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A B S T R A C T

In low-dimensional structures with strong Rashba spin-orbit interaction (SOI), the Coulomb fields between
moving electrons produce a SOI component of the pair interaction that competes with the potential Coulomb
repulsion. If the Rashba SOI constant of the material is sufficiently high, the total electron-electron interaction
becomes attractive, which leads to the formation of the two-electron bound states. We show that because of the
dielectric screening in a thin film the binding energy is significantly higher as compared to the case of the bulk
screening.

1. Introduction

Electronic mechanisms of electron pairing with high binding energy
is a challenging problem that opens up broad prospects for the dis-
covery of novel many-particle effects in various low-dimensional
structures and modern materials, not to mention the high-temperature
superconductivity [1,2]. Recently we have proposed a purely electronic
mechanism that potentially could provide a high enough binding en-
ergy [3,4]. It is caused by a spin-dependent component of the electron-
electron (e-e) interaction that appears because of the Rashba-like spin-
orbit interaction (SOI) induced by the Coulomb field between electrons
[5]. The origin of the spin-orbit component of the pair interaction of
electrons is similar to that of the spin-dependent component of the
impurity potential that causes skew scattering and side-jumping in the
theory of the extrinsic spin Hall effect [6]. This mechanism can be ef-
fective in materials with a strong Rashba SOI. The conditions under
which electron pairs are formed, the bound-state spectrum and elec-
tronic structure were studied for the quantum wires and two-dimen-
sional (2D) electron systems. For realistic conditions the binding energy
was estimated to be in the meV range. In the present paper we show
that the binding energy can be strongly increased by a suitable choice of
the dielectric environment.

The pairing mechanism has unusual properties due to the key role
that the SOI plays in the formation of the pairs. The SOI component of
the e-e interaction depends on both the spin and momentum of elec-
trons. Therefore the e-e interaction becomes attractive for a certain
electron spin orientation tied to the momentum. This leads to the for-
mation of the pairs of two distinct kinds with different spin structure
depending on what type of motion creates the SOI: the relative motion
of electrons or the motion of their center of mass. The binding energy of

the electron pair is set by the SOI constant of the material, the mag-
nitude of the electric field and its coordinate dependence.

In experiments, the 2D electron system is implemented in a thin
film, the surrounding environment of which is known to strongly affect
the electric field in the film. In a recent paper, we considered a 2D
electron system embedded in a dielectric medium with the same di-
electric constant as that of the material of the 2D layer with SOI. In this
case the problem is solved analytically [3], which allows us to prove the
existence of the two-electron bound states, find their general properties
and estimate the binding energy to be on the level of meVs.

However, from the point of view of the experimental implementa-
tion, of greater interest is the situation where the dielectric constant ε of
the surroundings is much lower than that of the material with strong
SOI. This situation is also interesting theoretically, since the presence of
the low-ε surroundings leads not only to an increase in the interaction
potential, but also to the significant change in its spatial dependence,
especially at a small distance between the particles [7,8]. The latter is
especially important in our case, since the attractive component of the
interaction caused by the SOI is determined by both the magnitude of
the electric field and its coordinate dependence.

In this paper, we study the bound states in a thin film with strong
SOI in a low-ε dielectric environment taking fully into account the di-
electric screening. Such electronic systems are realized on the basis of
graphene, 2D transition metal dichalcogenides, and thin layers of
Bi2Se3. Although in such materials the band spectrum can be quite
complex, in the present work we confine ourselves to a single-band
model, which is nevertheless sufficient to capture the new effect of SOI.
We find that the dielectric screening in the layer strongly facilitates the
pairing to increase the binding energy by an order of magnitude.
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2. The model

We start with a Hamiltonian of two interacting electrons in a layer
situated in the x− y plane. The kinetic energy is = +H mp p( )/2kin 1

2
2
2 ,

where = − ∇ip ℏi ri is the momentum operator, ri = (xi, yi) is the position
of the ith electron, with m being the effective electron mass. The layer
width d is assumed small, so that only one transverse subband is po-
pulated.

