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Abstract—We discuss Hamiltonian model of oscillator lattice with local coupling. The
Hamiltonian model describes localized spatial modes of nonlinear Schrödinger equation with
periodic tilted potential. The Hamiltonian system manifests reversibility of Topaj –Pikovsky
phase oscillator lattice. Furthermore, the Hamiltonian system has invariant manifolds with
asymptotic dynamics exactly equivalent to the Topaj –Pikovsky model. We examine the
stability of trajectories belonging to invariant manifolds by means of numerical evaluation of
Lyapunov exponents. We show that there is no contradiction between asymptotic dynamics on
invariant manifolds and conservation of phase volume of Hamiltonian system. We demonstrate
the complexity of dynamics with results of numerical simulations.
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1. INTRODUCTION

Lattices of phase oscillators compel attention of researchers for many years [1, 2, 4]. Each
oscillator in a lattice is described by a single cyclic variable and governed by first order differential
equation. Usually phase oscillators are derived from second order dissipative systems with a stable
limit cycle, like van der Pol oscillators, by neglecting the amplitude variations. Then the phase is a
slow variable that parametrizes the limit cycle. Phase oscillators also describe dissipative pendulums
or Josephson junctions at overdumped limit. The lattices of phase oscillators share with lattices of
second order dissipative oscillators a feature of synchronous regimes, but interestingly also manifest
behaviour unexpected in dissipative systems. There are examples of phase oscillator lattices that
demonstrate reversibility. A well-known example of reversible lattice was given by Pikovsky and
Topaj [5]. This model is rigorously studied [6, 7] and is of great interest to us. Reversibility was
noticed also in an array of overdumped Josephson junctions shunted by resistive load [8]. Tsang et
al. [8] had found the time-reversing change of variables and emphasized that in-phase state in such
array was not an attractor. They also pointed out that time reversal symmetry had vanished upon
introduction of second derivatives (if junction capacities are non-negligible or resistance load is
replaced by LC-load). Before we proceed with the discussion of Topaj – Pikovsky lattice, we outline
shortly a range of related issues.

A dynamical system is called reversible if there is a change of variables R which if combined
with time reversal t �→ −t leaves equations invariant [9–12]. Such transformation most often is
an involution which means that it yields the identity when composed with itself: R ◦R = Id.
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Involution R has a fixed set FixR, and trajectories that intersect it are called symmetric [11].
While time-reversal symmetry occurs naturally in Hamiltonian dynamical systems, the definition of
reversible system is not bounded just to this class [9, 10]. Generally a reversible dynamical system
has “conservative” symmetric trajectories (with zero sum of Lyapunov exponents) and pairs of
attractors and repellers that map into each other under involution and are connected by symmetric
asymptotic trajectories. Behaviour of “conservative” trajectories resembles Hamiltonian systems,
there is a variant of KAM-theorem for reversible systems [13–15]. The dynamics of reversible systems
is classified differently from both conservative and dissipative and is referred as “mixed” in recent
articles [12, 16, 17]. There are well known physical examples of reversible but not Hamiltonian
systems. Reversible dynamics manifests in CO2 lasers [18], point vortices interacting with potential
wave [19–21], mechanical systems with nonholonomic constraints [22–27]. There is a lot of work
done recently regarding Hamiltonization of nonholonomic systems [28–32].

Pikovsky and Topaj [5] considered a relatively simple chain of N locally coupled phase oscillators
with linear distrubution of natural frequencies, which has time reversal symmetry:

φ̇j = ωj + ε sin (φj+1 − φj) + ε sin (φj−1 − φj) , (1.1)

where φj are phases of oscillators, chain boundaries are φ1 and φN , ωj are natural frequencies,
which are equidistant: ωj+1 − ωj = 1. Oscillators are coupled via sinψj , where ψj are phase shifts
φj+1 − φj . Boundary conditions are free: φ0 = φ1 and φN+1 = φN . Since right-hand-sides depend
only on phase shifts ψj , one can easily derive a system of N − 1 equations:

ψ̇j = 1 + ε sinψj+1 + ε sinψj−1 − 2ε sinψj . (1.2)

For Eq. (1.2) involution is

R : ψj �→ π − ψN−j . (1.3)

Involution (1.3) has an invariant set FixR : ψj + ψN−j = π.

