well-known studies where the possibility of replacing the nonholonomic constraint
by viscous friction [27–30] is established. In the case of a Chaplygin sleigh this implies that motions
across the knife edge are not completely prohibited, but are characterized by a large friction
coefficient. If one restricts oneself to models where the friction force is applied at a fixed point
of the platform, then the above-mentioned results concerning the Chaplygin sleigh can serve as a
natural starting point for analysis of dynamical phenomena. For bodies moving in a fluid or on the
surface of a fluid, such models can be regarded as an approximate description of situations where
the body has a keel that ensures strong viscous friction across its direction and weak friction in
the longitudinal direction, under the assumption that the dimensions of the keel are smaller than

those of the platform1).

The goal of this paper is to compare the dynamical phenomena caused by oscillatory motions of
the internal mass, for the nonholonomic model of a Chaplygin sleigh and for the model where the
action of the medium on the motion of the platform is determined by the friction force applied at
the fixed point, by replacing the effect of a nonholonomic constraint.

Section 1 formulates the basic equations and discusses the question as to how they are related
to the equations of the nonholonomic model of a Chaplygin sleigh. Section 2 deals with the effect
of acceleration of the motion of the platform under small oscillations of the internal mass. It is
shown that this effect persists when the nonholonomic constraint is replaced by transverse viscous
friction in the region of small velocities, but, in contrast to the nonholonomic model, the increase
in the velocity has the tendency to saturation. Section 3 discusses the question as to how two
types of chaotic attractors occurring in the space of generalized momenta of the nonholonomic
model are transformed in the system with friction: fractal attractors, similar to those in dissipative
systems [33–35], and “fat” attractors, similar to the “chaotic sea” in Hamiltonian systems [35–
37]. It is shown that, apart from some minor changes, the attractors of the first type persist
when the nonholonomic constraint is replaced by viscous friction, and the attractors of the second
type break down, resulting in the formation of many coexisting regular attractors in the form of
attracting cycles. Section 4 analyzes and compares, for the nonholonomic model and for systems
with friction, the dynamical regimes associated with strange attractors, which in the laboratory
reference system correspond to motions in the form of two-dimensional random walks [38–40]. It
is shown that in the system with viscous friction these motions are characterized by a smaller
value of the diffusion coefficient than those in the nonholonomic model. Section 5 is concerned with

1)It is appropriate at this point to mention the well-known classical result in hydrodynamics — the generalization
of the Stokes formula to the case where a body moving in a viscous fluid has the shape of an ellipsoid; in this
case, the drag coefficients are different for motions in the direction of different axes of the ellipsoid [31].
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the effect of parametric resonance [41–43], which in the nonholonomic model, where longitudinal
viscous friction is taken into account, can lead to an unbounded growth of the kinetic energy of the
platform during unbounded excitation of the oscillation amplitude [17, 18]. It is shown that a system
where the nonholonomic constraint is replaced by transverse viscous friction exhibits a saturation
of parametric instability and a restriction of the average velocity of motion in the laboratory
reference system. In Section 6 the structure of the parameter space for the nonholonomic model
and the system with viscous friction is compared and it is shown that the arrangements of regions
of regular and chaotic dynamics are similar in both cases, as are the bifurcation scenarios leading
to the onset of chaos.

1. BASIC EQUATIONS

The system under study is shown in Fig. 1 and is a platform of mass m0 capable of moving
on the plane. A particle of mass mp moves in a prescribed manner on the platform relative to
it. We assume that the friction force is applied at the point of the platform, R, situated on the
symmetry axis of the platform at distance a from the center of mass of the platform C, and that
the components of the friction force along and across the symmetry axis are proportional to the
corresponding velocity components of point R with greatly differing coefficients. To describe the
motions, we will use two coordinate systems: a laboratory frame Oxy and the frame Rξη attached
to the platform.

Fig. 1. The system under consideration. Friction is applied at point R and is characterized by a large coefficient
in the direction of the axis η and a small (or zero) coefficient along the axis ξ, C is the center of mass of the
platform, the red arrow denotes the location of oscillations of the moving particle.

Let u1 and u2 be the projections of the velocity (measured in the laboratory frame) of point
R on the axis of the moving reference system, and let ω be the angular velocity of the platform.
The kinetic energy of the platform together with the moving material point, which has coordinates
ξp(t), ηp(t) in the moving reference frame, is

T =
1

2
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2
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1

2
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1
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2, (1.1)

where J0 is the moment of inertia of the platform relative to the center of mass. We assume that
the friction is characterized by the Rayleigh function
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2, (1.2)

where the coefficients c1,2 are responsible for friction along the axes ξ and η, and c3 is responsible
for friction with respect to the rotational motion.