The e-e interaction potential for a thin layer in vacuum is given by
Refs. [7,8]
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with H0 being the Struve function, and Y0 being the Bessel function of
the second kind [9]. The screening length r0 sets the crossover scale
between the long-range ∼1∕r Coulomb tail of the potential and its
short-range logarithmic ∼log r divergence. The screening length can be
estimated as r0= εd∕2, with ε being the in-plane component of the
dielectric tensor of the bulk material [10].

The two-body SOI is given by Ref. [3]
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with σzi being the Pauli matrix, and α being the material-dependent SOI
constant, which we assume positive for definiteness. The electric field,
acting on the ith electron from the jth electron, is related to the Rytova-
Keldysh potential of Eq. (1) via = ∇UE r r( ) ( )e

1 . Eq. (2) describes a two-
particle interaction, which is attractive for a certain spin orientation
locked to momentum.

The Schrödinger equation for the two-electron wave function
= ↑↑ ↑↓ ↓↑ ↓↓

⊺r rΨ( , ) (Ψ , Ψ , Ψ , Ψ )1 2 splits into four uncoupled equations for
the spinor components.

Switch from the positions of the individual electrons to the relative
position r= r1 − r2 and the center-of-mass position R = (r1 + r2)∕2.
Also introduce the corresponding momentum operators, p=−iℏ∇r and
P=−iℏ∇R.

The equations for Ψ↑↑ and Ψ↑↓ read as
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The equations for Ψ↓↓ and Ψ↓↑ are obtained by changing the sign before
α in the above equations, respectively.

Analysis shows that Eqs. (3) and (4) have solutions describing the
bound states of electrons of different nature quite similarly to Ref. [3].
We call the solutions of Eq. (3) that belong to the discrete part of the
spectrum the relative bound states, since the effective electron attrac-
tion caused by the SOI is determined only by the relative motion of
electrons. The solutions of Eq. (4) are called the convective bound
states, because it is the motion of the electron pair as a whole that
creates the SOI. Taking into account that the full solution of the system
should be antisymmetric with respect to the particle permutation, we
conclude that in the 2D system the relative bound states are triplet
pairs, whereas the electrons with opposite spins are coupled in the
convective bound state, which does not possess a definite spin [3].

3. Results

Because of the translational invariance the wave functions can be
written in the form Ψ↑↑(r, R)= exp(iK ⋅R)ψ↑↑(r) and Ψ↑↓(r, R)= exp(iK
⋅R)ψ↑↓(r, K).

First we consider the convective states, where the center-of-mass

wave vector K affects the wave-function of the relative motion ψ↑↓(r, K)
via the binding potential that equals

=V r ϕ αE r K ϕ( , ) ( ) sin , (5)

with ϕ being the polar angle measured from the K-direction. The short-
range asymptotics of the potential is

∼ −V r ϕ Ze
r

ϕ( , ) sin ,
2

(6)

with the dimensionless SOI magnitude Z= αK∕(er0). For sufficiently
large Z, the binding potential of Eq. (6) prevails over the weakly di-
verging repulsive potential U(r) ∼ log(r∕r0) to allow for the bound
states in the spectrum.

It is interesting that owing to the dielectric screening in the layer,
the attractive potential has a Coulomb-like form at small distance in
contrast to the case of the bulk screening where the attractive potential
diverges as r−2. Therefore no regularization is needed to solve Eq. (4).

Let us exploit a similarity to the Coulomb potential to make a crude
estimate of the binding energy as |ɛ| ∝ Z2 ⋅ Ry, the Rydberg constant in
the material being =Ry maℏ /2 B

2 2, with the Bohr radius aB= εℏ2∕me2.
Thus, the binding energy varies with the center-of-mass momentum as
|ɛ| ∝ K2. We expect the size of the electron pair to be ∝aB∕Z.

