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Spin–charge separation is known to be broken in many physically interesting
one-dimensional (1D) and quasi-1D systems with spin–orbit interaction
because of which spin and charge degrees of freedom are mixed in collective
excitations. Mixed spin–charge modes carry an electric charge and therefore
can be investigated by electrical means. We explore this possibility by
studying the dynamic conductance of a 1D electron system with image-
potential-induced spin–orbit interaction. The real part of the admittance
reveals an oscillatory behavior versus frequency that reflects the collective
excitation resonances for both modes at their respective transit frequencies.
By analyzing the frequency dependence of the conductance the mode
velocities can be found and their spin–charge structure can be determined
quantitatively.
Spin–orbit interaction (SOI) causes a range of non-trivial effects
in low-dimensional electron systems, especially if combined
with electron–electron (e-e) interaction.[1] Below we investigate
one yet little studied aspect of SOI in one-dimensional (1D) and
quasi-1D systems. Owing to the e-e interaction 1D electrons
form a strongly correlated state known as the Tomonaga-
Luttinger liquid, the hallmark of which is a spin–charge
separation (SCS).[2] The SCS was studied in detail in systems
without SOI. In the presence of SOI the SCS is still respected in
strictly 1D systems. However, the SCS is violated in realistic
quasi-1D structures with transverse quantization sub-bands
since the spin is no longer a good quantum number there,
resulting in new collective excitations modes, in which spin and
charge degrees of freedom are mixed.[3]

Even more interesting effects accompanied by the SCS
violation appear in 1D electron systems with the spin-dependent
e-e interaction. This happens when a 1D electron system is
placed close to a metallic gate. The electric field of the image
charges that electrons induce on the gate gives rise to the image-
potential-induced spin–orbit interaction (iSOI), which produces
a spin-dependent contribution to the e-e interaction Hamilto-
nian. The iSOI not only breaks the SCS, but also leads the system
to the instability for sufficiently strong interaction.[4]
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The SCS can also be violated in 1D edge
states of two-dimensional topological insu-
lators. These states are known to have a
helical structure with the spin locked to the
electron momentum. In the simplest
commonly studied case of the Sz symmetry
when the spin orientation depends only on
the momentum direction but not on its
magnitude, the SCS is respected.[5] How-
ever, the Sz symmetry is not an inherent
property of the topological insulator. Gen-
erally, the Sz symmetry is violated by the
SOI.[6–9] The single-particle states are then
modeled as the Kramers pair of 1D states
with the spin orientation depending on the
momentum magnitude rather then on its
direction alone.[10,11] The packet composed
of such states does not possess a definite spin and, which is
particularly interesting, the e-e interaction becomes effectively
spin-dependent as can be seen from the unusual form of the
time-reversal invariant interaction Hamiltonian (see Eq. (6) in
Ref. [10]).

A similar situation occurs in quantum Hall systems at filling
factor 2 where the frequency dependent a.c. conductance
measurements reveal mixing of the charge and neutral (spin)
collective modes in 1D chiral edge channels.[12]

Therefore a sufficiently general problem appears of how to
identify the SCS violation in many 1D- and quasi-1D systems,
which attract presently a great interest, and to study the
mixed-spin-charge collective excitations. The goal of the present
paper is to show that this problem can be solved by means of
pure electrical measurements of dynamic conductance of a
finite 1D system. This becomes possible because both collective
modes excited in a system with broken SCS convey the electric
charge and thus contribute to the electric response of the
system. This is in contrast to the case of the conserved SCS,
where the spin modes are observed in the state-of-the-art
magneto-tunneling experiments on the array of quantum
wires[13] or can be detected in no less complicated but not yet
realized measurements of the time-resolved dynamics of the
spin-polarized density.[14]

With this goal inmind, we have investigated the admittance of
a 1D quantum wire coupled to leads to show that its frequency
dependence reveals the characteristic features of the collective
excitation spectra that allow one to extract the velocities of both
modes and determine their spin–charge structure.

The Model: The particular calculations are performed for a
finite 1D quantum wire with the iSOI due to the electron image
charges induced on a metallic gate. For simplicity, the gate is
supposed to be unbiased, so there is no SOI independent of the
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electron density. We assume that the iSOI magnitude is not too
large so that the system is stable.

The Hamiltonian of 1D electrons in the wire is

H ¼ Hkin þHe�e þHiSOI: ð1Þ

Here the kinetic energy is given by

Hkin¼
X
s

Z
ψþs xð Þ p

2
x

2m
ψs xð Þdx; ð2Þ

with ψs xð Þ being the electron field operator, s ¼ �1 the spin
index, and px the momentum operator. The x axis is directed
along the wire, which extends from �L=2 to L=2, and y axis is
directed normally towards the gate.

