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Generation of Robust Hyperbolic Chaos in CNN

S.P.Kuznetsov

It is shown that on the basis of a cellular neural network (CNN) composed, e.g., of six cells,
it is possible to design a chaos generator with an attractor being a kind of Smale –Williams
solenoid, which provides chaotic dynamics that is rough (structurally stable), as follows from
respective fundamental mathematical theory. In the context of the technical device, it implies
insensitivity to small variations of parameters, manufacturing imperfections, interferences, etc.
Results of numerical simulations and circuit simulation in the Multisim environment are pre-
sented. The proposed circuit is the first example of an electronic system where the role of the
angular coordinate for the Smale –Williams attractor is played by the spatial phase of the se-
quence of patterns. It contributes to the collection of feasible systems with hyperbolic attractors
and thus promotes filling with real content and promises practical application for the hyperbolic
theory, which is an important and deep sector of the modern mathematical theory of dynamical
systems.
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1. Introduction

Cellular neural networks (CNN) are defined as arrays composed of cells arranged in space,
each of which is governed by a set of ordinary nonlinear differential equations and interacts with
the neighboring cells [1–3]. The paradigm of CNN based on electronic components was proposed
about thirty years ago. Such devices can be used as analog processors capable of highly efficient
parallel data processing, as an alternative to traditional computational approaches. There is an
extensive literature on various aspects of the theoretical analysis of CNN, their circuit design,
including that at the level of microchips, as well as on their use for image processing, system
control in robotics, neural system modeling and so on [4–10].
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Of interest may be the use of cellular neural networks to construct generators of robust
chaos.

Dynamic chaos is believed to have great potential for a variety of practical applications, such
as secure communication [11–13], data encryption [15–17], pseudo-random number generation
[18–21], development of novel effective radar and sonar technologies [22–26]. For such applica-
tions, it is essential for the chaotic dynamics to persist when the system parameters are varied,
i.e., the property of robustness takes place. Robust chaos [25–29] contrasts with the “fragile
chaos” most often encountered in dynamical systems and associated with quasi-attractors [30].
In the latter case, the dynamics observed in numerical calculations or in experiments, although
it looks chaotic, is also characterized by the presence of regular orbits with narrow basins of
attraction in the nearby region of the phase space, or they appear at small parameter variations.

To date, there has been a rather extensive literature devoted especially to the problem
of generation of robust chaos. For this purpose, various approaches have been proposed, for
example, the use of systems reproducing the dynamics of one-dimensional mappings, piecewise
smooth two-dimensional mappings, such as Lozi [31, 32] and Belykh [33, 34] maps, or the
dynamics on Lorentz-type attractors. (See a review of the approaches in [27, 28].)

However, in our opinion, the most fundamental approach is using systems that demonstrate
rough hyperbolic chaos, which makes it possible to rely on the results of great advances in
mathematical theory in the 1960s–70s, sometimes referred to as the “hyperbolic revolution”
[35–38]. The hyperbolic attractors introduced into consideration in the framework of this theory
are characterized by a rigorously substantiated property of roughness or structural stability [39],
which consists in the fact that, with a small variation of parameters or functions involved in
the equations, the chaotic dynamics remain essentially the same, up to a continuous change of
variables. From the point of view of physical or technical objects, this means insensitivity of the
generated dynamics to small variations in the system component characteristics, manufacturing
imperfections, interferences, aging, etc.

It should be noted that the design of systems with hyperbolic attractors requires special
efforts, and until recently, well-known examples were limited to mathematical constructions.
One of such examples is the Smale –Williams solenoid [30, 36–38]. Suppose that, in the phase
space of some abstract dynamical system, a torus-shaped domain filled with points representing
instantaneous states undergoes in one step of evolution a stretch in the longitudinal direction
by an integer number of times M together with strong transversal compression and folding into
a loop placed inside the original torus, as shown in Fig. 1. (This illustration refers to the special
case M = 2.) At each step of iteration, the volume of the object decreases, and the number of
turns grows by factor M . In the limit, an object arises with an infinite number of turns, which
has a Cantor structure in the transversal cross-section that is the Smale –Williams attractor.
The essential point is that one of the dynamical variables, the angular coordinate ϕ, undergoes
in one step a transformation of such topological nature that one round of the full circle for
the preimage corresponds to an M -fold round for the image (no matter whether in forward or
backward direction). The dynamics of an individual representative point in accordance with
this mapping is chaotic. Although the described construction appeals for clarity to the three-
dimensional state space, this point is not significant, and attractors of this type can also take
place in state spaces of higher dimensions.

