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Departing from the geodesic flow on a surface of negative curvature as a classic example of the
hyperbolic chaotic dynamics, we propose an electronic circuit operating as a generator of rough
chaos. Circuit simulation in NI Multisim software package and numerical integration of the
model equations are provided. Results of computations (phase trajectories, time dependencies
of variables, Lyapunov exponents and Fourier spectra) show good correspondence between the
chaotic dynamics on the attractor of the proposed system and of the Anosov dynamics for the
original geodesic flow.
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1. Introduction

The hyperbolic theory is a part of the theory
of dynamical systems delivering a rigorous justi-
fication of the possibility of chaotic behavior of
deterministic systems both for the discrete-time
case (iterative maps — diffeomorphisms) and for
the continuous time case (flows) [Smale, 1967;
Shilnikov, 1997; Anosov et al., 1995; Hasselblatt &
Katok, 2003; Sinăı, 1981]. The objects of study are
uniformly hyperbolic invariant sets in the phase
space composed exclusively of saddle trajectories.
For conservative systems, the hyperbolic chaos is
represented by the Anosov dynamics when the
uniformly hyperbolic invariant set either occupies
a compact phase space (for diffeomorphisms), or
occupies completely a surface of constant energy
(for flows). For dissipative systems, the hyper-
bolic theory introduces a special kind of attract-
ing invariant sets, the uniformly hyperbolic chaotic
attractors.

A fundamental mathematical fact [Smale, 1967;
Shilnikov, 1997; Anosov et al., 1995; Hasselblatt &
Katok, 2003] is that the uniformly hyperbolic

invariant sets possess the property of roughness, or
structural stability.

The word “roughness” is a translation of the
Russian term from the seminal work of Andronov
and Pontryagin [1937] referring the property of
dynamical systems to keep up the qualitative
behavior under small evolution operator variations:
for any small deviation given by a differentiable
function, a properly chosen continuous change of
variables transforms the phase trajectories of the
perturbed system to those of the original one. Later,
in mathematical works, this property got a name of
structural stability, commonly accepted now.

Initially introduced, the concept of roughness
served as a strong basis for the development of non-
linear science; in particular, in the theory of oscilla-
tions, at least for systems with regular (nonchaotic)
behavior, it is normally postulated that just the
rough systems are of the main theoretical and prac-
tical interest [Andronov et al., 1966]. In the case of
chaotic dynamics this approach is really good only
for systems with hyperbolic chaos, but it excludes
majority of natural and technical examples of
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chaotic motions. As a palliative, in physically ori-
ented works people speak on the robust chaos
meaning that chaotic nature of the dynamics per-
sists under variations of parameters in some range
[Banerjee et al., 1998; Elhadj & Sprott, 2011],
although the rigorous requirements of the struc-
tural stability (equivalence in respect to the variable
changes) usually do not hold.

The use of the term “structural stability”
certainly looks preferable as we want to accen-
tuate the mathematical context (the trajectory
equivalence for perturbed systems). Oppositely, the
term “roughness” outlines rather a physical aspect,
emphasizing the robustness of chaos, but for hyper-
bolic dynamical systems, it is especially appropriate
as for them the roughness is properly perceived as
equivalent to the structural stability.

The rough systems should be of preferable
interest to any practical application of dynamical
chaos due to insensitivity to variation of param-
eters, manufacturing imperfections, interferences,
etc. (This point is outlined e.g. in [Dmitriev et al.,
2012].) Having in hand no examples “ready-for-use”
from nature and technology, it makes sense to turn
to the purposeful constructing systems with the
hyperbolic dynamics appealing to tools of physics
and electronics [Kuznetsov, 2011, 2012] exploit-
ing naturally the roughness (structural stability).
Namely, taking a formal example of hyperbolic
dynamics as a prototype, one can try to modify it
in such a way that the dynamical equations become
associated with a physical system, hoping that,
due to the roughness, the hyperbolic nature of the
dynamics will survive this transformation. In this
article, departing from the classical problem relat-
ing to a geodesic flow on a surface of negative curva-
ture, we propose an electronic device that operates
as a generator of robust chaos.

2. Geodesic Flow with Anosov
Dynamics

It is known that free mechanical motion of a par-
ticle on a curved surface is carried out along the
geodesic lines of the metric, which is defined by
the quadratic form, expressing the kinetic energy
W via the generalized velocities with coefficients
depending on coordinates [Anosov, 1967; Balazs &
Voros, 1986]. In the case of negative curvature, the
motion is characterized by instability with respect

to transverse perturbations. Therefore, if it occurs
in a compact domain, it appears to be chaotic.