The e-e interaction energy reads as

He�e ¼ 1
2

X
s1s2

Z
ψþs1 x1ð Þψþ

s2
x2ð ÞU x1; x2ð Þ

�ψs2
x2ð Þψs1

x1ð Þdx1dx2:
ð3Þ

The e-e interaction potential U x1; x2ð Þ, screened by the image
charges, is assumed short-ranged, U x1; x2ð Þ ¼ Uδ x1 � x2ð Þ:

The iSOI Hamiltonian equals[4]

HiSOI ¼ α

2�h

X
s1s2

Z
ψþs1 x1ð Þψþ

s2
x2ð Þ E x1; x2ð ÞS12½

þS12E x1; x2ð Þ�ψs2
x2ð Þψs1

x1ð Þdx1dx2; ð4Þ

with S12 ¼ px1 s1 þ px2 s2
� �

=2 and the SOI constant α. Here

E x1; x2ð Þ is the y component of the electric field acting on an
electron at point x2 from the electron image charge at point x1. If
the distance d between the gate and the wire is small (kFd � 1, kF
being theFermiwavevector), theelectricfield canbeapproximated
as E x1; x2ð Þ ¼ Eδ x1 � x2ð Þ. Equation (4) together with Eq. (3)
represents a spin-dependent pair interaction Hamiltonian.

The leads are assumed to be 1D non-interacting equipotential
conductors.[15–17] The potential difference Vexp �iΩtð Þ applied to
the leads drops symmetrically across the contact regions between
thegatedquantumwireandthe leads,so that theexternalpotential is

φext x; tð Þ ¼ V
2

θ �x� L
2

� �
� θ x� L

2

� �� �
e�iΩt: ð5Þ

The Hamiltonian of electron system in the leads includes Hkin

and

Hext ¼ �e
X
s

Z
ψþ
s xð Þφext x; tð Þψs xð Þdx: ð6Þ

The Hamiltonian can be bosonized in a standard way.[18] The
field operator of the chiral fermions is presented in the form

Ψrs xð Þ ¼ Frsffiffiffiffiffiffiffi
2πϵ

p eirkFxeiϕrs xð Þ; ð7Þ
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where r ¼ �1 specifies the branch of the linear dispersion, ϵ is
an ultraviolet cut-off, Frs is a ladder operator, and ϕrs is a bosonic
phase given by

ϕrs ¼
2πir
L

X
q6¼0

e�iqx

q
ρrs qð Þ; ð8Þ

with ρrs qð Þ being the normal ordered (::) fermionic density.
Then

Hkin ¼ �hvF
4π

X
rs

Z
: @xϕrs
	 


2 : dx; ð9Þ

He�e ¼ U
8π2

X
r1r2
s1s2

r1r2

Z
: @xϕr1s1@xϕr2s2 : dx; ð10Þ

HiSOI ¼ αkFE
4π2

X
r1r2
s1s2

r1s2

Z
: @xϕr1s1@xϕr2s2 : dx; ð11Þ

Hext ¼ � e
2π

X
rs

r
Z

φext x; tð Þ@xϕrsdx: ð12Þ

The dynamics of electrons in a quantum wire driven by an
external ac-potential is described by the equation of motion for
the bosonic phase ϕ ¼ ϕþþ; ϕþ�; ϕ�þ; ϕ��

	 

T, which reads as

A@xϕ ¼ iωϕ; ð13Þ

with

A ¼

1þUþ E U �U �U� E

U 1þU� E �Uþ E �U

U U� E �1�Uþ E �U

Uþ E U �U �1�U� E

0
BBBB@

1
CCCCA:

ð14Þ

Dimensionless variables are as follows. Introduce the electron
transit time τ ¼ L=vF. Then ω ¼ Ωτ,U ¼ U=hvF,E ¼ αkFE=π�hvF,
and x is normalized over L.

In the leads the equation of motion takes the form

r@xϕrs ¼ iωϕrs �
V

2
sign xð Þ; ð15Þ

with V ¼ eVτ=�h. The solutions are chosen so as to describe the
collective excitations propagating away from the quantum wire
region, where they are generated. They are, respectively,
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ϕrs ¼ i
V

2ω
þ ξse

�iωx; for r ¼ �1

0; for r ¼ þ1

(
ð16Þ

in the left lead (x < �1=2) and

ϕrs ¼ � i
V

2ω
þ 0; for r � 1

ζse
iωx; for r þ 1

(
ð17Þ

in the right lead (x > 1=2).
Using continuity conditions for ϕ at x ¼ �1=2 we arrive at the

boundary conditions for Eq. (13):

ϕþþ x¼�1
2

¼ ϕþ� x¼�1
2

¼ i
V

2ω
; ϕ�þ x¼1

2

¼ ϕ�� x¼1
2

¼ �i
V

2ω
:

����
����

����
����

ð18Þ

The solution of Eq. (13) is

ϕ ¼
X4
i¼1

Cihie
iωλi
x
; ð19Þ

with constants Ci determined in accordance with Eq. (18). The
eigenvalues λi of the matrix A, corresponding to the eigenvectors
hi, are equal to �λ and �Λ, where

λ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2U� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2 þ E2

pq
ð20Þ

Λ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2Uþ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2 þ E2

pq
: ð21Þ

They are just the dimensionless velocities of the collective modes
in the wire, as can be seen from Eq. (19). The dispersion
equations for both branches of collective excitations are ωλ ¼ λq
and ωΛ ¼ Λq.