Recently, approaches to construction of feasible systems with hyperbolic attractors have
been proposed, and chaos generated by them has been demonstrated in computations [40, 41],
as well as in several experiments with laboratory electronic devices [45–48].
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Fig. 1. (a) Transformation of a torus region in one evolutionary step in time and a limit object, the
attractor in the form of a solenoid, depicted for the case of a ratio of stretching along the angular
coordinate M = 2. (b) A plot of the angular variable at discrete time m as a function of the previous
value. In this case, a round of the complete circle for preimage corresponds to a double round for the
image in the opposite direction.

Returning to the CNN problems, it should be noted that one of the actively developed
areas within this paradigm is to use them for analog modeling of complex space-time dynamics
including such phenomena as formation of Turing structures, autowaves, spiral patterns, and
turbulent behavior [8–10].

In [49], for a one-dimensional medium capable of generating Turing patterns, the idea of
organizing a Smale –Williams attractor with M = 3 was proposed. It corresponds to a situation
where due to periodic modulation of a parameter, long-wave and short-wave structures alternate,
and the spatial phase of the patterns undergoes successive transformation according to the
expanding circle map. A solenoid appears here as an object embedded in an infinite-dimensional
state space of the mapping describing the evolution of states of the distributed system over a
modulation period. In [50] it was shown that it is possible to implement a similar mechanism
of formation of the Smale –Williams attractor at parametric excitation of standing waves in a
ring nonlinear system, when the pumping is alternately provided at a frequency corresponding
to the main parametric resonance and at the tripled frequency.

In [51] an example of an autonomous distributed ring system is given, where the attractor
occurs in the form of a Smale –Williams solenoid with the index M = 2 for the mapping
describing a state transformation over a characteristic time period of onset and suppression of
the activity.

In view of the above results, a natural idea comes up of using CNN to construct rough hy-
perbolic chaos generators. This article demonstrates the possibility of implementing the Smale –
Williams attractor in an electronic cellular neural network reproducing the space-time dynamics
similar to that discussed in [51].

Section 2 formulates the basic equations of the system that is a chain of cells with a certain
type of dynamics, and explains the mechanism for the appearance of the hyperbolic chaos due to
the expanding map for the spatial phases of the patterns formed at successive stages of activity of
the cells. Section 3 presents and discusses results of numerical simulation of the dynamics based
on numerical integration of the proposed equations. Section 4 discusses the CNN designed
as an electronic device that implements chaotic dynamics on the Smale –Williams attractor.
Also, results of circuit simulating for operation of the device in the Multisim environment
are presented and compared with the results of numerical integration of the equations. The
Conclusion discusses the significance of the results obtained and prospects for further research.
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2. Main equations and mechanism of operation

Consider a system that is a ring chain of 2N cells governed by differential equations of the
following form:

u̇n = D(un−1 − 2un + un+1) + u3n − unv
2
n − αun+N + εδnvn,

v̇n = (−γ + u2n)vn + μu2n.
(2.1)

Here un, vn are the dynamical variables that determine instantaneous states of the cells num-
bered by n = 0, 1, . . . 2N − 1, and μ, ε, γ are parameters. In addition to the coupling of
neighboring cells, characterized by the coefficient D, it is assumed that there are still links be-
tween each cell and the opposite element of the ring structure, characterized by parameter α.
By means of a set of values δn, a weak constant in time spatial inhomogeneity is introduced, the
role of which will be explained below.

If we neglect the spatially inhomogeneous additive (i.e., we set ε = 0), then, near the trivial
equilibrium state of the system (2.1) un = 0, vn = 0, the substitution un ∼ exp(λt− iπknN−1)
leads to the following expression for the increments of modes characterized by wavenumbers k,
which, in accordance with the boundary conditions of periodicity, should be taken as integers:

λ(k) = −α(−1)k − 4D sin2(πk/2N). (2.2)

As seen from the formula (2.2), under the condition 0 < α < 4D sin2(3π/2N), only one
mode k = 1 has a positive increment and is unstable, while the other modes are damped,
including the homogeneous one with k = 0.