The Lagrange equations can be written in a standard way as
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Introducing generalized momenta P = ∂T/∂u1, Q = ∂T/∂u2, M = ∂T/∂ω and assuming m =
m0 +mp, μ = mp/m, I0 = J0/m, ξp = s, ηp = b sinΩt, we rewrite them as

Ṗ = ωQ− c1u1
m

,

Q̇ = −ωP − c2u2
m

,

Ṁ = u2P − u1Q− c3ω

m
,

(1.4)

where the quantities u1, u2, ω appearing on the right-hand sides are expressed in terms of P , Q,
M algebraically, via a system of linear equations.

Using dimensionless time τ = Ωt and normalized variables p = P/mΩ, z = Q/mΩ, q = M/mΩ,
u = u1/Ω, v = u2/Ω, w = ω/Ω, we obtain

ṗ = wz − ν1u,

ż = −wp − ν2v,

q̇ = vp − uz − ν3w,

(1.5)
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⎛
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q − μsb cos τ

⎞
⎟⎟⎟⎠, (1.6)

where D = a− μa+ μs, J = I0 + a2 + μ(s2 − a2), ν1 = c1m
−1Ω−1, ν3 = c3m

−1Ω−1 and the dot
denotes now the derivative with respect to dimensionless time τ . We note that the equations are
invariant under the change of variables

τ → τ + π, p → p, z → −z, q → −q, u → u, v → −v, w → −w. (1.7)

Suppose that at time τ = 2πn we are given the values of the variables pn, zn, qn. Solving
numerically with these initial conditions the equations in the time interval Δτ = 2π, we can obtain
new values

(pn+1, zn+1, qn+1) = f(pn, zn, qn). (1.8)

Thus, we have defined a three-dimensional stroboscopic Poincaré map, which is convenient for
description and representation of the results of analysis of the dynamical behavior.

Equations (1.5), (1.6) and the map (1.8), which govern the evolution of three variables p, z, q,
respectively, in continuous and discrete time, define the reduced system, which can be considered
independently of the other variables relating to configuration space. The coordinates of the point
of application of friction, R, in the laboratory reference system, X and Y , and the angle of rotation
of the platform, ϕ, obey the equations supplementing the system (1.3):

ẋ = u cosϕ, ẏ = u sinϕ, ϕ̇ = ω, (1.9)

which completes the mathematical formulation of the problem.
For the Chaplygin sleigh, where the nonholonomic constraint, which ensures that the velocity

component in the direction of the axis η is zero, is assumed to be imposed instead of viscous friction
at point R, one should write, instead of Eqs. (1.5) and (1.6), using the same notation, the following
equations:

ṗ = (Dw + μb cos τ)w − ν1u,

q̇ = −(Dw + μb cos τ)u− ν3w,
(1.10)

⎛
⎝ 1 −μb sin τ

−μb sin τ 1

⎞
⎠

⎛
⎝u

w

⎞
⎠ =

⎛
⎝ p

q − μsb cos τ

⎞
⎠ . (1.11)

Formally, these equations are obtained from (1.5) and (1.6) by simply excluding the equation for
the transverse velocity, setting this velocity equal to zero, v = 0, and using the relation, following
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from (1.6), for the transverse component of the generalized momentum: z = Dw + μb cos τ . An
accurate transition is made by considering the system of interest within the framework of the
concepts of fast-slow motions, taking into account the large coefficient of transverse friction, which
was done previously by Fufaev [29, 30] for the case of free motion of the Chaplygin sleigh. Such a
passage to the limit involves using the methods developed for differential equations with a small
parameter at a higher derivative [49–51], in particular, in the context of the concept of a boundary
layer in hydrodynamics problems. The main result in this vein is the well-known Tikhonov theorem,
which establishes conditions under which the system can be adequately described by equations
obtained by eliminating the term with a small parameter at the derivative, due to the fact that
for the complete system in the space of states the solutions approach fast the surface of slow
motions, which corresponds to the space of states of the asymptotic problem. In [27, 28, 52–54],
attention is given to the development of this approach for problems of nonholonomic mechanics.
According to the recent paper by Eldering [54], the fact that the dynamics within the framework of
a complete description corresponds to the dynamics within the framework of asymptotic equations
obtained on the basis of the Tikhonov theorem may be asserted with confidence only on finite
times of observation. Below we will make special note of this when discussing comparative results
of numerical simulation of the dynamics of our system on the basis of the nonholonomic model
and the model with friction. A derivation of Eqs. (1.10) and (1.11) within the framework of the
nonholonomic model is presented in [16–18].