As an example, consider the geodesic flow on
the so-called Schwarz primitive surface [Meeks &
Pérez, 2012], which is defined in the three-
dimensional space (θ1, θ2, θ3) by the equation

cos θ1 + cos θ2 + cos θ3 = 0, (1)

and the motion takes place with constant kinetic
energy

W =
1
2
(θ̇2

1 + θ̇2
2 + θ̇2

3). (2)

Here the mass is taken as a unit, and the relation (1)
may be regarded as the imposed holonomic mechan-
ical constraint. Because of the periodicity in three
axes, the variables θ1,2,3 may be defined modulo 2π,
and we can interpret the motion as proceeding in a
compact domain, the cubic cell of size 2π.

For curvature in this case we obtain an explicit
expression [Hunt & MacKay, 2003; Kuznetsov,
2015a, 2015b]:

K = −1
2

cos2θ1 + cos2θ2 + cos2θ3

(sin2θ1 + sin2θ2 + sin2θ3)2
. (3)

With the exception of eight points, where the
numerator is zero, the curvature K is everywhere
negative, so the geodesic flow implements the
Anosov dynamics.

Mechanical motions associated with the
geodesic flow on the surface (1) occur, for example,
in the triple linkage system of Thurston–Weeks–
MacKay–Hunt [Thurston & Weeks, 1984; Hunt &
MacKay, 2003] in some special asymptotic case
[Hunt & MacKay, 2003; Kuznetsov, 2015a, 2015b].
Also such dynamics are of interest in the context of
model description of motion of particles in three-
dimensional periodic potentials [Hunt & MacKay,
2003; Kozlov, 1997].

Using the standard procedure for mechani-
cal systems with holonomic constraints [Goldstein
et al., 2001], we can write down the equations of
motion in the form

θ̈1 = −Λ sin θ1, θ̈2 = −Λ sin θ2, θ̈3 = −Λ sin θ3,

(4)

where the Lagrange multiplier Λ has to be deter-
mined by taking into account the algebraic con-
dition of mechanical constraint complementing the
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(a)

(b)

Fig. 1. (a) Typical trajectory of the system (4), (5) in
a three-dimensional configuration space (θ1, θ2, θ3) and
(b) power spectrum of the variable θ̇1 for the motion with
the kinetic energy W = 0.0425. Plotting the diagram (a) the
angular variables are related to the interval from 0 to 2π, i.e.
it corresponds to a single fundamental cell, which is repeated
with period 2π along each of the three coordinate axes.

differential equations. In our case

Λ =
θ̇2
1 cos θ1 + θ̇2

2 cos θ2 + θ̇2
3 cos θ3

sin2θ1 + sin2θ2 + sin2θ3
. (5)

Figure 1(a) shows a typical trajectory in the
configuration space, which travels on the two-
dimensional surface (1). The opposite faces of the
cubic cell are naturally identified; resulting in a
compact manifold of genus 3. In other words, the
surface is topologically equivalent to the “pretzel
with three holes” [Thurston & Weeks, 1984; Hunt &
MacKay, 2003]. Visually, one can conclude about
the chaotic nature of the trajectory covering the
surface in ergodic manner. The power spectrum of
the signal generated by the motion of the system
is continuous, which is an intrinsic feature of chaos
[Fig. 1(b)].

Taking into account the imposed mechanical
constraint, there are four Lyapunov exponents char-
acterizing the behavior of perturbations about the
reference phase trajectory: one positive, one neg-
ative and two zero. One exponent equal to zero
appears due to the autonomous nature of the sys-
tem; it corresponds to the perturbation vector
tangent to the phase trajectory. Another one is
associated with a disturbance of energy. Since the
system does not possess any certain characteristic
time scale, the Lyapunov exponents responsible for
the exponential growth or decay of perturbations
are proportional to the velocity, i.e. λ = ±κ

√
W ,

where the coefficient is determined by the average
curvature of the metric. Empirically, from compu-
tations for the system under consideration κ = 0.70
[Kuznetsov, 2015a, 2015b].