When specifying the spatial inhomogeneity in such a form that the third spatial harmonic
yields the main contribution, i.e., δn ∼ cos 3πnN−1+ . . ., it is possible to ensure the functioning
of the system in a regime of hyperbolic chaos, which is qualitatively described as follows.

First, let the system be close initially to the trivial state un = 0, vn = 0 and demonstrate
a growth in time of the spatial distribution un with the wave number k = 1. In the general
case, this is a superposition of the sine and cosine components with some coefficients that can
be written as a single term characterized by some spatial phase ϕ: un ∼ cos(πnN−1 + ϕ).

When the factor (−γ + u2n) in the second equation (2.1) becomes positive, the growth of
the variable vn begins. Since at its initiation the process is stimulated by a quadratic term u2n,
the spatial dependence of vn will be determined by the second harmonic: vn ∼ cos2(πnN−1 +

+ ϕ) = 1
2 + 1

2 cos(2πnN
−1 + 2ϕ). As the values of vn grow, the variables un start to decrease

rapidly from a certain time due to the inhibitory effect of the term in the first equation (2.3)
proportional to v2n. When the values of un become small enough, the variables vn also experience
damping with decrement determined by the parameter γ.

Further, there comes a new stage of increase of un, stimulated at its initial part by a term
εδnvn in the first equation, namely, by its first spatial harmonic. The first harmonic appears
as a result of combination of the second harmonic of the variable vn and the third harmonic
of the function describing spatial inhomogeneity: δnvn ∼ cos 3πnN−1 cos(2πnN−1 + 2ϕ) =

= 1
2 cos(πnN

−1 − 2ϕ) + . . . This ensures the transfer of the double phase with the opposite
sign to the first harmonic of the variable un: ϕm+1 ≈ −2ϕm. Thus, for the spatial phase, an
expanding circle map takes place, which produces chaotic dynamics with Lyapunov exponent
Λ ≈ ln 2 = 0.693 . . .

Similar dynamics can be provided in CNN composed of twice less number of cells. Indeed,
taking into account the fact that the spatial structure of the periodic continuation of un is
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determined by odd harmonics, and for vn by even ones, the class of solutions of (2.1) we consider
must satisfy the conditions un+N = −un and vn+N = vn. Therefore, instead of (2.1) we can
write the system of equations for N cells

u̇n = D(un−1 − 2un + un+1) + u3n − unv
2
n + αun + εδnvn,

v̇n = (−γ + u2n)vn + μu2n,
(2.3)

assuming that the boundary conditions of periodicity for un are replaced by the conditions of a
sign change at the ends:

u−1 = −uN−1, uN = −u0. (2.4)

Note that in the system (2.3), unlike (2.1), long-distance interactions of cells with opposite
elements are excluded; the corresponding term in the equation contains a variable related to the
same cell, with the inverted sign.

The state space of the system (2.3) is of dimension 2N . The system can also be described
in terms of the Poincaré map, the dimension of which is 2N − 1. To do so, we need to introduce
a cross-section in the state space of the system (2.3) by some hypersurface S, which is given
by some algebraic equation f(u0, v0, . . . , uN−1, vN−1) = 0 and must cross the flow of phase
trajectories. The Poincaré map expresses the vector of a point on the hypersurface through
the vector of the previous point of its intersection by the trajectory: Xm = F(Xm−1). The
Poincaré map can be implemented as a computer program that performs integration of the
system of differential equations by a finite-difference method from one to another intersection of
the hypersurface S, taking the vector Xm−1 as the initial condition and having the vector Xm

as the result.
When the system operates according to the mechanism described above, the Smale –Williams

type attractor has to take place in the state space of the Poincaré map, and the spatial phase
of the patterns appearing at successive stages of activity plays the role of the angular variable
for the solenoid.