Pikovsky and Topaj observed numerically an almost conservative behaviour of system (1.2) at
small values of coupling ε and attractors and repellers, corresponding to phase-locked clusters of
oscillators, at large values of ε. Gonchenko et al. [6] described bifurcations leading to the emergence
of attractors and repellers within “conservative chaotic sea”.

The aim of this work is to observe the phenomenon of reversibility in more general lattices
of oscillators. Since it is clear that reversibility is hard to expect with second order dissipative
oscillators, we apply a model with energy conserved. Actually we use a Hamiltonian model of
coupled oscillators, introduced in [33] and discussed in [34]. This Hamiltonian model has an
involution very close to Topaj –Pikovsky model and invariant manifolds, on which amplitudes
are constant and phases are governed exactly by Topaj – Pikovsky equations. We should emphasize
however, that these invariant manifolds are not asymptotically stable in contrast to phase dynamics
of lattices of non-conservative oscillators.

2. MODEL OF HAMILTONIAN LATTICE

Tommen et al. [33] studied numerically the classical limit model of an ultracold quantum
degenerate gas in a tilted optical lattice. They derived Hamiltonian equations governing complex
amplitudes zj of nonlinear Schrödinger equation with tilted potential:

i∂tψ = − �
2

2m
∂xxψ +

(
V0 cos

2 kx+ Fx
)
ψ + g|ψ|2ψ. (2.1)

Assuming that potential wells are deep, such that only ground states are excited, one can

substitute the anzatz ψ (x, t) =
∑N

j=1 zj (t)Ψj (x) in Eq. (2.1). Here N is the number of potential

wells, Ψj (x) are Wannier – Stark states (the resonant eigenstates of linear Schrödinger equation)
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localized in potential wells, and zj (t) describe oscillations in potential wells. This expansion yields
equations of motion (we suggest to find full derivation in [33–35])

żj =i
∂H
∂z̄j

= iωjzj + iβ|zj |2zj

+ ε
(
2|zj |2 (zj+1 + zj−1)− z2j (z̄j+1 + z̄j−1)− |zj+1|2zj+1 − |zj−1|2zj−1

)
,

˙̄zj =− i
∂H
∂zj

= −iωj z̄j − iβ|zj |2z̄j

+ ε
(
2|zj |2 (z̄j+1 + z̄j−1)− z̄2j (zj+1 + zj−1)− |zj+1|2z̄j+1 − |zj−1|2z̄j−1

)
,

(2.2)

which are generated by Hamiltonian

H (. . . , zj , z̄j , . . .) =
N∑

j=1

ωjzj z̄j +
1

2
β

N∑

j=1

z2j z̄
2
j + iε

N∑

j=1

(zj+1z̄j+1 − zj z̄j) (zj+1z̄j − zj z̄j+1) , (2.3)

where ε is coupling parameter and ωj are natural frequencies of oscillations in potential wells. Only
local interaction is assumed in Eq. (2.2) since Wannier – Stark states are localized. The frequencies in

Eq. (2.2) are equidistant: ωj = −πF
k� j (we will use ωj+1 −ωj = 1 onwards). The boundary conditions

are z0 = z1, zN+1 = zN . It is important to our purposes to rewrite Hamiltonian (2.3) with different
set of canonical variables Ij = |zj |2 (the populations of potential wells or intensities of oscillations)
and φj = Argzj (phases of oscillations):

H (. . . , Ij, φj , . . .) =

N∑

j=1

ωjIj +
1

2
β

N∑

j=1

I2j − 2ε

N∑

j=1

√
Ij+1Ij (Ij+1 − Ij) sin (φj+1 − φj) . (2.4)

Hamiltonian function (2.4) produces 2N dynamical equations

İj = − ∂H
∂φj

=− 2ε
√

Ij+1Ij (Ij+1 − Ij) cos (φj+1 − φj)

− 2ε
√

Ij−1Ij (Ij−1 − Ij) cos (φj−1 − φj) ,

φ̇j =
∂H
∂Ij

=ωj + βIj + ε

{

3
√

Ij+1Ij − Ij+1

√
Ij+1

Ij

}

sin (φj+1 − φj)

+ ε

{

3
√

Ij−1Ij − Ij−1

√
Ij−1

Ij

}

sin (φj−1 − φj) ,

(2.5)

with free boundary conditions φ0 = φ1, φN+1 = φN , I0 = I1, IN+1 = IN .