3. Constructing Electronic Chaos
Generator

In [Kuznetsov, 2015b] a self-oscillating system was
suggested, where the sustained dynamical behavior
corresponds approximately to the geodesic flow on
the Schwarz surface; there the kinetic energy is not
constant but undergoes some irregular fluctuations
around a certain average level in the course of the
dynamics in time. This system is based on three
self-rotators, the elements whose state is defined by
the angular variables θ1,2,3 and generalized veloci-
ties θ̇1,2,3, and the steady motion of one element in
isolation corresponds to the rotation in either direc-
tion with a certain constant angular velocity. The
rotators are supposed to interact via the potential
that is minimal under the condition (1). Accord-
ing to [Kuznetsov, 2015b], in a certain range of
parameters the dynamics are hyperbolic, although
for the modified system one should speak about self-
oscillatory chaotic regimes corresponding to hyper-
bolic attractors rather than the Anosov dynamics.
The purpose of this article is to propose an elec-
tronic circuit implementation of such system and to
demonstrate its functioning as a generator of robust
chaos.1

1It is worth stressing specially that it is not an attempt to construct an electronic circuit with conservative dynamics, which
obviously could not result in a practically reasonable device because of the fact that conservative systems are atypical in
framework of the entire class of dynamical systems. Actually, the aim is to get an electronic analog of a dissipative self-
oscillatory system with rough chaos governed by a set of differential equations proposed in [Kuznetsov, 2015b]. Compliance of
the dynamics on the attractor of that system to the dynamics of the geodesic flow on the Schwarz surface (Sec. 2) has been
clearly demonstrated numerically [Kuznetsov, 2015b].
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Fig. 2. Circuit diagram of the chaos generator composed with the NI Multisim software package. Boxes colored in yellow
point out the voltage controlled oscillators V1, V2, V3 , which are the key components for the system functioning. The angular
variables θ1, θ2, θ3 correspond to phases of these oscillators as indicated by the nearby inscriptions in the circuit diagram.
Coefficients of the frequency control for V1, V2, V3 are equal to k/2π = 40 kHz/V.

For constructing the electronic device, elements
are needed similar to rotators in mechanics. Namely,
a state of the element has to be characterized by
a generalized coordinate defined modulo 2π. An
appropriate variable of such kind is a phase shift
in the voltage controlled oscillator relative to a ref-
erence signal, like it is practiced in the phase-locked
loops [Best, 2007].

Let us turn to the circuit diagram shown in
Fig. 2. The voltages U1,2,3 are used to control the
phases of the oscillators V1, V2, V3, so that the
voltage outputs vary in time as sin(ωt + θ1,2,3),
where the phases satisfy the equations θ̇i = kUi,
i = 1, 2, 3, and k is the coefficient characterizing
the frequency control. The center frequency of the
oscillators is determined by the bias provided by DC
voltage source V4. The reference signal is generated
by the AC voltage source V5.

Assuming the output voltages of the multipliers
A1, A2, A3 to be W1,2,3, for currents through the
capacitors C1, C2, C3 we have CU̇i +(R−1−g)Ui +
αUi + βU3

i = R−1Wi, where i = 1, 2, 3, C = C1 =
C2 = C3, R = R10 = R11 = R12, and I(U) =
αU + βU3 is approximation for the current–voltage
characteristic of the nonlinear element composed of
a pair of the diodes shown in Fig. 3. The equations

take into account the negative conductivity g =
R2/R1R3 = R5/R4R6 = R8/R7R9 introduced by
the blocks composed with the operation amplifiers
OA1, OA2, OA3. The voltages W1,2,3 are obtained
by multiplying the signals sin(ωt + θ1,2,3) cos ωt
from outputs of A4, A5, A6 by an output signal W
of the inverting summing-integrating element con-
taining the operational amplifier OA4.

Fig. 3. The current–voltage characteristic of a nonlinear ele-
ment composed of two parallel-connected diodes 1N1200C.
The differential resistance at low voltage is 2.602 Ω. Dots
represent the data of the NI Multisim simulation, and the
curve corresponds to the approximation I(U) = αU +βU3 =
0.0039U + 0.035U3 , where the current is expressed in
amperes and voltage in volts.
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Input signals for the summing-integrating ele-
ment are the output voltages of the multipliers A7,
A8, A9, so, that on account of the leakage current
through the resistor R16, we have

C0Ẇ + r−1W

= −R−1
0 [U1 sin(ωt + θ1) + U2 sin(ωt + θ2)

+ U3 sin(ωt + θ3)] cos ωt,

where C0 = C4, R0 = R13 = R14 = R15, r = R16.
Using variables τ = t/

√
4RCR0C0, ui =

2k
√

RCR0C0Ui, w = 2kR0C0W and parameters
Ω =

√
4RCR0C0ω, µ = (gR−αR−1)

√
4R0C0/RC,

ν = β/
√

4k4RC3R0C0, γ =
√

4RCR0/r2C0, we
rewrite the equations in dimensionless form, where
the dot means now the derivative over τ :

θ̇i = ui, i = 1, 2, 3,

u̇i = µui − νu3
i + 2w sin(Ωτ + θi) cos Ωτ,

ẇ = −γw − 2
3∑

i=1

ui sin(Ωτ + θi) cos Ωτ .

