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Abstract. An ever-increasing requirement to integrate greater amounts of electrical energy from renewable
sources especially from wind turbines and solar photo-voltaic installations exists and recent experience in
the island of Ireland demonstrates that this requirement influences the behaviour of conventional generating
stations. One observation is the change in the electrical power output of synchronous generators following
a transient disturbance especially their oscillatory behaviour accompanied by similar oscillatory behaviour
of the grid frequency, both becoming more pronounced with reducing grid inertia. This behaviour cannot
be reproduced with existing mathematical models indicating that an understanding of the behaviour of
synchronous generators, subjected to various disturbances especially in a system with low inertia requires a
new modelling technique. Thus two models of a generating station based on a double pendulum described
by a system of coupled nonlinear differential equations and suitable for analysis of its stability corresponding
to infinite or finite grid inertia are presented. Formal analytic solutions of the equations of motion are given
and compared with numerical solutions. In particular the new finite grid model will allow one to identify
limitations to the operational range of the synchronous generators used in conventional power generation
and also to identify limits, such as the allowable Rate of Change of Frequency which is currently set to
±0.5 Hz/s and is a major factor in describing the volatility of a grid as well as identifying requirements
to the total inertia necessary, which is currently provided by conventional power generators only, thus
allowing one to maximise the usage of grid connected non-synchronous generators, e.g., wind turbines and
solar photo-voltaic installations.

1 Introduction

The requirement to decarbonize electrical energy production is leading to an increase of wind turbine and solar photo-
voltaic based energy generation. These renewable generation sources in comparison to conventional synchronously
grid connected turbo generators of gas, oil or even coal fired power stations are asynchronously connected to the grid.
Inadvertently, by increasing the extent of asynchronously grid connected generation the stability of the entire electricity
network is reduced thereby also affecting the existing conventional power generation units. Examples are the increase of
electrical power oscillations of conventional power generating units and also consequential tripping of some larger units
which occur during transient events at times of high wind generation in the system. In addition certain transient events
like a sudden generation to load imbalance which arises after a trip of a generating unit, a disconnection of a large load or
during a system separation event manifest themselves in a grid frequency drop, rise or even oscillation. The weakening of
the grid frequency strength manifests itself via an increase of the Rate of Change of Frequency (ROCOF). Historically,
the ROCOF was limited by the manufacturers of conventional generating units to ±0.5Hz/s suggesting that an increase
in excess of this value needs to be analysed especially in relation to the manufacturer’s specification thereby allowing
for a further increase of non-synchronously connected electrical generation sources like wind turbine generators and
solar PV installations. Now to enable one to initially quantify the influence of more severe ROCOF events on the
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Fig. 1. The electromagnetic torque τel = kBSBR sin δ in the air gap of the generator.

operation and the integrity of conventional generating units it is necessary to define an appropriate dynamical model
which we can mathematically analyse for the purpose of calculation of the ensuing electrical and mechanical behaviour
of the generator sets. Our objective being to assess the consequences for their individual components, e.g. the generator
with its electrical windings in the rotor and stator, the turbine with its blades and the coupling to the generator.

The paper is organized as follows. We first envisage the generator-grid system as a driven damped pendulum
(making large oscillations), where we suppose that the grid has infinite inertia. This leads to a torque-balance equation
in the form of the equation of motion of the angle δ between the rotor and stator fields which is now no longer constant
instead oscillating because of the transient disturbance. This infinite grid inertia model allows one to estimate the
energy dependent frequency of the disturbance in terms of an elliptic integral as well as the response to a short
impulsive change of torque due to a transient fault (trip of a generator or disconnection of a large consumer). Next,
the model is generalized to a finite grid inertia (such as obtains in an isolated grid like that of the island of Ireland).
The generalization leads to two coupled nonlinear pendulum-like equations for the motion of the generator-grid system
whereby the system may oscillate about an equilibrium position. These equations may be solved using matrix continued
fractions and the response of the generator-grid system so obtained following the sudden imposition of a set of impulses
is substantially in accordance with an actual ROCOF event. This second model explicitly takes account of the fact that
when reviewing the measured data, it is clear that the grid frequency also exhibits a slight oscillation in phase with the
power oscillation, indicating that these two are influencing each other. Since the grid inertia in the island of Ireland is
not infinite any transient disturbance will induce a rotor angle oscillation which in turn leads to a grid oscillation. Hence,
the assumption that is valid for an infinite grid (model 1), namely that no feedback of the oscillation experienced by
the turbine generator shaft back to the grid exists, leads us to the conclusion that the single-mass mechanical analogue
is not useful when applied to grids with small inertia. Thus the main focus of our attention will be on the second model.

