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The article considers Chaplygin sleigh on a plane in potential well, assuming that an 
external potential force is supplied at the mass center. Two particular cases are studied in 
some detail, namely, a one-dimensional potential valley and a potential with rotational 
symmetry; in both cases the models reduce to four-dimensional differential equations 
conserving mechanical energy. Assuming the potential functions quadratic, various 
behaviors are observed numerically depending of the energy, from those characteristic to 
conservative dynamics (regularity islands and chaotic sea) to strange attractors. This is 
another example of nonholonomic system manifesting these phenomena (similar to those 
for Celtic stone or Chaplygin top), which reflects a fundamental nature of these systems 
occupying intermediate position between conservative and dissipative dynamics.  
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1. Introduction 
Study of complex dynamics of nonlinear systems, including dynamic chaos, is a 

fundamental interdisciplinary problem.  
In mechanics, besides the systems described in the framework of the Hamiltonian 

formalism (conservative) and systems with friction (dissipative), a class of systems with 
nonholonomic constraints is of special interest [1,2]. They include many situations of great 
practical value, for example, in the analysis of mobile vehicles, e.g. in the context of 
robotics. Hierarchy of nonholonomic systems include a variety ranging from simple 
(integrable) to complex (nonintegrable) cases [3]. A representative example of the complex 
dynamics is motion of a solid body with a convex smooth surface on a rough plane (the 
rattleback, or the Celtic stone). Its fundamental property, like in other nonholonomic 
systems occupying a similar place in the hierarchy, is lack of invariant measure in the sense 
of the Liouville theorem [4]. Although the system is conservative (conservation of 
mechanical energy) and symmetric with respect to time reversal, the phase volumes during 
the dynamic evolution do not remain constant, undergoing locally compression or 
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expansion in the phase space. Due to this, the asymptotic behaviors associated with 
attractors can occur, like those in dissipative systems [5-7].  

One of the simplest paradigmatic examples in the nonholonomic mechanics is 
Chaplygin sleigh that is a platform that can move on a plane surface, having a “knife edge” 
attached to the sleigh as one of the supports, capable of sliding only in the longitudinal 
direction. The dynamics of the classical model with some initial translational and angular 
velocity leads to arising steady motion of the sleigh at a constant speed along the direction 
of the knife edge that corresponds to a simple attractor of the dynamical system.  

The present paper examines modifications of the Chaplygin sleigh problem, which 
make possible complex dynamics with conservation of mechanical energy. Namely, we 
consider Chaplygin sleigh on a plane in a potential field that ensures restriction of the 
motions in one or two dimensions assuming that the potential force is supplied at the mass 
center. The complex dynamics can arise due to the fact that when sliding down in the 
potential field and then moving up by inertia, the sleigh tends to orient the knife edge to be 
back respective to the mass center. After the body begins to slide in opposite direction, it 
tends to make a turn to have the knife edge back again. Nevertheless, with a relatively 
small energy the resulting motions appear to be quasi-periodic, but at sufficiently large 
energies the chaotic motions become typical. 

2. Basic equations 

Consider Chaplygin sleigh on a plane (Fig. 1) using a laboratory frame (x, y) and a 
frame (X, Y) fixed on the platform. The condition of the nonholonomic constraint is that the 
velocity direction for the point A is fixed relatively the sleigh. This can be interpreted as a 
knife-edge attached at A, which is allowed to slide along, while transversal motions are 
prohibited. We assume that the knife-edge direction is the axis X, and the center of mass C 
is located on the same axis at a distance a. The reaction force, which prevents transverse 
motions of the knife-edge, is directed along the Y axis. 