Witthaut and Timme introduced equations [34] similar to Eq. (2.5) but with global coupling
of oscillators. They pointed out that phase space of the Hamiltonian model includes invariant
manifolds with dynamics exactly matching Kuramoto model [1, 2, 4]. We however restrict ourselves
to the case of local coupling also covered in [34].

If populations of all oscillators are equal to each other, Ij = I, they are constant, İj = 0.
Therefore an infinite family of invariant N -dimensional tori exists with constant equal populations
I of oscillators and phases φj governed by only N equations

φ̇j = ωj + βI + 2εI sin (φj+1 − φj) + 2εI sin (φj−1 − φj) . (2.6)

This is just the Eq. (1.1) with rescaled coupling 2εI and shifted frequencies ωj + βI. Thus, on every
invariant torus Ij = I the Hamiltonian function (2.4) generates a system of phase oscillators with
local coupling. As before, one can change phases φj to phase shifts ψj = φj+1 − φj and reduce the
phase space dimension of phase model (2.6) or Hamiltonian model (2.5) by one.
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It is not surprising that Hamiltonian model (2.5) is reversible with involution just slightly more

comlpicated1):

R : Ij �→ IN−j+1, (φj+1 − φj) �→ π − (φN−j+1 − φN−j) . (2.7)

Involution (2.7) has an invariant set FixR : Ij − IN−j+1 = 0, (φj+1 − φj) + (φN−j+1 − φN−j) = π.

One can rewrite transformation (2.7) in complex variables zj =
√

Ije
iφj :

R′ : zj �→ z̄N−j+1, ωj �→ ωN−j+1. (2.8)

This transform can be considered as a composition of the flip of the lattice relative to its central
part (j �→ N − j + 1) and complex conjugation of all amplitudes zj �→ z̄j. A trajectory symmetric
by R′ corresponds physically to the case of lattice elements positioned symmetrically relative to
the center and rotating in opposite directions. The requirement of frequencies flip ωj �→ ωN−j+1

is important. However since ωj+1 − ωj = 1, transformation R (2.7) does not explicitly include the
change of parameters.

System (2.5) has two constants of motion [34]. One of them is the Hamiltonian function H,
another is the total population of oscillators (sum of intensities):

C2 =

N∑

j=1

Ij =

N∑

j=1

zj z̄j. (2.9)

C2 is constant due to norm preservation of nonlinear Schrödinger equation (2.1). It makes
the dynamics equivariant under a simultaneous scaling Ij �→ C2Ij (or zj �→ Czj) and parameter

transformation ε �→ ε/C2, β �→ β/C2 for all j and any C > 0 [34]. This scaling does not affect
phase dynamics on invariant tori Ij = I. Therefore we fix the normalization C2 = N/2, where N
is the number of oscillators, without loss of generality, to define an invariant torus Ij = 1/2. Due
to the equivariance under scaling it is sufficient to study only one invariant torus. The dynamics
is also invariant with respect to a global phase shift, because Eq. (2.5) depend only on the phase
differences.

Involution (2.7) is valid in whole phase space of system (2.5), while the Hamiltonicity appears
to be violated on invariant torus Ij = 1/2, since there are asymptotically stable trajectories on this
manifold. We reason that one should take into account the behaviour of trajectories in vicinity of
invariant torus to disclose that all attracting and repelling trajectories on it are actually saddle
trajectories with zero sum of Lyapunov exponents. We will show by numerical procedures that
this is actually the case. Thus all contractions and expansions of phase space on invariant torus
are counterbalanced by expansions and contractions in its vicinity and phase volume is conserved.
Nevertheless we regard the dynamics on ivariant torus Ij = 1/2 as degenerate. We point out an
article [32] with similar situation. Bizyaev et al. show that the Hamiltonian problem of heavy
rigid body motion (so-called Hess case) posess an invariant torus with limit cycles asimptotically
stable at t → ∞ or t → −∞. Interestingly, Bizyaev et al. reduced the problem at some special
parameter values to Adler equation [36], describing a single phase oscillator. Another examples
concern generalized Toda lattices, and also their connections to Chaplygin sleigh, Suslov problem
and three-wave interaction [37].

Let us transform Eq. (2.5) with change of variables Ij = a2j more suitable for numerical

simulation, where aj > 0 are real amplitudes of oscillations2):

ȧj =− εaj+1

(
a2j+1 − a2j

)
cos (φj+1 − φj)− εaj−1

(
a2j−1 − a2j

)
cos (φj−1 − φj) ,

φ̇j =ωj + βa2j + ε

{

3aj+1aj −
a3j+1

aj

}

sin (φj+1 − φj) + ε

{

3aj−1aj −
a3j−1

aj

}

sin (φj−1 − φj) .