2 A single-mass model: equation of motion (model 1)

The dynamical equations of central importance in power system stability analysis are the rotational inertial equations
of motion describing the effect of imbalance between the electromagnetic torque and the mechanical torque of the
individual machines. Now during stable operation of a synchronous generator, the electromagnetic torque in the
airgap between rotor and stator of the generator is equal to the mechanical torque applied by the turbine rotor to
the rotor of the generator, τel = τm. However when a disturbance occurs, an accelerating torque which can be either
positive or negative acts on the turbo shaft inertia. The turbo shaft comprises the coupled turbine and generator rotor,
which during such a disturbance either accelerates or de-accelerates.

The electric currents in the stator windings of a synchronized generator create an electromagnetic field in the
air gap of the generator [1]. The strength of the magnetic field BS = |BS | is constant for constant stator currents.
Now, since these currents are sinusoidal the field vector BS rotates about the generator axis with angular velocity
ω0 = 2πf0, where f0 is the grid frequency. In a synchronous machine the rotor field vector BR rotates with the same
angular velocity as the stator field. The magnitude of the rotor field BR = |BR| is constant as the field is induced by
a DC current. Thus, the following electromagnetic torque τel arises in the air gap of the generator, viz.,

τel = kBR × BS , (1)

where k is a characteristic constant of the machine which depends on its geometry. Equation (1) can be rewritten as
(see fig. 1)
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Fig. 2. Scheme with an infinite inertia of the grid.

where δR and δS are the angles between the vectors BR and BS and the X-axis, respectively, and δ = δS−δR is the angle
between BS and BR (see fig. 1). The angle δ is called the rotor angle or in some cases the torque angle. The additional
mechanical torque τm is transmitted from the turbine to the generator through the coupling of the turbine rotor and
the generator rotor. Now if an imbalance between the torques τel and τm exists, the net torque τm − τel causes a rate
of change of angular momentum of the generator. Consequently, the angle δ(t) between BS and BR either increases or

decreases. The total rotational kinetic energy of the system is Γ = Jθ̇2/2, where θ(t) = ω0t+δ(t) and J is the combined
moment of inertia of generator and turbine. The potential energy of the system is Π = kBSBR[1 − cos(θ(t) − ω0t)].

The total energy dissipated due to the damping torque is D = KD(θ̇(t) − ω0)
2/2. The damping torque in this case is

the torque which is created by the asynchronous operation of the generator. As we are analysing the behaviour of a
synchronous generator an oscillation of its frequency results in creation of a so called slip which when negative creates
a mechanical torque to the shaft, when positive it creates an additional electrical torque whereby the power output is
increased. Hence it only exists when the angular velocity of the generator rotor differs from the angular velocity of
the grid. All other energy losses, like friction or thermal losses are neglected hence we have the differential equation
for δ:

Jδ̈(t) + KD δ̇(t) + kBSBR sin δ(t) = τm,

or

δ̈(t) + βδ̇(t) + ξ sin δ(t) = τ̄m, (3)

where β = KD/J , ξ = kBSBR/J , and τ̄m = τm/J . This single-mass model is commonly used to analyze the
dynamic response of a synchronous generator in an infinite grid [1–3]. The mechanical analogue is a driven
damped pendulum. In accordance with eq. (3) both grid and generator initially rotate with constant rotor angle
δ0 = arcsin[τm/(kBSBR)] = const. (see fig. 2). The bar in fig. 2 symbolizing the grid, moves according to the grid
frequency and is of infinite inertia, meaning that it cannot be influenced by the inertia of a single generator. In
the steady-state situation both inertias, comprising the generator turbine shaft Jgen and the grid Jgrid rotate in a
plane horizontally about the z-axis with angular velocity ω0 corresponding to the nominal grid-frequency of 50Hz.
However, during transient faults on the system like the trip of a generator or the disconnection of a large load, the
grid-frequency changes. Hence the generator will experience an additional torque as the grid inertia alters its angular
velocity. This disturbance leads to an oscillation of the rotor angle δ(t). The rotor angle oscillations result in a power
output oscillation because the electrical power of a generator is determined via the rotor angle as Pel = Pmax sin δ(t).
Hence the rate of change of the grid frequency is of major importance.

