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Abstract—A two-dimensional electron gas with spin-orbit interaction in an in-plane magnetic field is known
to form an anisotropic system with a van Hove singularity of the density of states controlled by a magnetic
field. Tensors of the conductivity and spin susceptibility that determine the Edelstein effect for this system are
studied. It is established that the conductivity and spin susceptibility have sharp singularities that appear in
the process of varying the magnetic field or the Fermi level position when the Fermi level passes through the
singularity point.
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1. INTRODUCTION

Low-dimensional electron systems with spin-orbit
interaction (SOI) cause exceptionally strong interest
associated with a multitude of new physical effects
[1, 2], many of which also have large practical value
[3–5]. Two-dimensional (2D) systems, in which SOI
can be controlled by an external field, attract the
greatest attention [2]. This study is devoted to effects
appearing in a 2D electron gas (EG) with SOI in the
presence of an in-plane magnetic field, which appar-
ently leads to anisotropy of the electron spectrum and,
correspondingly, to transport anisotropy. The interest
in such an anisotropic system is caused by two reasons.
First, it models the anisotropy of the electron system
with SOI appearing due to strong electron–electron
interaction without an external magnetic field [6], but
in contrast with it, it admits the relatively simple solu-
tion. Second, the transport in an in-plane magnetic
field has recently become an important tool of the
experimental investigation of 2D electron systems with
strong SOI.

In addition, a two-dimensional electron gas in
strong SOI conditions is still investigated insuffi-
ciently, and new peculiarities have been recently
revealed. For example, recent theoretical investiga-
tions of the conductivity of 2D EG with SOI showed
that the conductivity (G) has an unusual dependence
on electron density n, when it is low, so that only the

bottom spin subband is filled, while at a higher den-
sity, it acquires the usual Drude form [7]:

(1)

where τ0 is the characteristic scattering time in the
absence of SOI; m is the effective mass; n0 = Eso/(πℏ2)
is the concentration at the Fermi level, when it coin-
cides with the Dirac point, below which there is only
one spin subband; Eso = α2m/(2ℏ2) is the characteristic
SOI energy; and α is the Rashba constant.

Calculations of the spin polarization appearing in
the presence of an electric field along the 2D layer (the
Edelstein effect [8]) show that the spin polarization
rises proportionally to the Fermi energy below the
Dirac point and reaches saturation above it [9].

The conductivity and spin polarization of 2D EG
with SOI in the presence of an in-plane magnetic field
was barely studied (especially in the region of low con-
centrations n < n0), although we can expect the
appearance of nontrivial features associated with the
van Hove singularity of the density of states. We
recently established [10] that the latter is present at an
energy below the Dirac point. The singularity has a
logarithmic character. It is formed due to the presence
of a magnetic field from the root singularity of the
density of states occurring in the energy minimum of
2D EG with SOI for zero magnetic field, N(E) ∝ (E +
Eso)–1/2. The singularity point corresponding to the
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saddle point in k space shifts from the band bottom to
the Dirac point when the magnetic field in increased,
and finally disappears. This interesting feature opens
up new possibilities for experimental investigation into
the spectrum of systems with strong SOI by scanning
the magnetic field and measuring the transport char-
acteristics.

In this article, we present the results of studying the
conductivity and spin polarization in the Edelstein
effect for 2D EG with the Rashba SOI in an in-plane
magnetic field.

2. PROBLEM STATEMENT AND METHODS
The Hamiltonian of 2D EG with the Rashba SOI

in a magnetic field B directed along axis x has the form

(2)

where p = (px, py) is the electron pulse; σx and σy are
the Pauli matrices; b1 = (g*/2)μBB, g* is the effective
g-factor, which is assumed isotropic and independent
of the magnetic field, and μB is the Bohr magneton.
The vector potential is selected in the calibration A =
(0, 0, yB), at which the pulse coincides with the gener-
alized pulse.

The dispersion law and wave eigenfunctions for this
Hamiltonian in dimensionless notations have the form

(3)

(4)

where the wave vector k = k(cosφ, sinφ) is normalized
to kso = αm/ℏ2, the energy is normalized to Eso and the
dimensionless magnetic field b = (g*/2)μBB/αkso is
introduced, λ = ±1 is the spin index, and A is the sam-
ple area. Angle ϕ determines the spin orientation, and
it is associated with φ by the relationship:

To find the conductivity and polarization in the
presence of an electron current, it is necessary to cal-
culate the distribution function fλ(k, ε). For this pur-
pose, let us use the quasi-classical Boltzmann kinetic
equation [11]:

(5)

where % is the strength of the electric field directed at
angle θ to axis x, % = %(cosθ, sinθ), the magnitude of

% is normalized to Esokso/e, vλ(k) is the group velocity,
and f0 is the equilibrium distribution function.