 
Fig.1. Chaplygin sleigh on the plane under action of potential force F. C is the mass center, and A is a 
point of location of the nonholonomic constraint allowing motion of this point exclusively along the 
direction of the knife-edge shown as a red segment.  
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The equations of motion are 
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Here m is mass of the sleigh, J is moment of inertia, φ is rotation angle of the sleigh, u is 
velocity of the knife-edge, ω is angular velocity of the sleigh, x and y are coordinates of the 
mass center in the laboratory frame. The external force components are expressed as 
derivatives of the given potential function: )),(),,((),( yxUyxUFF yxyx ∂−−∂= . The 
system has an integral of motion expressing the conservation of mechanical energy: 

 const),()( 22
2
12

2
1 =+ω++ yxUmaJmu  (2.2) 

and is invariant with respect to the inversion of time, the involution 

 ω−→ω−→−→ ,, uutt . (2.3) 

We will examine two specific problems that can be reduced to smaller number of 
equations. The first relates to the case when the potential function depends only on one 
coordinate in the laboratory reference frame, and the second to the situation when the 
potential function has rotational symmetry. For simplicity and concreteness, we limit 
consideration with the potentials given by quadratic functions. If one excludes a 
nonholonomic constraint, then the problems reduce to a one-dimensional or a two-
dimensional linear oscillator, respectively. 

Let the potential be given first by the expression 2
2
1 kyU = , where k is a constant. 

Substituting in (2.1) kyFF yx −== ,0 , using dimensionless variables and parameters 

 21 /1,/,/,/,/,/ maJaxxayykmkmuaumktt +=μ=′=′ω=ω′=′′= − , (2.4) 

and omitting primes for brevity we arrive at the closed set of four equations 
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The motion along the x axis is determined by an additional separate relation 

 ϕω−ϕ= sincosux . (2.6) 
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The integral of motion expressing conservation of the dimensionless energy W reads 

 const)( 222
2
1 =+μω+= yuW . (2.7) 

Consider now a potential with rotational symmetry setting )( 22
2
1 yxkU +=  and 

substituting kyFkxF yx −=−= ,  in (2.1). In dimensionless quantities (2.4), after simple 
transformations with the change of variables 

 ϕη+ϕξ=ϕη−ϕξ= cossin,sincos yx  (2.8) 

we come to a system of four equations, where the angular coordinate φ is excluded: 
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In this case, the energy integral has a form 

 const)( 2222
2
1 =η+ξ+μω+= uW . (2.10) 

3. Dynamics in the case of potential depending on one 
coordinate 

Let us study movement of the Chaplygin sleigh in the case of quadratic potential 
depending on one coordinate by means of numerical simulation by the fourth-order Runge 
– Kutta method. The main parameter, on which the character of the dynamics depends, is 
the energy W, the value of which is determined by setting initial conditions for the variables 
u, ω, y (see (2.7)). The parameter μ is assumed to be fixed, namely, μ=10. 

 
Fig.2. Regular motion of the Chaplygin sleigh in laboratory frame at low energy W=0.0625 (a) and 
complex motion at high energy W=62.5 (b) in the case of potential depending on one coordinate.  

Just preliminary calculations of trajectories by integrating equations (2.5) and (2.6) 
show that for low energies typical are regular motions, and for high energies chaotic ones 
are characteristic (Fig. 2). In the first case, the sleigh performs oscillations in the potential 
profile of such kind that it does not have enough time to turn around during the 
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characteristic period, and the movements alternate in direction when the center of mass is 
ahead of the knife-edge and vice versa. In the second case, the instability of the motion of 
the knife-edge forward develops to a significant extent, which leads to pronounced 
rotations of the sleigh and to chaotic dynamical behavior. 

Actually, the regular or chaotic nature of the motion is determined by the four-
dimensional autonomous dynamical system (2.5) on the three-dimensional manifold of 
constant energy. Figure 3 shows diagrams that are obtained in a two-dimensional section of 
the phase space corresponding to the moments of passage of the variable y through zero 
value (in the direction from positive to negative). 

 
Fig.3. Phase portraits of model (2.5) in cross-section 0=y  (only points where 0<y are shown). 
Parameters: 10=μ , W=0.0125 (a), 1.25 (b), 25 (c), 62.5 (d). 

At small energies W, regular quasiperiodic motions dominate, which are represented 
by closed invariant curves, and chaos occurs in narrow regions (stochastic layers) 
separating the regions of regular dynamics. With the growth of the energy, the domains of 
chaotic motions enlarge, forming a "chaotic sea" surrounding the surviving islands of 
regularity. Although the dynamics look similar to those in systems conserving phase 
volume [8,9], the chaotic sea here appears to represent not a set invariant under time 
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reversal, but rather has to be treated as a kind of attractor (“fat attractor”) [10]; the 
distinction is that the positive and negative Lyapunov exponents are not equal in absolute 
value (see Table 1). With growth of the energy, this difference becomes more pronounced, 
and the sustained chaos is determined by actual strange attractors similar to those in 
dissipative chaotic systems [11, 12]; they have subtle filament transversal structure and are 
characterized by fractal dimensions, which is between 1 and 2 for the cross-section 
representation of them.  