3. Numerical results

Figure 2 shows space-time diagrams illustrating the dynamics of the ring system with the
number of cells 2N = 12, obtained by numerical integration of Eqs. (2.1) by the fourth-order
Runge – Kutta method. The distributions of the values u and v are shown depending on the
spatial index n plotted along the horizontal axis at time instants corresponding to maximal

values of the first mode amplitude estimated as
√

u20 + u2N/2. Although un and vn variables

relate to discrete spatial points, the corresponding dots in the diagram are linked by straight
line segments to visualize clearly the structure of the spatial patterns. The calculations were
carried out with the values of parameters

D = 8, α = 2.2, γ = 0.6, μ = 0.4, ε = 0.25, (3.1)

adding the spatial inhomogeneity corresponding to the third spatial harmonic with the set of
values δn = {1,−1,−1, 1, 1, −1,−1, 1, 1,−1,−1, 1}. As seen from the figure, the waveforms
at each new stage of activity jump randomly over the chain length.

Similar dynamics is observed for the same parameters in the numerical simulations of the
system (2.3) with the number of cells N = 6 and the boundary conditions of sign reversal at the
ends (2.4), and with the inhomogeneity given by the set δn = {1,−1,−1, 1, 1, −1}.
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Fig. 2. Evolution of patterns in the ring system (2.1) with the number of cells 2N = 12 in the sustained
chaotic regime, on the left for the variable u, and on the right for the variable v. The configurations
relating to the moments of successive maximums of the value

√
u2
0 + u2

3 are shown. The parameters are:
D = 8, α = 2.2, γ = 0.6, μ = 0.4, ε = 0.25, δn = {1,−1,−1, 1, 1, −1,−1, 1, 1,−1,−1, 1}.

It can be verified that the observed chaotic displacement of the patterns at successive
stages of activity corresponds to the transformation of the spatial phase according to the double
expanding circle map. For this, in the process of numerical integration of the equations, at

an instant of each mth maximum of the first mode amplitude
√

u20 + u2N/2, the spatial phase

of the pattern is evaluated as ϕm = arg(u0 + iuN/2), and the data are plotted in coordinates

(ϕm−1, ϕm).

Figure 3 combines the graphs obtained by processing the numerical integration data for the
model (2.1) (red points) and for the model (2.3) (blue points). It can be seen that the points fit
the same lines, characterized by an average slope −2.

Although the shape of the branches in Fig. 3 is distorted in comparison with the ideal
linear function of Fig. 1b, this does not violate affiliation of the map to the same topological
class. Indeed, a single passage of a full phase interval along the abscissa axis for the preimage
corresponds to a double passage for the image along the ordinate axis (in the opposite direction).
This circumstance, in the presence of a sufficient degree of compression of the phase volume in
other directions in the state space ensures the existence of the attractor of Smale –Williams
type.

Figure 4 illustrates the dependence of the dynamical variables belonging to a single cell of
the system on time in the regime of sustained chaotic self-oscillations as obtained from numerical
integration of Eqs. (2.3). Figure 5 for the same case shows portraits of the attractor in different
representations. Panel (a) shows a projection of the trajectory belonging to the attractor onto
the phase plane of the individual cell (u0, v0). Panel (b) represents the attractor in projection
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Fig. 3. Diagram for spatial phases calculated as ϕm = arg(u0 + iuN/2) on reaching the mth maximum of

the value
√
u2
0 + u2

N/2. Red dots refer to the system (2.1) of 2N=12 cells, and the blue dots belong to

the system (2.3) of N = 6. The diagram should be compared with Fig. 1c.

on the plane of variables related to cells separated by a quarter wavelength of the main mode
(u0, uN/2). These pictures illustrate the chaotic nature of the dynamics and will be useful for
comparison with the data of the circuit simulation in the next section, but it is difficult to judge
from them about the nature of the attractor in the sense of its relation to the Smale –Williams
solenoid. To make this connection visible, Fig. 4c shows the set of points (u0, uN/2) corresponding

to the instants when the amplitude of the first mode evaluated as
√

u20 + u2N/2 reaches maximal

values. This image can be interpreted as a portrait of the attractor in a Poincaré section, in
a two-dimensional projection, similar to the Smale –Williams solenoid depicted in Fig. 1a. An
enlarged fragment in the center of the plot in Fig. 4c illustrates the transversal Cantor structure
inherent in the solenoid.