If a disturbance of the motion takes place the period T of oscillations of the angle δ(t) may be estimated by
considering the idealized free motion of a generator when the damping and torque τm are absent, i.e., β = 0 and
τm = 0. The solution of eq. (3) in this case is given by (see appendix A) [4]

sin [δ(t)/2] =
√

m sn
[

√

ξ(t − t0) | m
]

, (4)

where sn(u | m) is a Jacobian elliptic function [5] with modulus m = sin2(δ0/2), δ0 is the amplitude and t0 is the

initial time at which δ = δ0 and δ̇ = 0. The exact expression for the period T is given by

T = 4

√

J

kBSBR
K(m), (5)
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Fig. 3. Real and imaginary parts of the linear combination f(ω) = [c̃1−1(iω) − c̃1−1(iω)]/2i calculated by using the matrix
continued fraction method (see appendix B). The frequency of free motion Ω is given by eq. (6).
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Fig. 4. Solid line: numerical solution of eq. (3) obtained by using Mathematica
�. Circles: continued fraction solution of eq. (3)

in the frequency domain following from the inverse Fourier transform (see appendix B) with initial conditions δ0 = π/6, δ̇0 = 0
for the following model parameters ξ = 1, τ̄m = 0.3, β = 0.3. Dashed line: analytical solution for β = 0, eq. (4) whereby we may
estimate the period analytically.

where K(m) is a complete elliptic integral of the first kind [5]. Thus the angular frequency of the periodic motion is

Ω =
2π

T
=

π
√

kBSBR/J

2K(m)
. (6)

The solution of the damped pendulum equation (3) in terms of continued fractions is given in appendix B [6]. We
suppose that a disturbance of the motion occurs at the instant t0 = 0 when the torque τ̄m changes from the initial
value τ̄0

m = ξ sin δ0 to τ̄m < τ̄0
m. Here δ0 = δ(0) is the initial angle. The value of δ0 depends on the applied torque of

the turbine. The initial value of δ̇0 = δ̇(0) is zero. By deriving from eq. (3) a set of differential-recurrence equations

for the functions cnq(t) = δ̇nrq, we can solve this set for the one-sided Fourier transforms c̃nq(iω) of cnq(t) via matrix
continued fractions. Next, using the fast Fourier transform algorithm allows us to recover the function cnq(t). Having
calculated cnq(t), we can evaluate all other functions of interest. For example, we have

sin δ(t) =
c0−1(t) − c01(t)

2i
(7)

and so on. The results of such calculations for the linear combination of the one-sided Fourier transforms c̃1±1(iω) in
the frequency domain are shown in fig. 3.

Equation (3) can also be solved numerically using Mathematica
�. A comparison of the numerical and continued

fraction solutions of eq. (3) is shown in fig. 4. Figure 5 shows the response of the system to a set of impulses (representing
the alternating character of changes of τ̄m due to external events). This result can be compared with the measured
power output of a single shaft combined cycle 400MW synchronous generator after a real ROCOF event [1] (see fig. 6).
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Fig. 5. Response of the system (eq. (3)) to a set of impulses of torque τ̄m for the initial conditions δ0 = 0.66, δ̇0 = 0 and the
following model parameters ξ = 60, β = 1.

Fig. 6. Power output (blue, left scale) and grid frequency (red, right scale) of a 400 MW synchronous generator as a response
of a real ROCOF event, real time in [min:sec].