(2.10)

1)We consider phase shifts φj+1 − φj = ψj as variables, that undergo transformation.
2)Variables (aj , φj) are not canonical variables of Hamiltonian (2.4).
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In the next sections we study numerically the dynamics of Hamiltonian lattice (2.5) on invariant
torus Ij = 1/2 and in its vicinity. We choose relatively simple lattices composed of N = 3 and
N = 4 oscillators and set β = 0 for simplicity. We also shortly discuss system (2.5) composed of
N = 2 oscillators.

3. TWO COUPLED HAMILTONIAN OSCILLATORS
The system of N = 2 conservative oscillators (2.5) is completely integrable. The invariant

manifold I1 = I2 = 1/2 reduces to a circle parametrized by the phase shift ψ = φ2 − φ1, governed
by Adler equation (we set β = 0):

ψ̇ = 1− 2ε sinψ. (3.1)

Equation (3.1) has two equilibria if |ε| > 1/2. One of them is stable O (ψo = arcsin 1
2ε) with

characteristic Lyapunov exponent λ = −
√
4ε2 − 1, another is unstable S (ψs = π − arcsin 1

2ε) with

characteristic Lyapunov exponent λ =
√
4ε2 − 1. But in a phase space of Hamiltonian model they

both are saddles connected by heteroclinic trajectories on invariant circle and outside of it [34] (see
Fig. 1).

Fig. 1. (a) Phase portait of system (3.2) at ε = 0.4. (b) Phase portrait of system (3.2) at ε = 0.9. Saddle
equilibria and their separatrices are marked on the figure.

We show that sums of characteristic Lyapunov exponents of equilibria O and S are zeroes in
phase space of Hamiltonian model. First we take into account that phase space of Hamiltonian
lattice is constrained by the equation a21 + a22 = 1 and by the fact that phases are defined up to
arbitrary phase shift. Therefore we can reduce the system to two equations. We introduce new

variable θ ∈
(
−π

4 ,
π
4

)
such that cos 2θ = 2a1a2, cos

2 θ = (a1+a2)2

2 , sin2 θ = (a1−a2)2

2 :

θ̇ =ε sin 2θ cosψ,

ψ̇ =1− 2ε
cos 4θ

cos 2θ
sinψ.

(3.2)

The invariant circle is defined by value θ = 0. We linearize Eq. (3.2) in the small neighborhood of

O (θo = 0,ψo = arcsin 1
2ε) and S (θs = 0,ψs = π − arcsin 1

2ε):

δθ̇ =±
√

4ε2 − 1δθ,

δψ̇ =∓
√

4ε2 − 1δψ.
(3.3)

Therefore, equilibria O and S are saddles with Lyapunov exponents λ1 =
√
4ε2 − 1 and λ2 =

−
√
4ε2 − 1 (the rest two exponents are zeroes due to constants of motion). Invariant circle θ = 0

is stable manifold of O and unstable manifold of S.
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4. LATTICE OF N = 3 HAMILTONIAN OSCILLATORS

For lattices of N = 3 and N = 4 oscillators we submit the numerically calculated Lyapunov
exponents for trajectories on invariant torus as well as illustrations of corresponding dynamics of
phases on invariant torus and potential well populations in the vicinity of invariant torus. We inves-
tigated only trajectories symmetric by R. We performed numerical integration of equations (2.5)
using Dormand –Prince method with adaptive step implemented in Odeint library from Boost
library collection [47]. Simulations were ran with check of constants of motions preservation up to
numerical errors. We used well known Benettin procedure [3, 38, 39] for calculation of Lyapunov
exponents with LAPACK subroutines for orthogonalization of perturbation vectors. According to
Benettin algorithm we solved numerically Eq. (2.10) with 2N sets of variational equations. Each set
of variational equations governed a perturbation vector. At constant timesteps we performed QR-
decomposition of matrix composed of perturbation vectors. We accumulated sums of logarithms of
diagonal elements of upper triangonal matrix R. These sums divided by integration time gave the
estimations of Lyapunov exponents.