Fig. 4. Time dependence of the dynamical variables u and v in the cell n = 0 in the sustained regime
of chaotic self-oscillations as obtained from the numerical integration of Eqs. (2.3). The parameters are:
D=8, α=2.2, γ=0.6, μ=0.4, ε=0.25, δn = {1,−1,−1, 1, 1, −1}.

To characterize the chaotic dynamics on the attractor quantitatively, it is natural to turn
to calculation of the Lyapunov exponents. The total number of Lyapunov exponents for the
system (2.3) is 2N = 12, however, in order to judge on the chaotic nature of the attractor and its
fractal properties, it is sufficient to evaluate only several of the largest exponents. Calculations
are made according to the standard algorithm [44, 52–54], which includes the joint solution
of Eqs. (2.3) and a set of variation equations for small perturbations in a number equal to the
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Fig. 5. Portraits of a trajectory belonging to the attractor of the system (2.3) in projection on the phase
plane of the individual cell (u0, v0) (a) and on the plane of variables related to cells separated by a
quarter wavelength of the main mode (u0, uN/2) (b). The diagram on the right (c) shows the set of

points (u0, uN/2) corresponding to instants of reaching maximums of the value
√
u2
0 + u2

N/2 visualizing

the Smale –Williams solenoid in the two-dimensional projection.

number of the evaluated exponents, with the Gram– Schmidt orthogonalization of the monitored
perturbation vectors at each integration step. For the attractor, to which the diagrams in Fig. 5
belong, the first three exponents are

λ1 = 0.0597, λ2 = 0.0000, λ3 = −0.2046. (3.2)

With the selected parameters, the average period for successive passages of the Poincaré
section according to the results of the calculations is T ≈ 9.866, hence, for the largest Lyapunov
exponent of the Poincaré map we get Λ1 = λ1T ≈ 0.589, which roughly agrees with the value
ln 2 = 0.693 . . . for the linearly expanding map of Fig. 1c. The second exponent is zero, up
to the computational accuracy, and should be interpreted as that associated with a shift-type
perturbation vector along the reference phase trajectory. The remaining exponents are negative.
The Kaplan –Yorke dimension [44, 55, 56] for the Poincaré map attractor is DKY = 1+λ1/|λ3| ≈
1.29, which reflects the fractal transversal structure of the solenoid.

4. Circuit implementation and simulations

Figure 6 shows a circuit diagram of CNN, the dynamics of which corresponds to the
model (2.3). The system is built of blocks; the circuit diagram of a single cell is shown in
Fig. 7. The connection between the cells is provided by resistors R1 − R6 having equal resis-
tances R, and the connection of the first and the last elements of the chain is arranged in a
special way to ensure the condition of sign reversal of type (2.4), while the resistors R7, R8 have
the twice less resistances R/2.

Consider the circuit diagram of an individual cell and derive the respective equations for it.
Note that in the working area of voltages below ∼ 0.4 V the source-drain conductance

of the field-effect transistor 2N5020, which is controlled by the source-gate voltage, may be
approximated with sufficient accuracy by the expression

g(UGS) = g0 − g1UGS , (4.1)

where g0 ≈ 0.0017 A/V, g1 ≈ 0.0020 A/V2.
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Fig. 6. Circuit diagram for the CNN, where blocks D1 and D2 differ only by the positions of the switches
in the circuit of Fig. 7.

Fig. 7. Circuit diagram of an individual cell of the system, where the indicated positions of the switches
S1 and S2 correspond to the block D1, and their opposite positions to the block D2.

If the instantaneous values of the voltages across the capacitors C1 and C2 are U and V ,
then at the output of the analog multipliers A1 and A2, which have a transmission coefficient
0.1V−1, the voltages are 1

10U
2 and 1

10V
2.