For simplicity’s sake, let us consider the case when
scattering occurs at impurities with the short-range
potential V(r) = V0δ(r) and is elastic. This assumption
is not fundamental for qualitative evaluation of the
behavior of the responses that we calculate. The prob-
ability of electron transitions in the Born approxima-
tion has the form

(6)

where R =  and ni is the concentration
of scattering impurities.

When integrating over k in Eq. (5), we should keep
in mind that there are two Fermi contours in k-space
at any energy both above the Dirac point and below
the singularity point. In the first case, the two con-
tours refer to states with different spin indices, while
two closed contours for states with λ = –1 occur in the
second case. There is one singly connected contour in
the energy range above the singularity point and below
the Dirac point, but in this case there are also two val-
ues of k in a definite range of E. We note that it follows
from (3) that the Dirac point has coordinates (0, b) in
k-space and corresponds to energy b2. The variations
in the Fermi contour in the magnetic field are pre-
sented in more detail in [10].

An important feature of the problem under consid-
eration is the fact that the collision integral cannot be
simplified under anisotropy conditions by introducing
an effective scattering time [12]. Even the use of the
so-called two-time approximation [13, 14] leads to
erroneous results. Following [12], we solve the kinetic
equation (5) precisely without using approximation of
the relaxation time.

Taking into account scattering elasticity, let us rep-
resent the solution of Eq. (5) at the Fermi contours in
the form

(7)

where vλ(φ) is the magnitude of the group velocity at
the corresponding contour vλ(k) = vλ(φ)(cosξλ, sinξλ),
while ξλ(φ) is the angle determining its direction.

The presence of the δ function in Eq. (6) allows us
to perform the integration over k in Eq. (5) so that
integrals only over angle φ for the corresponding
Fermi contours remain in it. This results in two inde-
pendent sets of equations for quantities aλ and bλ:

(8)
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Fig. 1. Scattering times τ+ and τ– for two Fermi contours
at zero magnetic field depending on the electron concen-
tration n. The indices ± correspond to the spin indices λ =
±1 at n > n0. The indices ± correspond to two Fermi con-
tours with λ = –1 for region n < n0.
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(9)

and

(10)

where the spin orientation angle ϕλ(φ) is determined
by relationship

(11)

calculated at the Fermi contour.
Equations (8) are solved exactly. In this article, we

present the results of numerical solution obtained on
the grid by angle φ for each contour. A nontrivial
aspect is the circumstance that the determinant of the
formed set of linear equations equals zero, and the
rank of the extended matrix of the set equals the deter-
minant rank, and this rank is smaller than the dimen-
sionality of the angular grid by unity. This fact means
that an additional equation should be used to solve the
set of equations. It is evident that this equation should
be derived from the condition of conservation of the
number of particles, which coincides with the electro-
neutrality condition of the system in this case.

At the first it is useful to consider the case of a zero
magnetic field and attain an agreement of results
found according to the procedure proposed here with
those known from publications. Set of Eqs. (8) is sub-
stantially simplified at zero magnetic field because the
group velocity  = const because of the axial symme-
try of the Fermi contours. Finally, we come to the fol-
lowing expression for the distribution function:

(12)

Here, coefficients W± depend only on the Fermi-level
position (or the electron concentration):

(13)

where τ0 = ℏ/REso.
The conductivity calculated using expression (12)

for the nonequilibrium distribution function coincides
with the result found previously in [7] using the Kubo
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formula and presented by Eq. (1). The spin polariza-
tion also agrees with that found in [8].

The new result, to which our approach leads, is a
correct determination of the scattering time using rela-
tionships (12) and (13). We found that the set is
described by two relaxation times τ+ and τ–, which
refer to different contours of the Fermi surface: τ± =
2W±/(W+ + W–)2. They substantially differ by magni-
tude and, as shown in Fig. 1, have different depen-
dence on the electron concentration.

3. MAIN RESULTS
Components of the conductivity tensor are

expressed through functions aλ(φ) and bλ(φ) as fol-
lows:

(14)

(15)

(16)

(17)

where

Here, the conductivity is normalized to the quantity
G0 = 2e2/hR.