Figure 2 shows plots of Lyapunov exponents vs. ε of tipical trajectory on invariant torus
(a) and of tipical trajectory, that does not belong to invariant torus (b), for lattice of N = 3
oscillators (other parameters are: β = 0, ω1 = −1, ω2 = 0, ω3 = 1). Picture (a) also contains plots
of Lyapunov exponents for phase lattice (1.1) of Topaj and Pikovsky (red color in online version).
Lyapunov exponents of phase model (1.1) match perfectly with half of the Lyapunov exponents of
Hamiltonian model (2.5), that correspond to perturbation vectors always tangent to invariant torus
I1 = I2 = I3 = 1/2. At |ε| < 1 all Lyapunov exponents of trajectories on invariant torus are zero.
This corresponds to periodic orbits on invariant torus [5]. At |ε| > 1 only two Lyapunov exponents
are zero (since system (2.5) has two constants of motion), and other four are two pairs of positive
and negative exponents. This corresponds to two saddle equilibriums in involution on invariant
torus. On Fig. 2b only two Lyapunov exponents are zero at large ε. These Lyapunov exponents
correspond to periodic saddle trajectories (Fig. 4b). The explanation is that symmetry induced
by involution allows only periodic trajectories to cross FixR. This restriction takes place only in
lattice of N = 3 oscillators.

Figure 3 demonstrates phase portraits of system (2.5) composed of N = 3 oscillators at ε = 0.39.
All trajectories are symmetric, i. e. they cross the invariant set of involution FixR. Panel (a) shows
trajectories belonging to invariant manifold I1 = I2 = I3 = 1/2. It is a family of periodic orbits on
invariant torus. Phase portrait is clearly symmetric with respect to R. Figures 2b–2d show different
projections of phase space for lattice with unfixed populations I1 = I3 = 1/2 + 0.01, I2 = 1/2− 0.02
(total population is C2 = 3/2). If phase shifts φ2 − φ1 and φ3 − φ2 are close to π/2, populations
deviate greatly from uniform distribution. Dynamics of phases on panel (b) is just slightly perturbed
in comparison with dynamics on invariant torus (a).

At ε = 1 trajectories on the two-dimensional invariant torus I1 = I2 = I3 = 1/2 condense at φ2 −
φ1 = φ3 − φ2 = π/2. At ε > 1 stable equilibrium O1 =

(
arcsin 1

ε , arcsin
1
ε

)
and unstable equilibrium

O2 =
(
π − arcsin 1

ε , π − arcsin 1
ε

)
appear which are effectively an attractor and a repeller of phase

model (1.3) acting on the invariant torus I1 = I2 = I3 = 1/2 of Eq. (2.5) (see Fig. 4a). These
two points are in involution with each other so we can investigate only one of them. It is easy
to find characteristic Lyapunov exponents of these equilibria by stability analysis of Eq. (1.3):

O1 has both negative exponents λ1 = −
√
ε2 − 1 and λ2 = −3

√
ε2 − 1, O2 has both positive

exponents λ1 = 3
√
ε2 − 1 and λ2 =

√
ε2 − 1. The dependencies of Lyapunov exponents correspond

to Fig. 2a. Also together with equilibria O1,2 two saddle equilibria appear, which belong to FixR:

S1 =
(
arcsin 1

ε , π − arcsin 1
ε

)
and S2 =

(
π − arcsin 1

ε , arcsin
1
ε

)
. Both saddles have characteristic

Lyapunov exponents with zero sum: λ1 =
√
3(ε2 − 1) and λ2 = −

√
3(ε2 − 1). Now we discuss

stability of equilibria O1,2 and S1,2 in four-dimensional phase space of Hamiltonian model (we

fixed H = 0 and C2 = 3/2). Every equilibrium on the invariant torus is a saddle with zero sum
of Lyapunov exponents in phase space of Hamiltonian model. Saddle equilibria O1,2 have four

nonzero Lyapunov exponents λ1 = 3
√
ε2 − 1, λ2 =

√
ε2 − 1, λ3 = −

√
ε2 − 1 and λ4 = −3

√
ε2 − 1.