Of course, the angular dependence of the binding potential makes a
correction to this estimate. To account for this, we resort to numerical
calculations with full potential of Eqs. (1) and (5). To be specific, as-
sume aB=100 Å, the layer thickness d=0.2aB, ε=20, and the di-
mensionless SOI constant ̃ = =α α ea/ 1B

2 , which is close to the para-
meters of such materials as Bi2Se3 [11].

Fig. 1 shows the energies of the three lowest-lying convective states,
with the kinetic energy of the center of mass included, as a function of
the center-of-mass momentum. In other words, this is the energy dis-
persion of the convective electron pair. At the respective critical value
of K, each bound state appears in the spectrum, with the binding energy
growing approximately like K2, in accordance with the above estimate.

Taking into account dielectric screening in the layer, the binding
energy increases by a factor of about ε compared to that found in Ref.
[3], i.e. by an order of magnitude. Also note the SOI-induced re-
normalization of the effective mass of the electron pair, which even
becomes negative.

Fig. 2 shows the wave function of two lowest-lying convective
states. Two surfaces, shown in different color in each figure, are the two
spinor components ψ↑↓(r, K) and ψ↓↑(r, K). Note the strong angular
dependence of the solutions, which is due to the highly anisotropic
binding potential of Eq. (5).

Turning to the relative bound states, we note that since the orbital
angular momentum along the z direction lz=−i∂ϕ commutes with the
Hamiltonian, the wave function of the relative motion can be chosen as
the eigenfunction of lz, ψ↑↑(r)= u(r)eilϕ. The antisymmetric properties
of Ψ↑↑ require that the orbital angular quantum number l be an odd

Fig. 1. The system energy levels (solid lines) and the kinetic energy of the
center of mass (dashed line) vs KaB.
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integer.
The binding potential for the relative states is thus

=V r αl E r
r

( ) 2 ( ) . (7)

Depending on the sign of l, this term can be repulsive or attractive. The
relative bound state Ψ↑↑ is supported by l < 0, and Ψ↓↓ by l > 0. The
spin projection of the relative state is seen to be locked to the orbital
angular momentum. In what follows, we consider the case of |l|= 1 to
minimize the centrifugal barrier∝l2.

The binding potential behaves as

∼ −V r α
r

e
r

( ) 2
0

2 (8)

at small r. The e-e attraction overcomes not only the much weaker∝log
(r∕r0) potential of repulsion, but also prevails over the centrifugal po-
tential as long as ̃ >α d a3 /16 B. This condition holds in our case.

The attractive −1∕r2 potential in Eq. (8) is a transitional singular
potential that has been exciting interest for decades [12], not least
because of its ubiquity in quantum physics. The inverse square potential
appears in the three-body problem in nuclear physics [13], it describes
the point-dipole interactions in molecular physics [14] and the attrac-
tion of atoms to a charged wire [15]. Meanwhile, it has produced a lot
of controversy when used with the Schrödinger equation. The re-
quirement that its solutions are square integrable does not define a
discrete orthogonal set of eigenfunctions with its eigenvalues; bound
states with arbitrary energy ɛ<0 are possible. Imposing the ortho-
gonality of the eigenfunctions does lead to a discrete spectrum of bound
states that is nonetheless unbounded below, so there is no ground state
[16]. This is interpreted as a fall to the center [17]. The problem is that
the Hamiltonian is symmetric but not self-adjoint [18]. To fix the
problem, a number of regularization techniques was developed
[19–21], which are essentially based on introducing a short-distance
cut-off [22].

The cut-off should be considered as a phenomenological parameter,
the value of which can not be determined within the model considered,
unless some outer mechanisms are taken into consideration or e.g.
scaling-invariance requirements are imposed. A possible mechanism of
cutting off the binding potential at small r is related to the
Zitterbewegung of electrons in crystalline solids [23], which leads to
the cut-off a that may actually be of the order of the film thickness d or
even larger. By cutting the potential of Eq. (8) at r= a and imposing the
zero boundary condition for the solution, we obtain the following es-
timate for the binding energy of the lowest-lying relative state,
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where x1(μ) is the first (largest) zero of the Macdonald function � x( )iμ
[9]. This gives the |ɛ| magnitude of tens of Rydberg for the parameters
considered.