We first turn to the block D1, which corresponds to the positions of the switches shown
in Fig. 7, and write down conditions for zero total current at the inverting and non-inverting
inputs of the operational amplifier OA1:

(R−1
13 +R−1

9 )U + (g0 − 1
10g1V

2)U = I + (W1 − U)R10,

C1U̇ + (g0 − 1
10g1U

2)U + (U − V )(R−1
18 +R−1

19 ) =

= J + (W1 − U)R14,

(4.2)

where I is the current flowing through the terminals IO1 and IO3, and J is the current flowing
through the terminals IO2 and IO4, W1 is the voltage at the output of the operational amplifier.
Similar current balance equations at inputs of OA2 are

R−1
11 V + g0V = R−1

18 (U − V ) + (W2 − V )R12,

C2V̇ +R−1
17 V + (g0 − 1

10g1U
2)V +R−1

15 (V − 1
10U

2) =

= R−1
19 (U − V ) + (W2 − V )R16.

(4.3)
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Setting R10 = R11 = R12 = R16,
1
2R18 =

1
2R19 = R13, R11 = R15, C1 = C2 = C, we get

R0CU̇ = U3 − UV 2 +R0R
−1
13 V +R0R

−1
9 U +R0(J − I),

R0CV̇ = −R0R
−1
17 V + U2V + 1

10R0R
−1
15 U

2,
(4.4)

where, for convenience, we have introduced a normalization factor with the dimension of resis-
tance R0 = 5 kΩ so that 1

10g1R0 = 1.
At the opposite positions of the switches, the equations for the D2 block are derived in a

similar way, which differ from (4.4) only by the sign of the term R0R
−1
13 V in the first equation.

When connecting the blocks to the chain, for the difference of currents one has to use the
expression

In − Jn = R−1(Un−1 − 2Un + Un+1), (4.5)

where n is the spatial index of the cells, to which the currents and voltages relate. Given the
special connection at the edges of the chain, the same relationship holds true for end cells if we
assume U−1 = −UN−1, UN = −U0.

To ensure compliance with the equations of Section 2, the resistances must be assigned in
such a way that the following relations are satisfied:

R0R
−1 = D, R0R

−1
9 = 1

100α, R0R
−1
17 = 1

100γ,

R0R
−1
13 = 1

100ε , R0R
−1
15 = μ .

(4.6)

The resulting equations are equivalent to the system (2.3)

R0CU̇n = U3
n − UnV

2
n+

+ 1
100 [D(Un−1 − 2Un + Un+1) + αUn + εδnVn ],

R0CV̇n = − 1
100γVn + 1

10μU
2
n + U2

nVn,

(4.7)

where δn = {1,−1,−1, 1, 1, −1}. The only difference is in the normalization of the variables.
Namely, in order for compliance to take place, it is necessary to set the unit voltage to be 0.1 V
and the unit time to be 100R0C=0.5 ms. The nominal values of the components indicated in
the circuit diagrams of Figs. 6 and 7 were selected to correspond to the parameters used in
Section 2.

Fig. 8. Oscilloscope traces for the voltages across capacitors C1 and C2 for one of the cells D1 of the
system, copied from the screen of the virtual oscilloscope in the course of simulating the circuit functioning
in Multisim.
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Figure 8 shows the oscilloscope traces of voltages across the capacitors C1 and C2 for one
of the cells of the system, obtained with a virtual oscilloscope in the course of simulating the
circuit functioning with the Multisim environment.1 The graphs are given in a scale allowing
a direct visual comparison of them with the results of the numerical solution of the equations
in Fig. 4.

Figure 9 shows the power spectrum of the signal corresponding to the voltage on the capac-
itor C1 of a block D1, obtained by simulating in Multisim using a virtual spectrum analyzer.
The spectrum is shown in logarithmic scale. The continuous power spectrum indicates the
chaotic nature of the dynamics on the attractor.

Fig. 9. Power spectrum of the signal corresponding to the voltage across the capacitor C1 of the cell
n = 0 obtained in the Multisim simulation using a virtual spectrum analyzer.

Fig. 10. Oscilloscope traces obtained in the Multisim simulation corresponding to phase trajectories in
projection on a plane, where the coordinates are the voltages on the capacitors C1 and C2 of a block
D1 (a) and on the plane, where the coordinates are the voltages on the capacitors C1 in the cells separated
by a quarter wavelength of the main mode (b).