The invariant torus I1 = I2 = I3 = 1/2 at ε > 1 is actually a stable manifold of saddle equilibrium
O1 and unstable manifold of saddle equilibrium O2 in four-dimensional phase space.
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Fig. 2. (a) Plot of Lyapunov exponents vs. coupling parameter ε for lattice N = 3 of tipical trajectory
on invariant torus (with initial condition I1 = I2 = I3 = 1/2, φ1 = π/3, φ2 = π/2, φ3 = 4π/3). Lyapunov
exponents of Topaj and Pikovsky phase lattice (1.1) are plotted red (see color online). (b) Plot of Lyapunov
exponents vs. ε for tipical trajectory of the lattice N = 3 that does not belong to invariant torus (with initial

conditions I1 = I3 = 0.501, I2 = 0.498, such that constant C2 is 3/2, φ1 = π/3, φ2 = π/2, φ3 = 4π/3). Other
parameters are β = 0, ω1 = −1, ω2 = 0 and ω3 = 1.

5. LATTICE OF N = 4 HAMILTONIAN OSCILLATORS

Figure 5a demonstrates dependence on ε of Lyapunov exponents of Hamiltonian model (2.5)
composed of N = 4 oscillators for trajectories on invariant torus Ij = 1/2. There are eight Lyapunov
exponents, but four of them are always zero, two due to constants of motion and two due to
invariance to arbitrary time shift along the trajectory and to arbitrary phase shift. Additionally
the Lyapunov exponents for phase model (1.1) are plotted red (see color online). They coincide
with four of eight exponents of Hamiltonian model (2.5) and describe only dynamics of phases on
invariant torus. We distinguish four regions of ε. The first corresponds to quasiperiodic motions
with all exponents equal to zero up to numerical errors (ε < 0.38 approximately). The second
region (ε < 0.43 according to [5]) corresponds to coexistence of quasiperiodic and chaotic motions
with one positive and one negative exponent (which appear to be equal in magnitude by our
numerical approach) for perturbations tangent to the invariant torus (compare with exponents
for phase lattice model (1.1)) and one positive and one negative exponent (equal in magnitude)

for perturbations transversal to the invariant torus. The third region (ε < 0.6) is the interval3)

with coexisting “attractors” A and their reversal “repellers” R with one positive and one negative
exponent for perturbations tangent to the invariant torus, nonequal in magnitude. Positive and
negative exponents for perturbations transversal to the invariant torus are correspondingly equal

3)Parameter ranges specified by us are not accurate, actually some small amount of trajectories might be asymptotic
even if ε is close to zero [6].
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Fig. 3. Phase portraits of system (2.5) composed of N = 3 oscillators at parameter values β = 0, ε = 0.39,
ω1 = −1, ω2 = 0, ω3 = 1. (a) Phase portrait for fixed populations I1 = I2 = I3 = 1/2 and initial phases for
all trajectories φ2 − φ1 = π − (φ3 − φ2). (b,c,d) Phase portraits for unfixed populations I1 = I3 = 1/2 + 0.01,
I2 = 1/2− 0.02, φ2 − φ1 = π − (φ3 − φ2), panel (b) shows dynamics of phase shifts, (c) illustrates dynamics
of population of first oscillator vs. phase shift between first and second oscillators, (d) shows evolution of
populations of first and third oscillators.

in magnitude to negative and positive exponents for perturbations tangent to the invariant torus.
Sets A attract only trajectories that belong to invariant torus and are actually saddle sets with zero
sum of Lyapunov exponents. Behaviour of sets R is opposite. For roughly ε > 0.6 there are only
periodic trajectories C1 and C2. Periodic orbit C1 has two nonequal negative Lyapunov exponents
for perturbations tangent to the invariant torus, and two nonequal positive Lyapunov exponents
for perturbations transversal to the invariant torus. Periodic orbit C2 is in involution with C1. In
eight-dimensional phase space of Hamiltonian system both C1 and C2 are saddles with zero sums
of Lyapunov exponents, but on four-dimensional invariant torus curve C1 acts like attractive limit
cycle, and curve C2 acts like repelling limit cycle. Figure 5b shows plots of panel (a) enlarged.
One can see, that symmetry of Topaj and Pikovsky phase lattice is broken at large values of ε,
while Hamiltonian model has nonzero Lyapunov exponents split and anomaly of phase dynamics
compensated by behaviour of populations Ij .

To visualize dynamics of system (2.5) with N = 4 oscillators we need to construct suitable
Poincaré cross-section. We follow [5] and choose cross-section by surface φ3 − φ2 = π/2 so that the

invariant set of the involution is φ2 − φ1 = π − (φ4 − φ3), I1 = I4, I2 = I3 on this surface4).

