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Abstract—The spectra and spin structure of the states of two interacting electrons localized in a double quan-
tum dot in a two-dimensional topological insulator with spin-orbit interaction are investigated. It is found
that, in such a system, a singlet-triplet transition in the ground state without a magnetic field can be imple-
mented. Spin-orbit interaction leads to the splitting of polarized triplet levels and to anticrossing, when one

of them crosses the singlet.
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1. INTRODUCTION

The spin of the ground state of interacting electrons
is a fundamental problem of the quantum physics of a
small number of particles, which is of great impor-
tance for creating spin-polarized states and imple-
menting spin qubits on quantum dots [1, 2]. The spin
state of localized electrons is determined by the bal-
ance of the spin-dependent components of the system
energy, which include, first of all, exchange coupling,
but not only this, since direct interaction, interaction
with a potential forming bound states, and the kinetic
energy are also spin-dependent. Of greatest interest is
a model system of two electrons. In this case, there is
a clear result that is associated with Wigner’s name.
According to Wigner’s theorem, the ground state is a
singlet for any spin-independent pairwise interaction
[3]. Therefore, the singlet-triplet transition can only
occur in an applied magnetic field. Another, equally
well-known classical result is related to a system con-
sisting of a rather large number of electrons. This is the
semi-empirical Hund’s rule [4, 5], according to which
the state with the highest spin has the lowest energy. It
cannot be definitively answered what the number of
spins at which this rule is valid is; it is known, however,
that, for two electrons, it does not work. Nevertheless,
the triplet state can still be made the ground state if a
two-electron system is coupled with a close additional
quantum dot containing a large number of electrons.
Electrons in a large quantum dot serve as mediators,

which enhance the exchange interaction between the
investigated electrons [6, 7].

These conclusions were made for systems with a
conventional spectrum. However, as applied to mod-
ern topologically nontrivial electronic systems, the
problem of the ground-state spin and singlet-triplet
transitions is understudied. We examined this for two
electrons in systems with a two-band spectrum in the
topological and trivial phases in two-dimensional
(2D) systems [8]. It was established that, in the topo-
logical phase, Wigner’s theorem is violated under cer-
tain conditions and the ground state of two electrons
can become a polarized triplet.

In this study, we investigate the effects caused by
spin-orbit interaction (SOI) and related to spatial
asymmetry in a double quantum well in a 2D topolog-
ical insulator (T1). It is shown that SOI leads to signif-
icant rearrangement of the triplet states, but, at weak
SOI, pronounced transitions between the changed
singlet and triplet states remain. Interestingly, the
polarized triplets split into two states and, conse-
quently, there are two such transitions and anticross-
ing occurs only when one of the triplet levels crosses
the singlet. The spin structure of the states in an iso-
lated quantum well and a double-well structure is
investigated and the nature of the singlet-triplet tran-
sition is discussed.
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2. DOUBLE QUANTUM DOT MODEL

Electrons in a double quantum well in a 2D TI1 are
described by the Hamiltonian

H = Hy +V,(r =R+ V(r — Ry, (1)

where Hy;is the Hamiltonian of an electron in the TT,
which is presented as a sum of the standard Hamilto-
nian Hgpy, in the Bernevig—Hughes—Zhang (BHZ)
model [9] and the SOI Hamiltonian Hgg,

Hyy = Hgyz + Hyoy- (2)

The Hamiltonian of the BHZ model in the dimen-
sionless form is

nky 0
= i 3
HBHZ [ 0 h*(—k)J, ( )

where h(lg) = (Uu- 132)@ + a(lex%x + ley%y); 1, is the
Pauli matrices for a pseudo-spin; the energy is nor-
malized to the mass term in the Hamiltonian |M| and

the pulse, to |M |B|; = M/|M|, and a = A/\|MB|.
Here, A, M, and B are the BHZ-model parameters [9].
The parameter | determines the topological (1L = —1)
and trivial (L =1) phases.

In this study, we took into account SOI caused by
spatial asymmetry with regard to asymmetry both in
the bulk [10] and at the interface [11]. The two SOI
types yield qualitatively similar results in the spectra,
but the emerging spin textures have different spin
directions. In the first case, the SOI Hamiltonian is
written in the form

HSOI = A%y ® 6)/’ (4)

where A is the SOI constant.

