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A B S T R A C T

We present a new technique for experimental study of kinetics of phase transitions (PTs) and direct
measurement of the magnetocaloric effect (MCE) in pulsed magnetic fields by using the fast response
temperature probe with infrared fiber optical (IRFO) sensor. As demonstration of the new technique, the
results are presented of MCE measurements for Gd near Curie point: ΔTad = 21.3 K under pulsed magnetic field
µ0H = 12.7 T; and inverse MCE for Fe48Rh52 sample at initial temperature 305.1 K: ΔTad = −4.5 K under pulsed
magnetic field µ0H = 8.5 T. Also, the energy losses on magnetization near the 1st order PT were calculated from
the results of direct measurements of magnetization versus time for Fe48Rh52 sample: W = 45 J/kg.

1. Introduction

In recent years, all around the world, a large number of new
magnetically ordered compounds are created and studied with mag-
netic, metamagnetic and magnetostructural phase transitions (PTs) of
the 1st and 2nd orders, which are accompanied by the strong
anomalies of magnetic, thermal and mechanical properties [1,2]. But,
despite the fact that the PTs in magnetic substances are studied for a
long time both theoretically and experimentally, at the moment there is
no sufficiently deep understanding of the kinetic phenomena, accom-
panying PTs. By conventional theoretical approach, the growth of the
new phase at PT of the 1st order is described by the kinetic equation of
the Fokker-Planck. The relaxation processes near PT of the 2nd order is
described by the Landau-Khalatnikov equation [3]. However, the
applicability of these equations for the magnetic PTs has not been
tested experimentally still yet.

The problem of the rate of PTs requires immediate solution also
because it is crucial for the creation of the new technologies based on
“giant” effects in the vicinity of PTs in solid state magnetic functional
materials. For example, the magnetocaloric effect (MCE) reaches
maximum near the PTs in magnetically ordered solids [1]. So, study
of PT's rate is necessary for creation of a new technology of magnetic

refrigeration at room temperature with high cooling power of a sold
state working body [4]. The rate of PT limits the frequency of
thermodynamic cycles. Accordingly, the power of refrigeration will
depend on the frequency of cycles, and it is difficult to judge the
competitiveness of this machine without determining the fundamental
restrictions on the parameter of specific cooling power of the prospec-
tive MCE materials [5]. The comparative study of the kinetics of PTs of
the prospective magnetic functional materials such as Heusler alloys
[6–8], Fe-Rh [9–11] and MnFe-based [12] alloys is very important for
creation of the novel devices based on MCE [13].

The purpose of the present work is to present a new technique for
experimental study of kinetics of PTs and direct measurement of MCE
in pulsed magnetic fields by using the infra red fiber optical (IRFO)
temperature probe with the fast response and the high noise immunity.
It comprises the infra red optical fiber which is transparent in IR
wavelength range 5–15 µm, and the semiconductor photoresistor
which is sensitive in the same range.

2. Experimental technique

For direct measurements of MCE in pulsed magnetic field the new
device was designed using pyrometric principal. The device consists of
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optical fiber made of AgClxB1-x (0 < х < 1) compound by vacuum
extrusion through a die [14–18], and a photoresistor made of
narrow-gap semiconductor Cd-Hg-Te, which is placed into cryostat
with liquid nitrogen. The optical fiber is transparent in IR wavelength

range 5–15 µm, the photoresistor is sensitive in the same range. One
optical fiber end is connected to the photoresistor, the other optical
fiber end is connected with a surface of the MCE sample (see Fig. 1).
The sample with MCE under investigation is placed into a pulsed coil

Fig. 1. (a) The general view of the IRFO temperature probe. (b) The scheme of infrared fiber optical temperature probe.

Fig. 2. Measurements of MCE by the IRFO temperature probe on Gd sample. (a) Time dependence of temperature (solid) and magnetic field (dash). (b) Temperature and magnetization
vs. magnetic field at two consistent impulses with different directions, arrows show direction of magnetic field change.