2. SELF-ACCELERATION UNDER SMALL OSCILLATIONS OF THE INTERNAL MASS

We start by discussing the effect of acceleration of the motion of the platform in the case where
the amplitude of periodic oscillations of the particle is small and its mass is small relative to the
mass of the platform. For the nonholonomic model of the Chaplygin sleigh (1.10), (1.11) this effect
was considered in [16]. It was shown that in certain parameter regions the motion occurs in the

direction of the longitudinal axis of the sleigh with velocity increasing with time as τ1/3. The
corresponding regions on the parameter plane where acceleration takes place are shown in grey in
Fig. 2. The distance from the point of application of the constraint to the location of the particle’s
oscillation is plotted along the abscissa axis, and the relative mass of the particle is plotted along
the ordinate axis, with the other parameters fixed.

Fig. 2. Regions of unbounded acceleration of the Chaplygin sleigh due to small periodic oscillations of
the internal mass (grey) and regions of bounded variation of generalized velocities (white) on the plane of
parameters s, μ for J0 = 1, a = 1, b = 0.2 according to [16].

Numerical calculations show that the effect consisting in the acceleration of the directed motion
of the platform persists when the nonholonomic constraint is replaced by transverse viscous friction.
Figure 3 presents diagrams illustrating this effect and comparing the nonholonomic model in the
absence of friction (1.10), (1.11) and the model with transverse viscous friction (1.5), (1.6) for
different values of the coefficient ν2 (lines). For both models, the figure shows time dependences of

the combination 1
3D

2p3 + J2p, which, in accordance with the asymptotic method developed in [16],
increases linearly in the case of a nonholonomic constraint and in the absence of friction. It can be
seen that, if the coefficient of transverse friction is sufficiently large, then the dependence in the
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initial interval in the model with friction is close to the dependence predicted by the nonholonomic
model. However, with the passage of time, the increase in the velocity slows down as compared to
the nonholonomic model and has the tendency to saturation. The same effect was pointed out in [18]
for the case where small friction in the longitudinal direction and friction for the rotational motion
of the platform are incorporated into the nonholonomic model. The influence of the corresponding
effects on self-acceleration in the model with transverse viscous friction is illustrated in Fig. 4: the
effect of saturation becomes more pronounced.

Fig. 3. Diagrams illustrating the acceleration of the motion of the platform for small oscillations and a
small mass of the particle: comparison of the nonholonomic model in the absence of friction (dots) and the
model with transverse friction for different values of the friction coefficient ν2 (lines). The diagrams show the

dependence of the combination 1
3
D2p3 + J2p on dimensionless time for two cases, s = 5, μ = 0.5 and s = −3,

μ = 0.2, when unbounded acceleration takes place in the nonholonomic model. The other parameters are:
I0 = 1, a = 1, b = 0.2.

Fig. 4. Dependence of the dimensionless longitudinal momentum p on dimensionless time in parameter regions
corresponding to the acceleration of the motion of the platform for the nonholonomic model (dots) and for the
system with small longitudinal and large transverse viscous friction — solid lines, close to which the values of
the transverse friction coefficient are presented: (a) s = −1, μ = 0.4, (b) s = 5, μ = 0.3. The other parameters
are: J0 = 1, a = 1, b = 0.3, ν1 = 0.001, ν3 = 0.2.

The results obtained in this section provide a clear illustration of the applicability of the
Tikhonov theorem [49, 50, 54]. Namely, considering the specific system described within the
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framework of the nonholonomic model and the model with friction, one can see that the
correspondence taking place on finite times of observation can be violated in the sense that
asymptotically steady motions can be different.

3. FRACTAL AND FAT CHAOTIC ATTRACTORS AND HOW THEY ARE
TRANSFORMED IN THE MODEL WITH TRANSVERSE FRICTION

With increasing amplitude of oscillations of the moving mass, which is characterized by
parameter b, the model equations exhibit more complex dynamics. In particular, in certain
parameter regions one observes chaotic dynamics corresponding to strange attractors [16–18].
Examples of such attractors are given in Fig. 5.

Fig. 5. Portraits of an attractor in the stroboscopic section for the model with a nonholonomic constraint
(a) and for a system with friction for ν2 = 10 (b). The other parameters are: J0 = 1, a = 1, s = 0.9, μ = 0.5,
b = 3.

It should be noted that for the nonholonomic model without friction the existence of attractors
is not quite trivial, since the system possesses symmetry with respect to time reversal and, in the
absence of oscillations of the internal mass, conserves the mechanical energy. However, even in a
simple case such as the free motion of the Chaplygin sleigh, the reduced equations exhibit attractors
in the form of fixed points, which are neutral with respect to the perturbation of energy [11, 12]. The
possibility of existence of chaotic attractors in systems of nonholonomic mechanics was first pointed
out by Borisov and Mamaev (for rattleback-type systems) [44], see also [45, 46]. The presence of
symmetry with respect to time reversal means that each attractor corresponds to a symmetric
partner which is a repeller, i. e., an attractor of the system with reversed time.