Structure of Excitations: If the iSOI is absent (E ¼ 0), the
excitations exist separately in the charge and spin sectors. In the
case of repulsive e-e interaction, the plasmon velocity Λ > 1 is
enhanced by the interaction, whereas the spinon velocity λ ¼ 1 is
not renormalized.

The iSOI breaks the spin–charge separation between the
modes. As a result, the modes acquire a complex spin–charge
structure that evolves with the change in the iSOI magnitude.
Generally speaking, for E 6¼ 0 both modes convey charge and
spin intertwined, and both contribute to the charge transport.

The spin–charge structure of the excitations is quantitatively
described by a spin–charge separation parameter ξ, defined for
each branch as[4]

ξλ Λð Þ ¼
nþqω þ n�qω
nþqω � n�qω

�����
ω¼ωλ Λð Þ

: ð22Þ

Here nsqω is the Fourier component of electron density with spin
index s, wave-vector q, and frequency ω, composing the
Phys. Status Solidi RRL 2017, 1700313 1700313 (
corresponding collective excitation. A purely spin excitation
corresponds to ξ ¼ 0, whereas a purely charge excitation is
described by ξ ! 1. It is important that ξ is directly determined
by the excitation velocities. Thus,

ξλ ¼
1
λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� λ2

Λ2 � 1

s
ð23Þ

and

ξΛ ¼ 1
Λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2 � 1

1� λ2

s
: ð24Þ

Admittance: The x-dependent electron current in the wire
obtained from the continuity equation for the electron density
equals

jω xð Þ ¼ � ieω
2π

X
rs

rϕrs xð Þ: ð25Þ

According to the Shockley theorem,[19,17] the observable
current defined as a charge flow through the leads is given by

J ¼ 1
V

Z L=2

�L=2
j xð ÞEext xð Þdx; ð26Þ

with Eext xð Þ ¼ �rφext being the external field along the electron
trajectory. The trivial capacitive current between the leads is
disregarded.

The admittance Gω ¼ Jω=V normalized on G0 ¼ 2e2=h equals

Gω ¼ 1� λ2

Λ2 � λ2
1

1� iλtan ω
2λ

þ Λ2 � 1

Λ2 � λ2
1

1� iΛtan ω
2Λ

: ð27Þ

In the limiting case of zero iSOI (λ ¼ 1), this expression

reduces to Gω ¼ 1� iΛtan ω
2Λ

	 
�1
, in agreement with Ref. [20].

The real part of the admittance oscillates versus frequency
between zero and G0. At resonant frequencies ℜeG turns to
zero. In this regime electrons in the wire oscillate between the
leads, perfectly reflecting from them. Therefore the component
of the current that is in phase with the bias voltage vanishes.
The resonance condition is ω ¼ π 2nþ 1ð ÞΛ for integer n, which
means that the frequency is multiple of the inverse transit time
of the collective excitation through the quantum wire. The only
collective mode contributing to the electron current in the
absence of iSOI is the plasmon excitation with the velocity Λ,
renormalized by the e-e interaction. Consequently, from zeros
of ℜeG one can extract information on how the e-e interaction
affects the excitation velocity.[20,17]

With iSOI present, both modes contribute to the admittance
with certain weights. The resulting oscillatory pattern, produced
by the interference of the collective modes, has now two different
characteristic frequencies, corresponding to different transit
times of the slow and fast collective mode, as illustrated by
Figures 1 and 2. Except for the case of commensurate transit
frequencies that can occur provided that Λ and λ are
© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim3 of 4)

http://www.advancedsciencenews.com
http://www.pss-rapid.com


Figure 1. The real part of the admittance versus frequency for electrons
with short-range repulsion and iSOI (Λ ¼ 4, λ ¼ 0:5).

Figure 2. The imaginary part of the admittance versus frequency for
electrons with short-range repulsion and iSOI (Λ ¼ 4, λ ¼ 0:5).
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commensurate, ℜeG no longer turns exactly to zero in its
minima.

The mode velocities can be determined experimentally from
the frequency dependence of the admittance. For example, this
can be done using the Fourier analysis of Gω. The lowest-
frequency harmonic is given by

~G2πλ ¼ 2λ

Λ2 � λ2
1� λ

1þ λ
exp i

ω

λ

� �
: ð28Þ

Notice that in the case of the strong iSOI λ � Λ, which means
that the characteristic frequencies in Gω are sharply distinct.

In conclusion, the problem of identifying the broken SCS in
1D correlated electron systems was addressed. It was argued
that the signatures of the SCS violation should arise in dynamic
electron transport. The admittance of a 1D quantum wire
coupled to leads was studied to show that its frequency
dependence contains the information about the collective
modes velocities, affected by the interactions. The spin–charge
separation parameter, quantitatively describing the spin–charge
structure of the collective excitations, was shown to depend
solely on these velocities within the model considered.
Phys. Status Solidi RRL 2017, 1700313 1700313 (
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