For the sake of simplicity, the quantum-well
potentials V,and V are assumed to be the same (V, =
Vz = V) and vectors R, and Rj indicate the positions
of the wells.

The states of two interacting electrons are
described by the Hamiltonian

H(1,2) = H1) ® HQ2) + U(1,2)],, (5)

where H(1) and H(2) are the above-presented single-
particle Hamiltonians of electrons denoted by 1 and 2,
U(1, 2) is the pair interaction potential, and /4 is the
unity matrix. The two-particle wave function is
described by a 16-rank spinor.

To find the spectrum and wave functions, we
assume the distance d between the quantum wells to be
rather large so that the configuration splitting of the
quantum-well levels due to electron tunneling
between potential wells and the electron-electron
interaction can be taken into account using perturba-
tion theory. In this case, as basic functions, we take the
two-particle ones representing antisymmetrized prod-
ucts of the single-particle wave functions of the Ham-
iltonian of isolated quantum wells (4 and B).
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These single-particle wave functions are deter-
mined by the Hamiltonian

Hy = Hy +V(r =R, ), (6)

where Hpp is the Hamiltonian of the BHZ model with
SOl included (see Eq. (2)) and Vis the potential of the
isolated quantum wells.

The Schrodinger equation with Hamiltonian (6) is
solved by the method presented in [12, 13]. This tech-
nique is based on the assumption that the quantum-
dot potential is highly localized, so that the wave func-
tion in the potential localization region changes insig-
nificantly. As a result, one can analytically find the
wave functions of an electron localized in a well. The
energy levels and wave functions are determined by the
dimensionless parameters v, A, and &/|M|.

The parameter v = |B|71J.V(r)d2r determines the

quantum-well potential amplitude and A = +/|M /B|/!
is the ratio between the characteristic length in the
BHZ model to the width / of the potential localization
region. In addition, the energy of states depends on the
parameter of hybridization of the electron and hole
bands (a).

As in the absence of SOI, at each sign of the quan-
tum-well potential in the 2D TI, two states, electron
and hole type, with different energies can occur. Each
of these states is doubly degenerate, since, in virtue of
the time reversal symmetry, each state is a Kramers
pair. Thus, single-particle wave functions are repre-
sented by four-component spinors indicated by the
subscript e or A, which correspond to the electron or
hole type of the state, and the subscript o or 3, which
show the state of the Kramers pair.

Simple analysis and comparison with the data of
numerical calculations showed that perturbation the-
ory for calculating the tunnel splitting of quantum-
well levels is valid for a rather large distance between

the wells (d > 64/|B/M]|) in a wide range of the SOI
parameter A.

The zero-approximation two-particle basis func-
tions of perturbation theory for electron-electron
interaction are formed by single-particle wave func-
tions ¥, (r) determined using perturbation theory for
two tunnel-coupled wells

1

Np) (7)
X [Tny(l) ® \Pmy'(2) - \Pmy(l) ® \Pny(z)]

Here, the index n(m) denotes the symmetric (s) or
antisymmetric (@) double-well wave functions for the
electron or hole states and v, Y= (o, B) are the indices
of the Kramers-pair states.

The problem can be further simplified if we limit
the consideration to only one pair of single-particle
levels formed under tunnel splitting of one level in an
isolated quantum well. This simplification is justified
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when the quantum well is rather narrow and the dis-
tance between the wells is rather large. The conditions
for these simplifications were discussed in [8] and cor-

respond to the above inequality d > 6./|B/M|.

In this case, the single-particle states in the coupled
wells are classified only as symmetric (bonding) and
antisymmetric (antibonding), which are denoted by us
by the subscripts s and a, respectively. Thus, we have
six basic single-particle wave functions

(0) (0) (0) (0) (0) 0y \T
(lPs(x,sB’ lIJsoc,ocB: \Pa(x,sﬁ’ \Psoc,aw \PsB,(xB’ ‘Pa(x,a[i) . (8)
Below, they are numerated, for simplicity, by the same
subscript j = (1, 6).

The wave function of Hamiltonian (5) is presented
in the form

6
¥(1,2) =) P2 9)
Jj=1

Using Egs. (5) and (9), we can easily obtain a
homogeneous system of equations for the coeffi-
cients C, the determinant of which determines the
spectrum. The determinant matrix and matrix coeffi-
cients are not presented because they are too complex.