The diagram in Fig. 5 on the left demonstrates a strange attractor of the nonholonomic model
of the Chaplygin sleigh with periodic oscillations of a massive particle, which was found in [16].
The attractor is presented in the stroboscopic section on the plane (p, q). The Lyapunov exponents

calculated for the Poincaré map2) are

Λ1 = 0.49, Λ2 = −2.45.

Thus, we obtain the Kaplan –Yorke dimension [33, 34, 47] DKY ≈ 1.2.

The diagram in Fig. 5 (right) shows a strange attractor of the model with transverse viscous
friction. In this case, the Poincaré map is three-dimensional. The image is presented as a projection
from the three-dimensional space of states (p, z, q) onto the plane (p, q), which allows a clear
visual comparison with the nonholonomic model. As can be seen, both portraits of the attractors

2)The Lyapunov exponents were calculated by the standard method [33, 34, 48] for a map for a period on the basis
of the numerical solution of Eqs. (1.5), (1.6) for models with friction and Eqs. (1.10), (1.11) for the nonholonomic
model together with the corresponding linearized equations in variations and orthogonalization of the Gram–
Schmidt perturbation vectors in each step of the Poincaré map.
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demonstrate a remarkable similarity. The Lyapunov exponents found numerically for the attractor
of the system with friction are

Λ1 = 0.54, Λ2 = −2.05, Λ3 = −35.26.

As can be seen, two largest Lyapunov exponents are in good quantitative agreement with the
exponents for the nonholonomic model. The Kaplan –Yorke dimension of the attractor is DKY ≈
1.26, which is also close to the value for the nonholonomic model.

The charts of the parameter plane shown in Fig. 6 give a general idea of possible modes of the
model systems of interest. The color denotes the value of the largest Lyapunov exponent.

The left diagram (a) reproduces a chart for the nonholonomic model without friction, as obtained
in [18]. For comparison, the middle panel shows a chart (b) for the model where, instead of the
nonholonomic constraint, transverse friction takes place with the coefficient ν2 = 10. Both charts
have been plotted by scanning pixels in the region on the parameter plane in such a way that for
each pixel the calculation of the trajectory and the calculation of the Lyapunov exponent start
under the same initial conditions.

In yellow and light-red regions, the dynamics for the nonholonomic model is observed which is
similar to the situation of Hamiltonian systems [35–37] where on the phase plane there coexist the
region of a “chaotic sea” and regions of regular motions represented by invariant curves. (Under
initial conditions given in plotting the chart, motions relating to the “chaotic sea” are observed.)
In [18] it is noted that, in contrast to the usual conservative systems, the positive and negative
Lyapunov exponents in the nonholonomic model are different, and therefore the chaotic sea is
qualified as a specific type of attractor, the so-called “fat attractor”. For the system with friction
the diagram in panel (b) uses coloring in accordance with the Lyapunov exponent for a transitional
trajectory calculated on the segment of the trajectory with the same initial conditions. This allows a
comparison of the motion pattern on a finite time of observation, which is in remarkable agreement
for the nonholonomic model and the model with friction. However, it should be kept in mind that for
the model with friction this gives no correct idea of the pattern of asymptotically steady motions.
In the above-mentioned regions, after a long transitional process the motions of the system become
regular and periodic, and correspond in the stroboscopic map to successive visiting of a finite set
of points.

Fig. 6. Charts on the parameter plane of the nonholonomic model (a) and of the model with transverse
viscous friction (b, c) for ν2 = 10, where the colors denote values of the largest Lyapunov exponent of the
stroboscopic map (the legend on the right). Charts (a) and (b) have been plotted under the initial conditions
which are the same for each point of the parameter plane, and chart (c) has been constructed when scanning
in the direction from bottom to top with inheritance of the initial state at each new point according to the
final state at the preceding point. The other parameters are: a = 0.5, J0 = 0.05, b = 1, ν1 = ν3 = 0.

On the other hand, in the lower right part of the chart shown in Fig. 6a, the system exhibits
chaos, which is associated with a strange attractor analogous to the attractors of dissipative systems
(a “thin”, or fractal attractor). This is the same type of attractors as in Fig. 5. Such attractors
persist when passing from the nonholonomic system to the model with friction.