The power oscillation obtained from the model (fig. 5) reproduces qualitatively well the experimentally measured
oscillation of the power in fig. 6. However this model assumes infinite grid inertia, i.e. a fixed grid frequency. The
most important feature of fig. 6 is that the grid frequency executes an oscillation in phase with the power oscillation
indicating that they influence each other. Furthermore, recent observations indicate that the smaller the inertia in
the grid, the more the output power of a generator oscillates. Now the grid frequency experiences such drops about
20–30 times annually. These are usually due to trips of generating stations or disconnection of a large load (which,
for example, can happen when an HVDC interconnector trips while exporting electric energy from Ireland to Great
Britain). Hence the ability to calculate exactly how the grid frequency behaves during such disturbances demands an
approach whereby that frequency can be influenced by the transient behaviour of a generating station rather than
just the ability to calculate the maximum ROCOF alone. As seen in the previous analysis, any transient disturbance
can induce a rotor angle oscillation resulting in mechanical oscillations of the generator-turbine rotor. Hence, we have
oscillations of the power output of the set leading to a grid oscillation and in turn this grid oscillation again influences
how the turbo-set oscillates and so on. Thus the assumption that is valid for an infinite grid, namely, that no feedback
of the oscillation experienced by the turbine generator shaft back to the grid exists, leads one to the conclusion that
the single-mass model is not useful when applied to grids with small inertia so that we need a two-mass pendulum
model with two degrees of freedom.
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Fig. 7. Scheme with a finite inertia of the grid.

3 The two-mass pendulum (model 2)

This model, where the grid now has finite moment of inertia such as obtains in the isolated grid of Ireland (see fig. 7),
leads to the following set of two coupled equations of motion for the generator and grid:

Jgridθ̈grid + KD(θ̇grid − θ̇gen) + τel max sin(θgrid − θgen) = τ1 = τgrid − τel-remain, (8)

Jgenθ̈gen + KD(θ̇gen − θ̇grid) + τel max sin (θgen − θgrid) = τ2 = τgen, (9)

where τel max is the maximum electromagnetic torque in the air gap, τ2 is the torque applied by the turbine to the
generator, τ1 is the resulting torque applied to the grid (sum of all turbine torques less the torques due to the loads and
remaining generators τel-remain on the grid). Here the damping torques, characterized by the damping coefficient KD,
are those torques, which are present only when the rotor angle oscillates. In this case, the turbine controller reacts
to a drop of the frequency by increasing the output of the set. It opens the valves to allow an increase of the power
output. All generating units in the grid have this control behaviour. We emphasize that eqs. (8) and (9) represent a
model which still has limitations, e.g. the energy losses due to resistances in the generators and lines are ignored.

The formal solution of eqs. (8) and (9) is given in appendix C. For the purpose of analysis of the generator and
grid response to various disturbances we use below numerical solutions of eqs. (8) and (9) obtained in Mathematica

�.
At this stage one needs to point out that after a disturbance, all generators in the system increase their mechanical
torque, by means of increasing the load of the turbine. This behaviour is programmed in the turbine controllers and
is called primary (POR), secondary (SOR) and tertiary operating reserve (TOR). To enable one to understand the
behaviour of a generator during a transient disturbance, all these torques from controllers and all the remaining
generators in the power system were combined and visualised as an impulse or a set of impulses (caption in fig. 5).

Figure 8 shows the response of the system (grid frequency fgrid = θ̇grid/(2π), generator frequency fgen = θ̇gen/(2π),

power output Pel/Pmax = sin δ(t) and ROCOF = ∆fgrid/∆t = ∆θ̇grid/(2π∆t)) to a set of short impulsive changes of τ1

(as mentioned earlier representing the alternating character of changes of τ1 due to external events such as oscillations
of other generators) for different values of the inertia ratio x = Jgrid/Jgen: x = 7 (column (a)), x = 30 (column (b))
and x = 100 (column (c)). Here δ = θgrid − θgen and x is a parameter describing how much inertia lies within the
transmission system. For example, for x = 7, the grid has 7 times as much inertia as the generator in question. The
initial value of the angle δ0 allows one to obtain a maximum initial power output which is proportional to sin δ0

and yet allows it to still remain in the linear regime (where sin δ0 ≈ δ0). The recovery of the frequency to its initial
(i.e. normal) value is accomplished by adjusting τ1 following a perturbation. This recovery is in practice achieved by
increasing the power output of those generating units remaining connected to the system. The power output increase
is a function which is called primary and secondary operating reserve. Clearly, the power output (third row plots in
fig. 8) qualitatively corresponds to the measurements seen in reality. Figure 8 also shows the ROCOF (fourth row)
corresponding to the first row with ∆t = 100ms. The response of the system (eqs. (8) and (9)) to an applied impulse
in addition to the permanent torque τ1 (i.e. a short impulsive change in τ1) is shown in fig. 9.