1To ensure the departure from the trivial state Un = 0, Vn = 0 when modeling in Multisim, it
is sufficient to set an arbitrary nonzero initial voltage on one of the capacitors and in the menu item
“Interactive Simulation Settings” to apply the “User defined” option for the initial conditions.
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Figure 10 shows portraits of the attractor obtained by simulating the circuit in Multisim

environment. Panel (a) corresponds to the phase portrait observed when the voltages on the
capacitors C1 and C2 in one of the D1 blocks are supplied to the horizontal and vertical inputs
of the virtual oscilloscope. Panel (b) represents the phase portrait obtained by supplying to the
horizontal and vertical inputs the voltages on the capacitors C1 for the blocks separated by half
the length of the chain, i.e., a quarter of the wavelength of the main mode. Comparison with the
portraits of the attractor obtained from the results of the numerical integration of the equations
shown in Figs. 5a, 5b demonstrates excellent agreement.

Fig. 11. Set of points (U0, UN/2), corresponding to moments of reaching the maximum values
√
U2
0 + U2

3

visualizing the Smale –Williams solenoid in the projection on the plane (a), and the diagram of transfor-
mation of the spatial phase ϕm = arg(U0 + iUN/2) (b) from results of processing the simulation data in
the Multisim environment.

To visualize the attractor in the Poincaré section and a diagram that would illustrate the
transformation of the angular variable characteristic for the Smale –Williams attractor, we have
to turn to recording the simulation data in the Multisim environment to a file with their sub-
sequent processing by a specially composed program. To do this, we use the same oscilloscope
connection as in the case of visualization of the attractor in Fig. 10b, and the Grapher tool,
which provides the ability to record simulation data in the Multisim environment. The sam-
pling of the voltage values U0 and U3 is performed with a time step of three orders less than
the characteristic period of the succesive stages of activity. Then the file is processed by the
program, which, reading the recorded data step by step, calculates the value characterizing the
instantaneous amplitude of the basic spatial mode. At the moments when this value reaches a
local maximum of a level above 0.01 V, the dots are plotted in coordinates U0 and U3, which form
the portrait of the attractor in the Poincaré section as shown in Fig. 11a. At the same moments,
the values of the angular variable ϕm = arg(U0(tm) + iU0(tm)) are calculated and plotted in
coordinates (ϕm−1, ϕm) (Fig. 11b). As seen, the portrait of the attractor in the Poincaré section
corresponds to the projection of the Smale –Williams solenoid with its characteristic transverse
filament structure. The diagram for the angular variable corresponds to a double-expanding
circle map, which has to be regarded as the main confirmation of the hyperbolic nature of the
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attractor observed in the circuit simulation in the proposed CNN. Note that visually the graphs
in Fig. 11 and the diagrams obtained from the results of the numerical solution of the equations
in Figs. 5c and 3 are in very good agreement.

5. Conclusion

This article discusses a specific implementation of a novel electronic system that demon-
strates the generation of chaos, which has the property of roughness or structural stability due to
the presence of a uniformly hyperbolic attractor. This is another example of a Smale –Williams
type attractor in an autonomous electronic circuit, in addition to the one described earlier in [47].

The study indicates a new interesting direction in the use of cellular neural networks,
namely, to build robust chaos generators. Although the case of N = 6 was considered here as
a basic example, it is rather obvious from the content of Section 2 that the same type of rough
chaos can be obtained in CNN composed of a larger number of cells as well.

The proposed circuit is the first example where the role of the angular coordinate for the
Smale –Williams attractor is played by the spatial phase of the sequence of patterns formed
in a spatially extended system. It thus implements the principle of operation, similar to the
mechanism described in [49–51]. (In systems proposed earlier, in most cases, the temporal
phase of oscillatory processes was treated as an angular variable [43, 44].)

Very satisfactory spectral properties of the chaos generator should be noted; it is character-
ized by a smooth distribution of the spectral power density in frequency not containing visible
peaks and dips.

In the future, it would be interesting to implement the described scheme in a real experiment
and to consider the possibility of its implementation in the form of a microchip, as well as a
passage to the range of high and ultrahigh frequencies.

The system considered supplements the collection of feasible systems with hyperbolic attrac-
tors and thus contributes to fleshing out the hyperbolic theory, which constitutes an important
and deep branch of the modern mathematical theory of dynamical systems.
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