(6)

Nontrivial self-oscillatory behavior takes place
at µ > 0; this parameter may be varied by simulta-
neous tuning of the resistances R1, R4, R7, which
are supposed to be identical.

Taking into account that Ω � 1 one can sim-
plify the equations assuming that ui and w vary
slowly on the high-frequency period. Namely, we
perform averaging in the right-hand parts setting

sin(Ωτ + θi) cos Ωτ =
1
2

sin θi (7)

and arrive at the equations

θ̇i = ui, u̇i = µui − νu3
i + w sin θi, i = 1, 2, 3,

ẇ = −γw − (u1 sin θ1 + u2 sin θ2 + u3 sin θ3).
(8)

Finally, supposing γ � 1 we can neglect the
respective term in the last equation and to integrate
it with substitution of u1,2,3 from the first equation;
then we obtain w ≈ cos θ1 + cos θ2 + cos θ3, and the
final result corresponds exactly to the equations in
[Kuznetsov, 2015b]:

θ̈i = µθ̇i − νθ̇3
i + (cos θ1 + cos θ2 + cos θ3) sin θi,

i = 1, 2, 3. (9)

4. Dynamic Simulation and Analysis

Figure 4 shows a sample of the signal U1 copied
from the virtual oscilloscope screen when simulat-
ing the dynamics of the circuit in the NI Multi-
sim software package, and the spectrum obtained
with the virtual spectrum analyzer. Visually, the
signal looks chaotic, without any apparent repeti-
tion of forms.2 Continuous spectrum corresponds
to the chaotic nature of the process. It is character-
ized by slow decrease of the spectral density with
frequency and is of rather good quality in the sense
of lack of pronounced peaks and dips.

In a frame of the circuit simulation it is difficult
to explore some characteristics, such as Lyapunov
exponents, therefore, we turn to comparison of the
results with the model (6), for which the relevant
analysis in the computations can be performed.
Using the component parameter values indicated
in the circuit diagram of Fig. 2 and applying the
conversion formulas to the dimensionless quanti-
ties, we evaluate the parameters in Eqs. (6): µ =
0.07497, ν = 1.73156, γ = 0.05,Ω = 20.1062.
Figure 5 shows a plot of the dimensionless variable
u1 versus time obtained from the numerical inte-
gration of Eqs. (6) in Fig. 5(a), and the Fourier
spectrum in Fig. 5(b). The scales on the axes are
chosen to provide correspondence with Fig. 4. Sim-
ilar in form and characteristic scales are samples
of time dependencies and spectra obtained for the
models (8) and (9).

As one can see, the dynamics of the electronic
device are similar to the original geodesic flow on
the surface of negative curvature in the sense that
the trajectories in the space of coordinate variables
(θ1, θ2, θ3) are close to the Schwarz surface. This is
illustrated in Fig. 6, which shows a trajectory found
by numerical integration of the equations for the
model (6), and a diagram obtained from the data of
circuit simulation in Multisim. To plot the last one,
the circuit was complemented by three special sig-
nal processing modules. The output signal of each
of the voltage controlled oscillators were subjected

2It occurs that the system startup may be accompanied by a very long-time transient to arrive at the attractor. It is easy to
skip it in the course of numerical integration of the dynamical equations, but it is rather hard in a framework of the Multisim
simulation. Shown in Figs. 4 and 5 waveforms relate to the dynamics on the attractor, with excluded transients.
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(a) (b)

Fig. 4. (a) Voltage on capacitor C1 versus time in a sustained regime and (b) its power spectrum as obtained by circuit
simulation in Multisim.