The chart in Fig. 6c provides insight into the nature of the steady-state modes depending on
the parameters in the model with friction. This chart has been plotted by scanning the parameter
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plane, pixel after pixel, in the direction from bottom to top with inheritance: the initial conditions
in calculations for a new pixel are given as a set of variables obtained at the end of calculations
for the preceding pixel. Instead of the yellow and light-red regions, an extensive light-blue region
is observed, which corresponds to periodic modes with negative Lyapunov exponents.

Fig. 7. Phase portraits of a reduced system in the stroboscopic section for s = 0.25, μ = 0.25 (a, d),
s = 0.75, μ = 0.75 (b, e) and s = 0.25, μ = 0.75 (c, f). The upper row corresponds to the nonholonomic
model (1.10), (1.11), and the lower row corresponds to the model with transverse viscous friction (1.5), (1.6)
with ν2 = 10. The coexisting attracting periodic motions in the diagrams (d, e) are indicated by dots of different
colors. The first two diagrams relate to situations of coexistence of a “fat attractor” and invariant curves on
the phase plane (p, q), and the third demonstrates a “thin” strange attractor. The lower row corresponds to
the system with transverse friction with the coefficient ν2 = 10.

Figure 7 shows phase portraits in the stroboscopic section at representative points on the
parameter plane of Fig. 6. The upper row corresponds to the nonholonomic model, where the
first two diagrams relate to coexistence of a “fat attractor” and invariant curves on the phase plane
(p, q), and the third demonstrates a “thin” strange attractor. The lower row corresponds to the
system with transverse friction with the friction coefficient ν2 = 10. These are projections from the
three-dimensional phase space (p, z, q) onto the plane (p, q). If one compares these diagrams with
the corresponding pictures from the upper row, one can see that, instead of the “fat attractors”
and regular motions occurring in the nonholonomic model, coexisting attracting cycles are formed
in the model with friction. (The type of the attracting cycle arising for the system is determined by
the initial conditions.) On the other hand, the fractal strange attractor looks remarkably similar
for the system with friction and for the nonholonomic model. This manifests itself not only in
the visual similarity, but also quantitatively; indeed, the Lyapunov exponents of the nonholonomic
model

Λ1 = 0.846, Λ2 = −5.10

are close in value to the first two Lyapunov exponents of the model with friction

Λ1 = 0.845, Λ2 = −4.89, Λ3 = −37.00.

The values of the Kaplan –Yorke dimension are in both cases also close to each other (approxi-
mately 1.17).
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4. TWO-DIMENSIONAL RANDOM WALK IN THE LABORATORY REFERENCE
SYSTEM

Dynamical modes associated with the strange attractors of reduced equations correspond to
motion of the platform in the laboratory reference system in the form of two-dimensional random
walks, without a preferred direction and with the loss of memory of the initial orientation for large
time scales [38–40]. Also, the distribution of distances from the beginning to the end of the segment
of the trajectory traveled within a fixed number of oscillations of the internal mass N (the number
of iterations of the Poincaré map) is characterized by the Rayleigh distribution function, and the
distribution of the azimuth angles of rotation tends to uniform distribution. For the nonholonomic
model this circumstance is pointed out in [16, 18].

Fig. 8. A family of fragments of the trajectory in the laboratory reference system for the model with
transverse friction with the coefficient ν2 = 10, which are visualized as described in the text (a) and cumulative

distribution functions for the traveled distances and azimuth angles (b, c) obtained for 1.7 · 103 iterations of
the Poincaré map. In diagram (b), the data are compared with the Rayleigh distribution (dots), and diagram
(c) is indicative of a uniform distribution of the azimuth angles. The other parameters are: a = 1, Ω = 1,
J0 = 1, μ = 0.5, b = 3, s = 0.9, ν1 = ν3 = 0.

Figures 8 and 9 illustrate a random walk and its statistical characteristics for the model with
friction; for comparison, Fig. 10 shows analogous results pertaining to the nonholonomic model.

Diagrams (a) show what the trajectory of the center of mass of the platform on the plane (X, Y )
looks like when parameters corresponding to the strange attractor of the reduced equations are
specified. The graphs have been plotted by integrating equations for the coordinates (1.9) together
with the reduced equations, respectively, (1.5), (1.6), and (1.9), (1.10). The start is performed from
the origin of coordinates x = 0, y = 0 with zero initial conditions for generalized velocities and
with a zero initial angle of rotation. The motion is tracked until the instant when the distance
from the origin of coordinates exceeds the specified value rmax = 2000. Further, the calculations
are continued with current values of the generalized velocities and the rotation angle, but with a
start again from the origin of coordinates. Thus, the diagrams show several successive fragments
of the same trajectory corresponding to the orbit of the reduced equations which approaches to a
chaotic attractor.