4. Conclusion

We studied the Coulomb mechanism of electron pairing in low-di-
mensional structures with a strong Rashba SOI in the case where the e-e
interaction is not screened by the environment. This situation is rea-
lized in recent experiments on freely suspended 2D structures [24,25].
It attracts growing interest because in this case the e-e interaction ef-
fects should be more pronounced. We have found that dielectric
screening in the film crucially affects the pairing conditions and binding
energy, which is increased by an order of magnitude as compared to the
previously considered case of the bulk screening.

Acknowledgments

This work was partially supported by Russian Foundation for Basic
Research (Grant No 17–02–00309) and Russian Academy of Sciences.

References

[1] M. Combescot, S.-Y. Shiau, Excitons and Cooper Pairs: Two Composite Bosons in
Many-body Physics, Oxford University Press, 2015, https://doi.org/10.1093/
acprof:oso/9780198753735.001.0001.

[2] M.Y. Kagan, Modern Trends in Superconductivity and Superfluidity, Vol. 874 of
Lecture Notes in Physics, Springer, 2013, https://doi.org/10.1007/978-94-007-
6961-8.

[3] Y. Gindikin, V.A. Sablikov, Spin-orbit-driven electron pairing in two dimensions,
Phys. Rev. B 98 (2018) 115137, https://doi.org/10.1103/PhysRevB.98.115137
https://link.aps.org/doi/10.1103/PhysRevB.98.115137.

[4] Y. Gindikin, V.A. Sablikov, The spin-orbit mechanism of electron pairing in
quantum wires, Phys. Status Solid. RRL 12 (2018) 1800209 https://doi.org/10.
1002/pssr.201800209.

[5] Y. Gindikin, V.A. Sablikov, Image-potential-induced spin-orbit interaction in one-
dimensional electron systems, Phys. Rev. B 95 (2017) 045138, , https://doi.org/10.
1103/PhysRevB.95.045138 https://link.aps.org/doi/10.1103/PhysRevB.95.
045138.

[6] G. Vignale, Ten years of spin Hall effect, J. Supercond. Nov. Magnetism 23 (1)
(2009) 3 https://doi.org/10.1007/s10948-009-0547-9.

[7] N. Rytova, Screened potential of a point charge in a thin film, Moscow Univ. Phys.
Bull. 3 (1967) 30 https://arxiv.org/abs/1806.00976.

[8] L. Keldysh, Coulomb interaction in thin semiconductor and semimetal films, Sov.
Phys. JETP 29 (1979) 658 http://www.jetpletters.ac.ru/ps/1458/article_22207.
shtml.

[9] F.W.J. Olver, D.W. Lozier, R.F. Boisvert, C.W. Clark, NIST Handbook of
Mathematical Functions, Cambridge University Press, 2010, http://www.
cambridge.org/catalogue/catalogue.asp?isbn=9780521192255.

Fig. 2. The spinor components of the convective state wave function for the ground state (left) and first excited state as functions of relative coordinates. The arrows
show the direction of vector K.