4)We should note, that some trajectories are tangent to this cross-section surface. See another set of phase variables
in [6, 12], that does not have this disadvantage.
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Fig. 4. Phase portraits of system (2.5) composed of N = 3 oscillators at parameter values β = 0, ε = 1.39,
ω1 = −1, ω2 = 0, ω3 = 1. (a) Phase portrait for fixed populations I1 = I2 = I3 = 1/2 and initial phases for
all trajectories φ2 − φ1 = π − (φ3 − φ2). Trajectories approaching equilibria O1 at t → ∞ are plotted blue,
trajectories approaching equilibria O2 at t → −∞ are plotted red (color online). (b) An example of symmetric
trajectories that do not belong to invariant torus. Initial conditions are I1 = I3 = 1/2 + 0.01, I2 = 1/2− 0.02,
φ2 − φ1 = π − (φ3 − φ2).

Fig. 5. (a) Plot of Lyapunov exponents vs. coupling parameter ε for lattice N = 4 of tipical trajectory on
invariant torus (with initial condition I1 = I2 = I3 = I4 = 1/2, φ1 = −π/2, φ2 = 4π/3, φ3 = −π/6, φ4 = π).
Lyapunov exponents of Topaj and Pikovsky phase lattice (1.1) are plotted red (color online). (b) Enlarged part
of panel (a). Overlap of Lyapunov exponents of models (1.1) and (2.5), corresponding to perturbations tangent
to invariant manifold, is clear. Other parameters are β = 0, ω1 = −1.5, ω2 = −0.5, ω3 = 0.5 and ω4 = 1.5.
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Fig. 6. Phase portraits of system (2.5) composed of N = 4 oscillators in Poincaré cross-section at parameter
values β = 0, ε = 0.19, ω1 = −1.5, ω2 = −0.5, ω3 = 0.5, ω4 = 1.5 (quasiperiodic regimes). (a) Phase portrait
for fixed populations I1 = I2 = I3 = I4 = 1/2 and initial phases for all trajectories φ2 − φ1 = π − (φ4 − φ3),
φ3 − φ2 = π/2. (b,c,d) Phase portraits for unfixed populations I1 = I4 = 1/2 + 0.01, I2 = I3 = 1/2− 0.01,
φ2 − φ1 = π − (φ4 − φ3), φ3 − φ2 = π/2, panel (b) shows dynamics of phase shifts, (c) illustrates dynamics
of population of first oscillator vs. phase shift between first and second oscillators, (d) shows evolution of
populations of first and last oscillators.

Figure 6 shows phase portraits of Poincaré map of the system (2.5) composed of N = 4
oscillators at ε = 0.19. All trajectories are symmetric. Panel (a) shows trajectories belonging to
invariant manifold I1 = I2 = I3 = I4 = 1/2. It is a family of quasiperiodic trajectories (invariant
curves) on invariant torus. Phase portrait is clearly symmetric with respect to R. Figures 6b–6d
show different projections of phase space for lattice with unfixed populations I1 = I4 = 1/2 + 0.01,
I2 = I3 = 1/2 − 0.01 (total population is C2 = 2). We describe motions in the neigborhood of the
invariant torus following paper [34]. If phase shifts φ2 − φ1 and φ4 − φ3 between neiboring oscillators
become close to π/2, their populations unlock from uniform distribution Ij ≈ 1/2, grow fast and
then return. We conclude that populations Ij oscillate near invariant torus if initially distributed
close to I = 1/2. Dynamics of phases in case of almost uniform dustribution of Ij is very close to
dynamics on the invariant torus.

Figure 7 demonstrates phase portraits in Poincaré cross-section of the system (2.5) with N = 4
oscillators at ε = 0.39. Panel (a) shows trajectories on invariant torus. It is a “sea” of chaotic
trajectories with “islands” of quasiperiodic and periodic motions, like in nonintegrable Hamiltonian
systems. It is possible, however, that some of the trajectories on invariant torus asymptotically
converge [6]. As before, we state that asymptotically stable trajectories on invariant torus are
unstable in transversal directions with rates of convergence and divergence balanced. Figures 7b–
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Fig. 7. Phase portraits of system (2.5) composed of N = 4 oscillators in Poincaré cross-section at parameter
values β = 0, ε = 0.39, ω1 = −1.5, ω2 = −0.5, ω3 = 0.5, ω4 = 1.5 (“chaotic sea”). (a) Phase portrait for
fixed populations I1 = I2 = I3 = I4 = 1/2 and initial phases for all trajectories φ2 − φ1 = π − (φ4 − φ3),
φ3 − φ2 = π/2. (b,c,d) Phase portraits for unfixed populations I1 = I4 = 1/2 + 0.01, I2 = I3 = 1/2− 0.01,
φ2 − φ1 = π − (φ4 − φ3), φ3 − φ2 = π/2, panel (b) shows dynamics of phase shifts, (c) illustrates dynamics
of population of first oscillator vs. phase shift between first and second oscillators, (d) shows evolution of
populations of first and last oscillators.