Diagrams (b) and (c) show cumulative distributions for the distances

r =
√

(x(k+1)N − xkN )2 + (y(k+1)N − ykN)2

and the angles θ = arg[(x(k+1)N − xkN) + i(y(k+1)N − ykN)]. The solid lines correspond to numerical

results for the specified number of periods, N = 150. The role of the sample space is played by the
set whose elements are the fragments of the above-mentioned reference trajectory, labeled by the
index k = 1 . . . 104.
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Fig. 9. A family of fragments of the trajectory in the laboratory reference system for the model with
transverse friction with the coefficient ν2 = 20, which are visualized as described in the text (a) and cumulative

distribution functions for the traveled distances and azimuth angles (b, c), obtained for 103 iterations of the
Poincaré map. In diagram (b), the data are compared with the Rayleigh distribution (dots), and diagram (c)
is indicative of a uniform distribution of the azimuth angles. The other parameters are: a = 1, Ω = 1, J0 = 1,
μ = 0.5, b = 3, s = 0.9, ν1 = ν3 = 0.

The dots in panel (b) correspond to the Rayleigh distribution F (r) = 1− e−r2/2σ2
, where 2σ2

is the sum of variances of the random quantities x(k+1)N − xkN and y(k+1)N − ykN , obtained

as statistical estimates from the available samples. The value of the variance at ν2 = 10 is
σ2 ≈ 1.44 · 104, for ν2 = 20 we have σ2 ≈ 4.65 · 104, and for the nonholonomic model the variance
is σ2 ≈ 1.05 · 105. Using the well-known relation from the theory of two-dimensional random walks,
one can estimate the diffusion coefficient as the ratio of this value to the corresponding double time
interval: D = σ2/4πN , which gives for the three above-mentioned cases, respectively, 7.6, 24.7, and
55.7. Thus, the velocity of diffusion increases appreciably as the coefficient of longitudinal friction
increases and as one passes to the situation where the nonholonomic model is applicable, although
the attractors of the reduced equations look very similar.

The distributions for azimuth angles in diagrams (c) are evidently close to a uniform distribution.

5. THE MECHANISM OF ACCELERATION CAUSED BY PARAMETRIC RESONANCE

The next effect we discuss here is the mechanism of acceleration of the system’s motion
with increasing mechanical energy of the platform, which is related to parametric resonance and
excitation of oscillations.

As pointed out in [18], in a particular case of the nonholonomic model, when the oscillating
particle moves perpendicularly to the principal axis ξ in a straight line passing through the center
of mass of the entire system (platform plus particle), the problem reduces, taking longitudinal
friction into account, to a system of linear equations with variable coefficients. In this situation, the
effect of unbounded parametric excitation of oscillations like that in the Mathieu equation [41–43]
is possible in certain parameter regions. We note that the presence of friction in the longitudinal
direction is a necessary condition for the onset of this effect.

As numerical calculations show, the modification of the phenomenon of parametric acceleration
in the model where the nonholonomic constraint is replaced by strong transverse viscous friction
is that the observed growth of the kinetic energy is stabilized at a certain level. The larger the
coefficient of transverse friction, the higher this level. Figure 11 shows diagrams illustrating the
behavior of the phase trajectory of the system in the situation of parametric acceleration for the
nonholonomic model (panel (a)) and the model with strong transverse viscous friction with the
coefficient ν2 = 80 (panel (b)). As can be observed, in the latter case, the system exhibits, instead
of unbounded acceleration, a regular attractor, which is represented in the Poincaré section of the
closed invariant curve in the form of a figure-of-eight. The motion on this attractor corresponds
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Fig. 10. A family of fragments of the trajectory in the laboratory reference system for the nonholonomic
model, which are visualized as described in the text (a), and cumulative distribution functions for the traveled

distances and azimuth angles (b, c), obtained for 1.1 · 103 iterations of the Poincaré map. In diagram (b), the
data are compared with the Rayleigh distribution (dots), and diagram (c) is indicative of a uniform distribution
of the azimuth angles. The other parameters are: a = 1, Ω = 1, J0 = 1, μ = 0.5, b = 3, s = 0.9, ν1 = ν3 = 0.

Fig. 11. Parametric acceleration: comparison of the nonholonomic case and the model with transverse friction
for ν2 = 80. The other parameters are: Ω = 1, b = 1, J0 = 0.15, a = 0, s = 0, ν1 = 0.35, ν3 = 0.1, μ = 0.85.
The initial conditions are: p = 0, z = 0, q = −0.1.

in the laboratory coordinate system to directed motion of the platform, which is accompanied by
strong oscillations across the direction of averaged motion (Fig. 12). The averaged motion occurs in
the steady-state mode with constant average velocity the direction of which depends on the spatial
orientation of the platform in the case of a start in the laboratory reference system.