Y. Gindikin, V.A. Sablikov Physica E: Low-dimensional Systems and Nanostructures 108 (2019) 187–190

189

https://doi.org/10.1093/acprof:oso/9780198753735.001.0001
https://doi.org/10.1093/acprof:oso/9780198753735.001.0001
https://doi.org/10.1007/978-94-007-6961-8
https://doi.org/10.1007/978-94-007-6961-8
https://doi.org/10.1103/PhysRevB.98.115137
https://link.aps.org/doi/10.1103/PhysRevB.98.115137
https://doi.org/10.1002/pssr.201800209
https://doi.org/10.1002/pssr.201800209
https://doi.org/10.1103/PhysRevB.95.045138
https://doi.org/10.1103/PhysRevB.95.045138
https://link.aps.org/doi/10.1103/PhysRevB.95.045138
https://doi.org/10.1007/s10948-009-0547-9
https://arxiv.org/abs/1806.00976
http://www.jetpletters.ac.ru/ps/1458/article_22207.shtml
http://www.jetpletters.ac.ru/ps/1458/article_22207.shtml
http://www.cambridge.org/catalogue/catalogue.asp?isbn=9780521192255
http://www.cambridge.org/catalogue/catalogue.asp?isbn=9780521192255


[10] T.C. Berkelbach, M.S. Hybertsen, D.R. Reichman, Theory of neutral and charged
excitons in monolayer transition metal dichalcogenides, Phys. Rev. B 88 (2013)
045318, , https://doi.org/10.1103/PhysRevB.88.045318 https://link.aps.org/doi/
10.1103/PhysRevB.88.045318.

[11] A. Manchon, H.C. Koo, J. Nitta, S.M. Frolov, R.A. Duine, New perspectives for
Rashba spin-orbit coupling, Nat. Mater. 14 (9) (2015) 871–882 http://www.nature.
com/nmat/journal/v14/n9/full/nmat4360.html.

[12] W.M. Frank, D.J. Land, R.M. Spector, Singular potentials, Rev. Mod. Phys. 43
(1971) 36–98, https://doi.org/10.1103/RevModPhys.43.36 https://link.aps.org/
doi/10.1103/RevModPhys.43.36.

[13] V.N. Efimov, Weakly-bound states of 3 resonantly-interacting particles, Sov. J. Nucl.
Phys. 12 (1971) 589.

[14] J.-M. Lévy-Leblond, Electron capture by polar molecules, Phys. Rev. 153 (1967)
1–4, https://doi.org/10.1103/PhysRev.153.1 https://link.aps.org/doi/10.1103/
PhysRev.153.1.

[15] J. Denschlag, G. Umshaus, J. Schmiedmayer, Probing a singular potential with cold
atoms: a neutral atom and a charged wire, Phys. Rev. Lett. 81 (1998) 737–741,
https://doi.org/10.1103/PhysRevLett.81.737 https://link.aps.org/doi/10.1103/
PhysRevLett.81.737.

[16] K.M. Case, Singular potentials, Phys. Rev. 80 (1950) 797–806, https://doi.org/10.
1103/PhysRev.80.797 https://link.aps.org/doi/10.1103/PhysRev.80.797.

[17] L.D. Landau, E.M. Lifshitz, Course of Theoretical Physics, Vol. 3, Quantum
Mechanics, Pergamon Press, 1958.

[18] K. Meetz, Singular potentials in nonrelativistic quantum mechanics, Il Nuovo
Cimento (1955-1965), 34 (3) (1964), pp. 690–708 https://doi.org/10.1007/
BF02750010.

[19] H.E. Camblong, L.N. Epele, H. Fanchiotti, C.A. García Canal, Renormalization of the
inverse square potential, Phys. Rev. Lett. 85 (2000) 1590–1593, https://doi.org/10.
1103/PhysRevLett.85.1590 https://link.aps.org/doi/10.1103/PhysRevLett.85.
1590.

[20] S.R. Beane, P.F. Bedaque, L. Childress, A. Kryjevski, J. McGuire, U. van Kolck,
Singular potentials and limit cycles, Phys. Rev. A 64 (2001) 042103, , https://doi.
org/10.1103/PhysRevA.64.042103 https://link.aps.org/doi/10.1103/PhysRevA.
64.042103.

[21] D. Bouaziz, M. Bawin, Regularization of the singular inverse square potential in
quantum mechanics with a minimal length, Phys. Rev. A 76 (2007) 032112, ,
https://doi.org/10.1103/PhysRevA.76.032112 https://link.aps.org/doi/10.1103/
PhysRevA.76.032112.