It is not difficult to show from symmetry properties
of the Fermi contours that nondiagonal elements of
the conductivity tensor equal zero (Gxy = Gyx = 0). As
for the diagonal components, they have a nontrivial
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Fig. 2. Dependences of diagonal elements of the conduc-
tivity tensor on the magnetic field in the region of the
Fermi energy below the Dirac point. Calculations are per-
formed for the Fermi energy EF = –0.6.
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Fig. 3. Magnetic-field dependences of the elements of the
tensor of spin susceptibility for the Fermi energy (a) below
the Dirac point EF = –0.6 and (b) above the Dirac point
EF = 0.8.
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magnetic-field dependence. It is characterized by the
presence of an abrupt minimum in the conductivity at
a specific magnetic field. The minimum appears
because of the fact that the position of the Fermi level
relative to the singularity point of the density of states
varies upon varying the magnetic field. The minimum
is attained when the Fermi level coincides with the
singularity point. Herewith, strongest electron scatter-
ing occurs. The position of the conductivity minimum
is determined by the condition

(18)

The magnetic-field dependence of diagonal com-
ponents of the conductivity tensor is shown in Fig. 2
for the case when the Fermi energy is below the Dirac
point. If the Fermi energy is above the Dirac point, the
conductivity anisotropy is lacking.

Let us now consider the spin density S which forms
due to an electron current. Density components Si (i =
x, y, z) are determined as follows:

(19)

The corresponding susceptibilities χij are deter-
mined by the equation

(20)

Using Eqs. (22) and (12), we derive the following
expressions for the spin susceptibility:

(21)

(22)

(23)

= − +F 1 2 .E b

+
λ λ λ

λ
= 〈Ψ σ Ψ 〉∇

π∑∫
�

2

, ,2 | | ( ).
2 4

i k i k
d kS f k

= χ∑ .i ij j
j

S %

λ λ λ
λ

χ = λ φ φ φ ϕ φ∑ ∫ ( ) ( )sin ( ),xx d S a

λ λ λ
λ

χ = λ φ φ φ ϕ φ∑ ∫ ( ) ( )sin ( ),xy d S b

λ λ λ
λ

χ = λ φ φ φ ϕ φ∑ ∫ ( ) ( )cos ( ),yx d S a
(24)

Here, all components of the spin polarization are nor-
malized to eαmτ0/h, and the local density at the Fermi
level is determined by the multiplier

Symmetry considerations show that the diagonal
components of tensor χij equal zero and the normal
component of the spin polarization is absent, Sz = 0.
Nondiagonal components χij have a magnetic-field
dependence with the characteristic feature that
appears when condition (18) is fulfilled. Components
χxy has an abrupt minimum, while components χyx has
an inflection point. The behavior of the spin polariza-
tion as a function of the magnetic field is shown in
Fig. 3 for positions of the Fermi level below and above
the Dirac point.

4. CONCLUSIONS
We showed that two characteristic features in the

behavior of the conductivity and spin susceptibility of
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2D EG with SOI appear under the action of an in-
plane magnetic field. First, a rather abrupt singularity
(the conductivity minimum and susceptibility χxy) is
formed at the Fermi energy below the Dirac point. It
is formed under the condition when the Fermi level
coincides with the van Hove singularity point. The
experimental observation of such a singularity can be
used to determine the SOI constant with the help of
Eq. (18). Second, the anisotropy of conductivity and
spin susceptibility appears. It can also be a tool for
studying electronic systems with SOI. However, we
note that the regularities found in this work are
obtained for noninteracting electron systems. Neglect
by the interaction is justified at a rather large dielectric
permeability and for systems with strong SOI such that
the SOI energy Eso considerably exceeds the energy of
the Coulomb interaction between electrons. Such
conditions can be fulfilled for widely studied electron
systems with giant SOI based on BiTeI [15, 16],
LaAlO3/SrTiO3 interfaces [17], and surface alloys
[18, 19]. In particular, the evaluation for BiTeI, where
Eso ≈ 0.1 eV, m ≈ 0.2m0, and the dielectric permea-
bility ε = 15 [15] lead to the concentration n0 ≈ 1.9 ×
1013 cm–2 and the Coulomb interaction energy
e2 /ε ≈ 0.04 eV. The scale of the magnetic fields, at
which the singularities that we predicted can be
observed, is evaluated from equality b = 1 and numer-
ically has an order of 10 T.
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