Isaeva O.B., Sataev I.R. Bernoulli mapping with hole and a saddle-node scenario of the birth of hyperbolic Smale–Williams attractor. Discontinuity, Nonlinearity, and Complexity , 2020 , 9 (1). С. 13-26. ISSN 2164-6376
|
Текст
9(1)-2-DNC-D-2018-0029.pdf Загрузить (512kB) | Предварительный просмотр |
Аннотация
One-dimensional Bernoulli mapping with hole is suggested to describe the regularities of the appearance of a chaotic set under the saddle-node scenario of the birth of the Smale–Williams hyperbolic attractor. In such a mapping, a non-trivial chaotic set (with non-zero Hausdorff dimension) arises in the general case as a result of a cascade of period-adding bifurcations characterized by geometric scaling both in the phase space and in the parameter space. Numerical analysis of the behavior of models demonstrating the saddle-node scenario of birth of a hyperbolic chaotic Smale–Williams attractor shows that these regularities are preserved in the case of multidimensional systems. Limits of applicability of the approximate 1D model are discussed.
Тип объекта: | Статья |
---|---|
Авторы на русском. ОБЯЗАТЕЛЬНО ДЛЯ АНГЛОЯЗЫЧНЫХ ПУБЛИКАЦИЙ!: | Исаева О.Б., Сатаев И.Р. |
Подразделения (можно выбрать несколько, удерживая Ctrl): | СФ-7 лаб. теоретической нелинейной динамики |
URI: | http://cplire.ru:8080/id/eprint/7522 |
Изменить объект |