Concerning the Lyapunov exponents of the system (2.5) one should note immediately 
that for any sustained motion there must present two zero exponents, one is associated with 
a perturbation along the phase trajectory, as usual in autonomous systems, and other is 
associated with an energy shift in the system with energy conservation. For the complete 
system (2.5), (2.6), one more zero Lyapunov exponent takes place due to the translational 
invariance along the x axis. 

Calculation of the Lyapunov exponents with traditional numerical method [13] for 
closed invariant curves shows that four exponents are zero (up to computational errors). For 
chaotic motions nonzero Lyapunov exponents are given in Table 1. Presence of a positive 
exponent indicates chaotic nature of the dynamics. Observe that sums of the positive and 
negative exponents are negative that means that the chaotic sets have to be interpreted as 
attractors. In the last row in the table the Kaplan – Yorke dimensions [11, 12] of the 
attractors in the cross-sections (Fig. 3), which are expressed in this case as 

||/1 −+ λλ+=KYD ; for fat attractor (the first column) it is close to 2. 
 

Table 1. Nonzero Lyapunov exponents of chaotic motions in model (2.5) at μ=10 

W 1.25 25 62.5 

λ 0.1093 
–0.1131 

0.0508 
–0.0806 

0.0399 
–0.1009 

DKY 1.97 1.63 1.39 

 
An interesting feature of the system under consideration is that chaotic dynamics of 

the reduced system (2.5) give rise to a one-dimensional random walk of diffusion type [14] 
for the sleigh in the laboratory frame along the axis x. It is illustrated in Fig. 7. Panel (a) 
shows how the sleigh trajectories look like. The diagram is plotted basing on numerical 
integration of Eqs. (2.5), (2.6) for the launch at x=0 with arbitrary remaining initial 
conditions, tracking the motion up to t=80; further, the computations continue with the 
current u, ω, φ and y, but with a launch again from x=0. Thus, it is a family of fragments of 
one and the same trajectory in the sense of the reduced equations corresponding to an orbit 
tending to chaotic attractor of Fig. 3d. As one can judge, the observed motion is a random 
walk, where the distribution of distances from start to finish reached at a fixed time interval 
t tends asymptotically to the Gauss distribution with variance Dt2

12 =σ , where D is the 
diffusion constant. Panel b shows the variance dependence on t and panel c shows the 
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distribution function for particular t=50 as obtained by data processing for a large ensemble 
of samples. From panel b one can see that the dependence in the double logarithmic scale is 
well fitted by a straight line 360.2lglg 2 +=σ t  with unit slope, and the shift parameter 
allows estimating the diffusion coefficient: D≈114. In panel c one can observe a very good 
correspondence of the empirical distribution (shown in gray) and the Gaussian one (blue 
curve) with the variance obtained from the data processing.  

 

Fig.4. A set of trajectories illustrating random walk of the sleigh along the potential valley (a), 
dependence of the variance of the distance on time in double logarithmic scale (b) and the distribution 
function obtained from the numerical data processing at particular t=50 in comparison with the 
Gaussian distribution ( )22 2/exp)2( 2

1 σ−π= − xf  at σ=112.8 (c). 

4. Dynamics in potential with rotational symmetry 
Let us turn now to results of numerical study of the Chaplygin sleigh motion in 

potential field with rotational symmetry. 

 
Fig.5. An example of Chaplygin’s sleigh regular motion in potential well with rotational symmetry 
typical for low energy (a), and an example of complex motion at relatively high energy (b) on the 
plane (x, y). Radius of the disk, in which the mass center moves, is W2 . 

Figure 5 shows typical pictures of movements in a laboratory frame observed at low 
and high energy, when the motion is regular or chaotic, respectively. Trajectories are 
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obtained by numerical integration of equations (2.9) with recalculation of ξ and η to the 
coordinates in the laboratory frame x and y by means of (2.8). 