[22] K.S. Gupta, S.G. Rajeev, Renormalization in quantum mechanics, Phys. Rev. D 48
(1993) 5940–5945, https://doi.org/10.1103/PhysRevD.48.5940 https://link.aps.
org/doi/10.1103/PhysRevD.48.5940.

[23] W. Zawadzki, T.M. Rusin, Zitterbewegung (trembling motion) of electrons in
semiconductors: a review, J. Phys. Condens. Matter 23 (14) (2011) 143201 http://
stacks.iop.org/0953-8984/23/i=14/a=143201.

[24] C. Rössler, M. Herz, M. Bichler, S. Ludwig, Freely suspended quantum point con-
tacts, Solid State Commun. 150 (17) (2010) 861–864 https://doi.org/10.1016/j.ssc.
2010.02.005 http://www.sciencedirect.com/science/article/pii/
S0038109810000906.

[25] D.A. Pokhabov, A.G. Pogosov, E.Y. Zhdanov, A.A. Shevyrin, A.K. Bakarov,
A.A. Shklyaev, Lateral-electric-field-induced spin polarization in a suspended gaas
quantum point contact, Appl. Phys. Lett. 112 (8) (2018) 082102https://doi.org/10.
1063/1.5019906.

Y. Gindikin, V.A. Sablikov Physica E: Low-dimensional Systems and Nanostructures 108 (2019) 187–190

190

https://doi.org/10.1103/PhysRevB.88.045318
https://link.aps.org/doi/10.1103/PhysRevB.88.045318
http://www.nature.com/nmat/journal/v14/n9/full/nmat4360.html
http://www.nature.com/nmat/journal/v14/n9/full/nmat4360.html
https://doi.org/10.1103/RevModPhys.43.36
https://link.aps.org/doi/10.1103/RevModPhys.43.36
http://refhub.elsevier.com/S1386-9477(18)31729-6/sref13
http://refhub.elsevier.com/S1386-9477(18)31729-6/sref13
https://doi.org/10.1103/PhysRev.153.1
https://link.aps.org/doi/10.1103/PhysRev.153.1
https://doi.org/10.1103/PhysRevLett.81.737
https://link.aps.org/doi/10.1103/PhysRevLett.81.737
https://doi.org/10.1103/PhysRev.80.797
https://doi.org/10.1103/PhysRev.80.797
http://refhub.elsevier.com/S1386-9477(18)31729-6/sref17
http://refhub.elsevier.com/S1386-9477(18)31729-6/sref17
https://doi.org/10.1007/BF02750010
https://doi.org/10.1007/BF02750010
https://doi.org/10.1103/PhysRevLett.85.1590
https://doi.org/10.1103/PhysRevLett.85.1590
https://link.aps.org/doi/10.1103/PhysRevLett.85.1590
https://doi.org/10.1103/PhysRevA.64.042103
https://doi.org/10.1103/PhysRevA.64.042103
https://link.aps.org/doi/10.1103/PhysRevA.64.042103
https://doi.org/10.1103/PhysRevA.76.032112
https://link.aps.org/doi/10.1103/PhysRevA.76.032112
https://doi.org/10.1103/PhysRevD.48.5940
https://link.aps.org/doi/10.1103/PhysRevD.48.5940
http://stacks.iop.org/0953-8984/23/i=14/a=143201
http://stacks.iop.org/0953-8984/23/i=14/a=143201
https://doi.org/10.1016/j.ssc.2010.02.005
https://doi.org/10.1016/j.ssc.2010.02.005
http://www.sciencedirect.com/science/article/pii/S0038109810000906
http://www.sciencedirect.com/science/article/pii/S0038109810000906
https://doi.org/10.1063/1.5019906
https://doi.org/10.1063/1.5019906

	Coulomb pairing of electrons in thin films with strong spin-orbit interaction
	Introduction
	The model
	Results
	Conclusion
	Acknowledgments
	References