(a) (b)

Fig. 5. (a) Time dependence and (b) spectrum of the variable u1 obtained from numerical integration of Eqs. (6).

to multiplication by sinωt and cos ωt, and after fil-
tration and separation of the low-frequency compo-
nents, three pairs of the resulting signals (xk, yk),
k = 1, 2, 3 were recorded in a file for subsequent
processing. According to the recorded data, at each
time point three variables defined modulo 2π are
evaluated as θk = arg(xk + iyk), k = 1, 2, 3, and
respective points are plotted. These diagrams can
be compared with Fig. 1 for the geodesic flow on the
surface of negative curvature. Figure 6 shows that
the trajectory remains close to the Schwarz sur-
face, though it is not located exactly on it; the pic-
tures are “fluffed” in the transverse direction. This
effect becomes more pronounced with increasing

parameter µ, as we move away from the critical
point of appearance of self-oscillations at µ = 0.

It was verified both in the course of integration
of the dynamical equations and in the Multisim sim-
ulations that slight variations of the circuit compo-
nent parameter values do not violate the observed
nature of the dynamics; it agrees with the expected
property of roughness (structural stability).

Figure 7 shows plots for all seven Lyapunov
exponents calculated using the traditional algo-
rithm [Benettin et al., 1980; Schuster & Just, 2005;
Kuznetsov, 2012] for the model (6) depending on
the parameter µ. In the presented range of µ we
have one positive exponent, other two are close to

(a) (b)

Fig. 6. Trajectories in the three-dimensional space (θ1, θ2, θ3) (a) for the model system (6) and (b) for the electronic device
obtained from results of simulation in Multisim according to the method described in the text.
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Fig. 7. Lyapunov exponents of the system (6) depending on
the parameter of supercriticality µ.

zero, and the rest are negative.3 The dependences
on the parameter are smooth, without notable
peaks and dips, testifying in favor of roughness
of the chaotic attractor. Note that in [Kuznetsov,
2015b] special calculations were carried out based
on verification of the absence of tangencies between
stable and unstable subspaces of perturbation vec-
tors nearby a typical trajectory on the attractor for
the model (9); it argues in favor of assumption of
the hyperbolic nature of the dynamics for the sys-
tem under consideration.

Particularly, at µ = 0.07497 the Lyapunov
exponents of the attractor are

λ1 = 0.1421 ± 0.0012,

λ2 = 0.0005 ± 0.0003,

λ3 = 0.0000 ± 0.0002,

λ4 = −0.0547 ± 0.0006,

λ5 = −0.0582 ± 0.0009,

λ6 = −0.1382 ± 0.0004,

λ7 = −0.1591 ± 0.0022,

where errors indicated are the standard deviations
obtained under averaging data for 102 samples of
duration τ = 5 · 104. The averaged dimensionless
kinetic energy in this case according to the com-
putations is W = 1

2 (u2
1 + u2

2 + u2
3) ≈ 0.0425, so, for

the comparable geodesic flow the nonzero Lyapunov
exponents should be equal to ±0.7

√
W ≈ ±0.144;

that agrees well with λ1 and λ7 relating to the
model (6).

5. Conclusion

In this paper a construction of the electronic gen-
erator of rough chaos is proposed inspired by the
geodesic flow on a surface of negative curvature,
which implements hyperbolic dynamics of Anosov.
An electronic analog circuit simulation is provided
in the NI Multisim software package. Also, the set
of equations is derived to describe the system, and
computational study of chaotic dynamics is per-
formed on the basis of these equations. In con-
trast to the previously considered electronic circuits
with hyperbolic attractors [Kuznetsov, 2011, 2012;
Isaeva et al., 2015; Kuznetsov et al., 2013], in this
case the hyperbolicity is characterized by certain
degree of uniformity in expansion and compression
for elements of the phase volume in the course of
evolution in continuous time. Thus, the generated
chaos has rather good quality of the power spectral
density distributions.

Although the particular circuit described in the
article operates in the low-frequency range (kHz), it
seems possible to implement similar devices at high
frequencies as well.

Since the hyperbolic dynamics are character-
ized by roughness, or structural stability, as the
mathematically proven attribute, it seems prefer-
able for practical applications of chaos due to low
sensitivity to parameter variations, various imper-
fections, noise, etc.
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3It is worth commenting on the presence of two nearly zero Lyapunov exponents. In autonomous systems one exponent equal
to zero always occurs being associated with a time-shift perturbation along the reference trajectory on the attractor. In our
case, this is true for the reduced models (8) and (9). For the original system (6), which is periodically forced, one has to expect
the respective exponent to be close to zero if the approximate description of the dynamics by means of the reduced model (8)
is really good. (With the used parameters, this is just the case.) One more Lyapunov exponent close to zero appears because
of the character of evolution of the variable w assumed in the device; in the secondary reduced model (9) it is excluded as
may be checked in computations (see [Kuznetsov, 2015b]).
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