Figure 6 shows diagrams illustrating the dynamics for different energies on the 
coordinate plane ξ, η in cross-section of the phase space by a zero-velocity hypersurface 
u=0. At low energy, one can see a set of invariant curves corresponding to quasiperiodic 
dynamics. There are fixed points of elliptic type surrounded by the invariant curves. With 
increasing energy, areas of chaos appear as stochastic layers that expand to form the chaotic 
sea surrounding the surviving islands of regular dynamics. Regular movements correspond 
to trajectories with four zero Lyapunov exponents, and chaotic ones correspond to trajecto-
ries that have one positive and one negative Lyapunov exponent equal in absolute values 
(at least within the limits of the calculation error). This picture corresponds qualitatively to 
that observed in Hamiltonian systems [8, 9]. As the energy increases, differences become 
noticeable. In particular, the positive and negative exponents for chaotic movements 
become different from each other in absolute value, so the set of chaotic trajectories should 
be interpreted as an attractor, more precisely, as a “fat attractor”, because the dimension in 
the cross-section is close to 2. With even greater energy, chaos is observed, corresponding 
to usual strange attractors, similar to those observed in dissipative systems, which are 
characterized by filamentary fractal structure. Table 2 summarizes the non-zero Lyapunov 
exponents observed at relatively high energies, and the estimates of fractal dimension of the 
attractor in the Poincaré section according to Kaplan – Yorke [11,12]. 

 
Fig.6. Phase portraits of the Chaplygin sleigh model in a potential field with rotational symmetry 
(2.9) on a plane of variables (ξ, η) in cross-section 0=u  at various values of energy W. Regular 
dynamics (a), chaotic sea and regularity islands like those observed in conservative systems with 
complex dynamics (b, c), an attractor in the form of periodic point (d) and strange attractors born 
according to the Feigenbaum scenario (e, f) are observed. The axes of the frame ξ, η are parallel to 
the axes of the moving reference frame X, Y, but the origin is placed at the origin of the laboratory 
frame x, y. 
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Interestingly, in the region 160120 ÷=W  in the system a transition to chaos is 
observed through the Feigenbaum period doubling bifurcation cascade [11, 12]. The 
estimated convergence constant to the accumulation point corresponds to Feigenbaum’s 
number ...69.4=δ . Such a transition is well known and typical in dissipative nonlinear 
systems, but for the model with energy conservation and time reversal symmetry it 
deserves to be specifically emphasized. (Like that noted earlier for the Celtic stone model 
[6, 7].) In Fig. 7, the period doubling cascade is illustrated with a traditional picture of 
bifurcation tree. The energy parameter is plotted along the horizontal axis, and values of 
one of the dynamical variables are plotted along the vertical axis corresponding to moments 
of passages of the cross-section u=0 in the sustained dynamical regime. A period-doubling 
bifurcation looks like a split of the branches of the "tree", and the chaotic modes correspond 
to the dotted areas of the "crown". 

 
Table 2. Nonzero Lyapunov exponents of motions in model (2.5) at μ=10 

W 1.5 40 150 155 162 

λ 0.0095 
–0.0095 

0.1616 
–0.2041 

–0.1015 
–0.5612 

0.0542 
–0.7332 

0.1147 
–0.8230 

DKY 2.0 1.79 0 1,07 1,14 

 

 
Fig.7. Diagram illustrating transition to chaos through period doubling bifurcations depending on the 
energy for the Chaplygin sleigh in potential with rotational symmetry (2.9), at 10=μ . 

5. Conclusion 
Two models based on the Chaplygin sleigh are considered providing interesting 

examples of four-dimensional systems characterized by presence of an energy integral and 
reversibility in time. These examples clearly demonstrate the fundamental feature of 
nonholonomic systems, namely, their intermediate position between conservative and 
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dissipative systems with combination of phenomena of nonlinear dynamics inherent to 
them. Similar phenomenology was observed previously for the Celtic stone and 
Chaplygin's top [5-7], as well as for some non-autonomous models [10, 15], but the 
systems considered here look simple and natural, and they are autonomous. The results 
obtained are interesting in concern of general methodology of the nonholonomic 
mechanics, as well as for possible applications for creating and control of mobile devices, 
such as wheeled vehicles basing on the principles of nonholonomic mechanics. 
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