Fig. 3. Measurements of MCE by the IRFO temperature probe on Fe48Rh52 sample. (a) Time dependence of temperature (solid) and magnetic field (dash). (b) Temperature and
magnetization vs. magnetic field at two consistent impulses with different directions, arrows show direction of magnetic field change.
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magnet with magnetic field up to 13 T and pulse duration of 12.5 ms at
room temperature. The electronic part includes analog amplifier of a
signal from the photoresistor, and analog-to-digital converter, con-
nected to PC. The initial temperature of the sample was controlled by
small thermostat with conventional Pt thermoresistor temperature
sensor. The frequency response of electronic measurement system
was 1 MHz.

The sensor was calibrated with the help of at heating of thin
semiconductor film by short electrical impulses. The sensitivity of IRFO
sensor is 0.7 mV/K, the accuracy is about ±0.1 K. The response time of
the electronic circuit is 1 µsec. It was found that the emissivity of the
samples affects the measurement insignificantly. The sample holder
was made of textolite and does not affect the adiabatic conditions of the
measurement due to short magnetic pulse time.

3. Results and discussion

The pure gadolinium was chosen [19–21] for the first test of the
new technique. The samples had a disk shape with a diameter of 5 mm
and a thickness of 1 mm, with the mass of 136 mg. As a preliminary
demonstration of the possibility of the new technique for MCE
measurements, the measured temporal dependences of magnetic field
and change of temperature are plotted on Fig. 2a. It is found for
gadolinium at initial temperature 298 K: ΔTad = 21.3 K under pulsed
magnetic field µ0H = 12.7 T. Our data are in good correlation with
results of the work [22]: ΔTad = 15.4 K under pulsed magnetic field
µ0H = 7.5 T. However, the value of MCE, measured by the IRFO
sensor, exceeds nearly by 10% the value obtained by a semiconductor
diode temperature sensor in Bitter coil magnet for the Gd sample of the
same series [20]. The 10% difference can be explained by the fact that
the conditions are closer to adiabatic in the pulse experiment, and the
use of non-contact temperature measurement method by IRFO sensor
excludes additional heat loss provided by conventional sensor. Fig. 2b
shows the MCE and magnetization dependence on the magnetic field at
two consistent impulses with different directions.

The second was Fe48Rh52 sample, its magnetic properties were
describe earlier in [10,11]. The mass of sample was 105 mg. The
measured temporal dependences of magnetic field and change of
temperature are plotted on Fig. 3a. The inverse MCE for Fe48Rh52
sample at initial temperature 305.1 K: ΔTad = −4.5 K under pulsed
magnetic field µ0H = 8.5 T. Of course, this results are less results
obtained in [9], but we used a little bit different composition of alloy.
Fig. 3b shows the inverse MCE and magnetization dependence on the
magnetic field at two consistent impulses with different directions. The
magnetization curve has characteristic for the 1st order PT hysteresis
loop. The energy losses on magnetization are irreversible work of
magnetic field in cycle of magnetic cooling [21]. We can calculate this
work as square of hysteresis loop W = ∫HdM. From our experiments
on Fe48Rh52 at µ0H = 8.5 T this value was obtained W = 45 J/Kg.

4. Conclusions

In summary, the following conclusions can be drawn from these
studies. We report the first experimental results of direct measurement
of the MCE in pulsed magnetic fields by using the fast response IRFO
sensor. The value of MCE for gadolinium near Curie point (298 K) is
found to be ΔTad = 21.3 K under pulsed magnetic field µ0H = 12.7 T.
The inverse MCE for Fe48Rh52 sample at initial temperature 305.1 K:
ΔTad = −4.5 K under pulsed magnetic field µ0H = 8.5 T. The energy
losses on magnetization near the 1st order PT were calculated from the
results of direct measurements of magnetization versus time for
Fe48Rh52 sample: W = 45 J/kg. Knowledge of the energy losses plays
an important role at the design of the refrigeration based on materials
with MCE [21]. Signal-to-noise ratio of IRFO system is not less than
10:1. The new system demonstrates higher noise immunity than
existing systems based on micro-thermocouples [23–26] and thin film

thermoresistors [27–29]. Recently experiments on MCE in high pulsed
and alternating magnetic fields attract growing attention [30]. The new
measurement technique presented here can find the applications in
these studies.
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