7d show projections of phase space for lattice with unfixed populations. One can see, that chaotic
layers are not bounded by KAM-tori. This is a well-known Arnol’d diffusion phenomenon [40].

Figure 8 demonstrates Poincaré cross-section at ε = 0.49. Panel (a) and panel (b) show evolution
of trajectories on invariant torus starting from FixR forward and backward in time. Symmetric
trajectories converge to “attracting” set A at t → ∞ and to “repelling” set R at t → −∞. Sets A
and R do not coincide with each other, but are in involution. This is an example of symmetry
breaking in phase lattice model of Pikovsky and Topaj. Again we emphasize, that A and R
are saddle sets in a phase space of Hamiltonian system (2.5) with equal rates of divergence and
convergence. We do not submit portraits of trajectories in vicinity of invariant torus, because KAM-
tori are almost absent and it is impossible to distinguish any pattern due to Arnol’d diffusion.

6. CONCLUSION

We studied the Hamiltonian generalization of Pikovsky and Topaj reversible lattice of locally
coupled phase oscillators. The Hamiltonian model has the involution similar to the one in Topaj –
Pikovsky lattice. Furthermore the Hamiltonian system has invariant manifolds where dynamics
reduces precisely to the phase model of Pikovsky and Topaj. We showed that asymptotic behavior on
these manifolds did not contradict to overall conservativity of Hamiltonian system. We considered
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Fig. 8. Phase portraits of system (2.5) composed of N = 4 oscillators in Poincaré cross-section at parameter
values β = 0, ε = 0.49, ω1 = −1.5, ω2 = −0.5, ω3 = 0.5, ω4 = 1.5 (chaotic “attractor” and “repeller”). Initial
conditions are I1 = I2 = I3 = I4 = 1/2, φ2 −φ1 = π− (φ4 − φ3), φ3 − φ2 = π/2. (a) Evolution forward in time.
(b) Evolution backward in time.

three simple examples of the Hamiltonian lattice. In case of only two coupled oscillators the invariant
manifold reduces to a circle. At large values of coupling parameter two saddles emerge on the
invariant circle, and the invariant circle becomes composed of their separatrices. If one consider the
dynamics only on the invariant circle, it looks dissipative, but in a whole phase space the volume
preserves. In case of lattices of three or four oscillators the situation is similar. The invariant
manifolds are tori and at large coupling parameter they hold saddle trajectories. If, again, one
consider only the dynamics on invariant tori, it looks non-conservative, but actually the contrary. All
saddle trajectories that belong to the invariant tori, have stable and unstable manifolds with equal
convergence and divergence rates, and do not violate the conservation of phase volume. Starting
from N = 4 oscillators the lattice manifests very complex dynamics. We also slightly covered the
dynamics of symmetric by involution trajectories that do not belong to invariant manifolds. In
lattices of two and three oscillators symmetric trajectories appear to be only periodic (in case of
N = 3 we have a numerical evidence), because they have to map into themselves by involution
and the dimension of phase spase is not big enough to allow more complex symmetric trajectories.
In lattice of four oscillators we observed not only chaotic trajectories, but also Arnol’d diffusion
in vicinity on invariant manifolds. Overall the Topaj –Pikovsky reversible (but not conservative)
lattice can be considered as a special case of Hamiltonian lattice introduced in [33]. At the same
time we suppose that it is still fair to consider Topaj – Pikovsky phase lattice as an independent
problem.

In our research we followed [34]. We believe this new approach to generalize ansambles of phase
oscillators up to Hamiltonian systems will pay off in future studies. For example it may bring a
fresh look on a famous Watanage–Strogatz partial integrability in ansamble of globally coupled
identical Kuramoto oscillators [41–45]. At last we want to point out the article [46] exploring
the connection between synchronization and quantum entanglement by introduction of quantized
version of Hamiltonian model from [34].
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