The restriction of the effect of parametric excitation of oscillations, and hence the velocity with
which the platform gains the kinetic energy, can be attributed to the fact that the transverse
component of the reaction force of the medium, the role of which is played by the transverse
component of the viscous friction force, turns out to be bounded. This is illustrated in Fig. 13,
where the time dependence of the reaction force is compared in the nonholonomic model and in the
model with transverse viscous friction for motions along the phase trajectories shown in Fig. 11,
respectively, in panels (a) and (b).

6. PARAMETER SPACE TOPOGRAPHY AND BIFURCATION SCENARIO

We now discuss in more detail the dynamical modes which can, depending on the parameters,
take place in a system with large transverse and small longitudinal viscous friction, in comparison
with the nonholonomic model.
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Fig. 12. Trajectory of the center of mass in the laboratory reference system in the steady-state mode of motion
resulting from parametric acceleration in the model with friction. The parameters are: Ω = 1, b = 1, J0 = 0.15,
a = 0, s = 0, ν1 = 0.35, ν2 = 80, ν3 = 0.1, μ = 0.85. The initial conditions are: p = 0, z = 0, q = −0.1, x = 0,
y = 0, ϕ = π/2.

Fig. 13. Time dependence of the dimensionless transverse component of the viscous friction force in the
system with the coefficient of transverse friction ν2 = 80 (a) and the reaction force in the system with the
nonholonomic constraint (b) in the process of parametric acceleration. The center of mass of the platform
coincides with the place of application of friction (the position of the knife edge), i. e., the parameter a = 0,
and the oscillations of the point mass occur on the line passing through the center of mass, i. e., s = 0. The
other parameters are: I0 = 0.15, μ = 0.85, b = 1, ν1 = 0.35, ν3 = 0.1.

Figure 14 shows charts of modes on the parameter plane of the relative mass of an oscillating
particle μ and the coefficient of longitudinal friction ν1 = 0.1 for the system with transverse viscous
friction ν2 = 20 and for the nonholonomic model. Different colors indicate periodic modes, and white
denotes the region of chaos in accordance with the legend shown on the right. As can be seen, the
general arrangement of the regions in both charts demonstrates an obvious similarity, although
in the chart for the system with transverse friction the region of complex dynamics and chaos is
significantly shifted downward. In fact, as the coefficient of transverse friction increases, this region
shifts upward, and the picture becomes similar to that which corresponds to the nonholonomic
model.

Figure 15 presents bifurcation diagrams for the values of the dynamical variable q (dimensionless
angular momentum), which correspond to the attractor of the Poincaré map, versus the parameter
of the relative value of the oscillating mass μ, and presents graphs showing the dependence of
the largest Lyapunov exponent for the system with transverse friction and for the nonholonomic
model in the same interval of the parameter. On the parameter plane of Fig. 14, this corresponds
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Fig. 14. Charts of modes for the model with transverse friction for ν2 = 20 and for the nonholonomic model.
The other parameters are: Ω = 1, b = 1, J0 = 0.15, a = 0, s = 0.1, ν3 = 0.1.

Fig. 15. Bifurcation trees and dependences of the largest Lyapunov exponent on the parameter of the ratio of
masses: (a) the nonholonomic model for ν1 = 0.3, ν3 = 0.1, (b) the model with transverse friction for ν1 = 0.2,
ν2 = 20, ν3 = 0.1. The other parameters are: s = 0.1, a = 0, Ω = 1, J0 = 0.15, s = 0.1.

to passage along the horizontal line ν1 = const. As can be seen, the diagrams for the model with
transverse friction and for the nonholonomic model demonstrate an obvious similarity, but with
values of the coefficient of longitudinal friction shifted relative to each other.

Figure 16 depicts attractors of the system with continuous time for the model with friction
at representative points on the axis of parameter μ, and shows, against this background, points
(colored dark) corresponding to the stroboscopic Poincaré section, i. e., to time instants τn = 2πn.
Each panel has a caption indicating the Lyapunov exponents of the Poincaré map which have been
found numerically for the corresponding attractor.