3. SPECTRUM AND SINGLET-TRIPLET
TRANSITION

In the topological phase of a 2D TI, the short-
range potential V(r) creates two levels at any potential
sign, in contrast to the trivial phase, when there is only
one level for a potential of any sign within the BHZ
model [12, 13].

The localized states corresponding to these levels
are classified as electron- and hole-like. They signifi-
cantly differ in distribution of the electron density and
density of the spinor wave function components. In a
double quantum well, these levels are split into two
due to configuration interaction between the wells. We
consider each pair of formed levels separately, assum-
ing them to be sufficiently distant in energy and the
splitting of each pair to be small. The properties of the
two-particle spectra generated by each of these levels
are significantly different. In particular, at a positive
potential, the singlet-triplet transition can occur only
for hole-like states [8]. Therefore, below we consid-
ered only these states.

The energy spectrum has six €; levels. We examined
their dependence on the amplitude of the electron-
electron interaction potential u, which is normalized,
as the well potential, to |M|, and found which effects
are caused by SOI and what the combined action of
SOI and electron-electron interaction leads to. Figure 1
shows the calculated spectrum of SOI caused by bulk
asymmetry [10] with the parameter A = 0.2 deter-
mined as in [10] and normalized to |M)|.

The problem contains three characteristic energies,
2¢,, €, + €&, and 2¢,, which determine the spectrum in
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Fig. 1. Two-particle electron spectrum in a double sym-
metric quantum well in the presence of SOI. The calcula-
tion was performed at v=20, A=3,a=2, A=0.2, and
d=38.

the absence of SOI and electron-electron interaction.
Here, €, and €, are the energies of the symmetric and
antisymmetric single-particle states. In this limiting
case, the levels are classified conventionally: line 7 is
the singlet |s Ts \L) lines 2 and 3 are polarized triplets
IsTaTland|s ! a I«), line 4 is the nonpolarized triplet
consisting of the states |s T a 1) and |s f aT),line 5isa
singlet consisting of the states |s T a L) and s L a T,
and line 6 is the singlet |a Ta Y. In view of this con-
ventional terminology, it should be noted that, in the
investigated case, the latter is not quite accurate. The
fact is that the full spin is not conserved in the BHZ
model, since the operator S? does not commutate with
the Hamiltonian. Only S, has a definite value. There-
fore, at a nonzero interaction between electrons, there
is no triply spin-degenerate state. There is only a dou-
bly degenerate one, which is often also called a triplet.

As the interaction amplitude u increases in the
absence of SOI, the singlet states|s T s {)and|a T a 1)
mix, the states |s T a T) and |s | a 1) remain degener-
ate, and the compositions in the mixture of the states
IsTal)yand|s | aT) forming a nonpolarized triplet
and singlet change. In this case, the singlet |s Ts J/)
indicated by line / intersects the triplets (2 and 3), as
was shown earlier in [8]. The behavior of these terms is
shown by the dotted lines S'and 7T'in Fig. 1. A nontriv-
ial feature is the intersection of the singlet and triplet
terms at a critical value of u = u,. At u > u,, the triplet
state becomes the ground state, i.e., Wigner’s theorem
is violated. It is worth noting that this behavior of the
terms is only possible when the band spectrum is
inverted, i.e., only in the topological phase and at a
small hybridization parameter a (a <10), when the sys-
tem is rather far from the topological transition point.
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Fig. 2. Radial distribution of the spinor components of the
hole-like electron state localized in an isolated quantum
well. The components with spin (Jz) are enlarged fourfold.
The calculation was performed for the parameters a = 2,
A=4,A=0.2,and v = 40. The bound state energy is € =
0.3289.

The u, value critical for the singlet-triplet transition
depends on the potential v of the quantum wells, so
the intersection of the terms and the singlet-triplet
transition can be implemented by changing this
potential.

The effect of SOI consists, first of all, in the fact
that the doubly degenerate triplet level (dotted line 7)
splits into two levels (curves 2and 3). Near the singlet-
triplet transition point, repulsion (anticrossing) of the
singlet level and the upper split triplet level occurs.