During motion along the axis of parameter μ from left to right we first observe an attractor
in the form of a symmetric loop (figure-of-eight), which corresponds to the attracting fixed point
of the Poincaré map (panel (a)). Then, at μ ≈ 0.754, the system undergoes a bifurcation of the
symmetry loss of the solution relative to the change of variables (1.7), followed by a cascade of
period-doubling bifurcations (panels (b) and (c)), and a transition to chaos. The resulting chaotic
attractor is first asymmetric (d), so that in the phase space it coexists with a symmetric attractor
obtained by the change of variables (1.7). As the parameter increases, the attractor and its partner
merge to form a single symmetric attractor (e). Such symmetric attractors can be seen in panels
(g) and (i); on the other hand, panel (h) demonstrates an asymmetric chaotic attractor. The region
of chaos is interspersed with periodicity windows, which look like light-colored vertical strips in the
bifurcation diagram and like dips into the negative region on the graph of the Lyapunov exponent.
The attractor shown in panel (f) corresponds to one of the regularity windows. The sequence
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Fig. 16. Attractors of the reduced equations of the system with large transverse and small longitudinal
viscous friction for the parameters I0 = 0.15, ν1 = 0.2, ν3 = 0.1, ε = 1, a = 0, s = 0.1 and μ = 0.75 (a), 0.8
(b), 0.84 (c), 0.856 (d), 0.86 (e), 0.8635 (f), 0.875 (g), 0.891 (h), 0.94 (i). Light-blue denotes the trajectories in
continuous time, and red indicates points corresponding to the stroboscopic Poincaré section at times t = 2πn.
The Lyapunov exponents of the stroboscopic map are shown near the portraits of attractors.

of bifurcations described above reproduces the sequence discussed in [18] for the nonholonomic
model, although the best agreement takes places when the coefficient of longitudinal friction ν1 in
the nonholonomic model is somewhat increased.

In the system with longitudinal friction, the difference between the nonholonomic model and the
model with transverse friction is not so great as the difference that was observed in the situation
without longitudinal friction and manifested itself in a transition from quasi-conservative dynamics
(when there coexisted a “fat attractor” and regularity regions occupied by invariant curves) to
multistability. In the system with longitudinal friction the dynamics of the nonholonomic model
and that of the model with transverse viscous friction are in much better qualitative agreement
with each other. This can be seen by comparing the charts of Lyapunov exponents presented in
Fig. 17, which are remarkably similar to each other.

CONCLUSION

In this paper, we have considered the problem of the motion of a rigid body (platform) on a
plane, initiated by oscillations of a point mass relative to the body, in the presence of the viscous
friction force applied at a fixed point of the platform and having in a specific direction relative to
the platform a small value and a large value in the transverse direction. This problem is analogous
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Fig. 17. Lyapunov charts for a system with small longitudinal and large transverse viscous friction (a) and for
the nonholonomic model with longitudinal friction (b). The colors denote the value of the largest Lyapunov
exponent in accordance with the legend on the right. The friction coefficients are given in the captions. The
other parameters are b = 1, a = 0.5, J0 = 0.05.

to that of a Chaplygin sleigh when the nonholonomic constraint prohibiting motions across the
direction of the knife edge or skate placed on the platform is replaced by viscous friction.

Based on numerical simulations, we have made a comparison of the main dynamical phenomena
for the nonholonomic model and for the system with friction.

It is shown that the effect of acceleration of motion of the platform under small oscillations of the
internal mass, as observed in the nonholonomic model, persists when the nonholonomic constraint
is replaced by transverse viscous friction in the region of small velocities, but, in contrast to the
nonholonomic model, the increase in the velocity has the tendency to saturation.

The special features are shown of the transformation of fractal attractors, which occur in the
space of generalized momenta of the nonholonomic model and are similar to those occurring in
dissipative systems, and “fat” attractors, which are similar to the “chaotic sea” in Hamiltonian
systems. It is demonstrated that, apart from some minor changes, the attractors of the first type
persist when the nonholonomic constraint is replaced by viscous friction, and the attractors of
the second type break down, resulting in the formation of many coexisting regular attractors in
the form of attracting cycles. This is the most significant qualitative difference of the dynamical
behavior of the nonholonomic model and the system with friction.

It is shown that, in the system with viscous friction, the motions in the laboratory reference
frame which are associated with strange attractors and have the form of two-dimensional random
walks persist, but are characterized by a smaller value of the diffusion coefficient as compared to
the nonholonomic model.

In the nonholonomic model where longitudinal viscous friction is taken into account, the effect of
parametric resonance can lead to an unbounded growth of the kinetic energy of the platform with
unbounded excitation of the oscillation amplitude. In the system where the nonholonomic constraint
is replaced by transverse viscous friction, the effect of parametric resonance is characterized by
saturation of parametric instability. Also, the steady-state average velocity of motion of the platform
in the laboratory reference system turns out to be bounded.

It is shown that in the parameter space of the nonholonomic model and of the system with
viscous friction the arrangement of the regions of regular dynamics and chaotic dynamics is in both
cases similar, as are the bifurcation scenarios leading to the onset of chaos.
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