Interestingly, all the projections of the spin density
S; in the states formed during splitting of the doubly
degenerate triplet level (lines 2 and 3 in Fig. 1) are

zero: Wi_,5(1)S;W¥ ;_,5(r) = 0; i.e., the formed two-
electron states are nonpolarized.

4. ON RECONSTRUCTION
OF THE GROUND STATE

The answer to the question of which state of two
electrons—with parallel or opposite spins—is energet-
ically more favorable is determined by the ratio
between the spin-dependent energy components,
which, in the investigated system, are, first of all, the
exchange and direct Coulomb interaction energies. In
addition, of great importance are the energy of inter-
action of an electron with charges forming a quantum
well and the kinetic energy, but, for quantum wells
with a highly localized potential, which are rather dis-
tant from each other, these latter components are
insignificant.

The spin dependence of the electron interaction
energy is related to the presence of several components
of the spinor describing this state, which have different
spatial distributions at different spin configurations.
Inthe usual situation, when Wigner’s theorem is
established, electrons are considered in a system with
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a single-band spectrum and states are described by a
spinor of the second rank. In this case, the spectrum
evolves with increasing amplitude of the electron-
electron interaction potential in the following manner.
The energy of the lower singlet increases due to an
increase in the Coulomb repulsion energy. The energy
of polarized triplets grows much slower due to the fact
that the repulsion energy is compensated, to a great
extent, by exchange coupling. However, with an
increase in the electron—electron interaction, the
exchange energy decreases and, at the limit 4 — oo,
becomes insignificant, so the singlet and triplet terms
asymptotically approach each other, yet do not inter-
sect [14].

In the system under study, the single-particle wave
functions have four components corresponding to two
spin directions and two basic orbitals. In the BHZ
model, the basis is formed by electron and hole bands
with different angular moments: {|E, 1/2), |H, 3/2),
|E, —1/2), |H, —3/2)}. The energies of the direct (W)
and exchange (W,,) interactions of electrons described
by the wave functions W(r,) = (¥}, V,, V3, V)7 and
D(r,) = (91, 95, 03, 94)” have the form

We = [ [dnd % 1)@ (n - 6" (5)0(r)
and
We = [ [ &1’ n ¥ @)0m)U n - )" @) ¥,)

Obviously, the presence of pseudospin compo-
nents significantly changes the values of both direct
and exchange interactions and their spin dependence,
especially taking into account that the exchange inte-
gral values are determined not only by the spin com-
ponents, but also by the pseudospin ones.

The contribution of the wave spinor components to
the charge and spin densities, which are usually
attributed to direct and exchange interactions, can be
easily demonstrated by the example of a bound state
for a single isolated quantum well. Figure 2 shows the
radial distribution of the components |\y; _ ; 4,(r)|* for
the hole-type bound state. The spin density distribu-
tion is presented in Fig. 3. The spin density compo-
nent S, (Fig. 3a) normal to the system plane changes
nonmonotonically with distance and even changes its
sign upon removal from the center. The tangential
component is much smaller, but still exists and
changes with distance in a completely unusual man-
ner, as shown in Fig. 3b for the .S, component.

Obviously, extraordinary, as compared with the
trivial system, charge and spin density distributions
can significantly change both the direct and exchange
interactions of electrons in two wells, which causes the
violation of Wigner’s theorem.
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Fig. 3. Distribution of (a) the S, and (b) S, components of

the spin density of an electron localized in an isolated
quantum well in the hole-like state. The component S|, is

enlarged twentyfold. The parameters used are as in Fig. 2.

5. CONCLUSIONS

Our calculations showed that with an increase in
the electron-electron interaction amplitude the singlet
and triplet terms intersect under certain conditions if
SOI is absent. At weak SOI, triplet splitting occurs.
In this case, one of the split levels intersects with the
singlet, whereas for the other anticrossing is observed.
Formally, in the calculations within perturbation the-
ory, due to the presence of spinor pseudospin compo-
nents, the exchange interaction is described by three
matrix elements in the absence of SOI and six ele-
ments in the presence of it and the direct interaction in
both cases is described by only three matrix elements.

SEMICONDUCTORS Vol.53 No.9 2019
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All together, they determine the energies of different
spin configurations.
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