Now it is important to emphasize that the numerical solution of eqs. (8) and (9) indicates that for x = 5 the
generator would experience a pole slip as seen in fig. 9. This finding is in contradiction with the commonly used
formula for ROCOF, namely

df

dt
=

∆P

P

f0

2H
, (10)

where ∆P [MW] is the power change per unit machine base, P [MW] is the total power generated and H [s] is the
system inertia. Equation (10) expressed via the parameters of the model, namely 2HPN = Jgridω2

0 and ∆P ≈ ∆τω0,
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Fig. 8. Response of the generator-grid system to a short impulsive change in τ1. The calculations correspond to the initial
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βgrid/Jgrid = 2.8/x s−1, and τ2 = τ1 = 1.3 · 106 N · m.
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Fig. 9. The response of the system to the same additional impulse of torque ∆τgrid for different values of x.

gives

df

dt
=

∆P

P

f0

2H
≈ ∆Pf0

2HPN
=

∆τω0f0

Jgridω2
0

=
∆τ

2πxJgen
. (11)
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The comparison of numerical calculations of df/dt vs. x = Jgrid/Jgen with the traditionally used eq. (11) is shown
in fig. 10. Clearly good agreement exists between the numerical solution of eqs. (8) and (9) and the approximation
contained in eq. (11) for x > 10. For values of x less than 10 one cannot use such an approximation.

4 Conclusion

We have described a viable mathematical model where the grid is postulated as a rotating mass representing a grid
with decreased inertia as is obtained when it is operated with a large amount of non-synchronous penetration. This
situation occurs in the island of Ireland and other isolated grids during times of strong penetration by (predominantly)
wind turbines, etc.

Clearly, the results of the analysis highlight the potential risks when a unit is exposed to a disturbance in a system
with high wind penetration and consequential low inertia. Whereas in traditional large inertia systems the oscillation
steadily decreases we perceive that in systems with small inertia the stresses on the unit may also increase. Although
the mechanical torques may not reach a level where one expects to see immediate crack development in a turbine
generator shaft component nevertheless the magnitude of the oscillations experienced could introduce additional crack-
propagation where a crack already exists.

The technical risks can be broadly associated with three driving processes:

a) Large changes in electrical power output affecting controllers such as excitation systems, power system stabilizers,
turbine controller and unit controllers.

b) Large changes in the electromagnetic torque introducing critical mechanical oscillations affecting both the mechan-
ical integrity of the generator and the turbine rotor and its components.

c) Inherent response of a unit to falling frequency such as gas compressor performance or inertial energy delivery
possibly triggering a protection to disconnect the unit from the grid leading to cascade events, possibly even to a
blackout of the entire electricity network.

However our major finding is that by using the solutions set out in the equations describing the double pendulum,
one may define the safe operational limits for synchronously connected generators, in a small inertia system, thereby
gaining a better understanding of how low inertia systems react during transient disturbances and thus maximizing
the quantity of renewable energy which may be generated.

We thank Dr W.J. Dowling for a critical reading of the paper and useful comments and suggestions.

Appendix A. Solution of free pendulum equation

For β = τ̄m = 0, we rearrange eq. (3) as

2δ̇(t)δ̈(t) + 2ξδ̇(t) sin δ(t) =
d

dt

[

δ̇2(t) − 2ξ cos δ(t)
]

= 0. (A.1)
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Thus we have from eq. (A.1)

δ̇2(t) = 2ξ [cos δ(t) − cos δ0] = 4ξ

[

sin2 δ0

2
− sin2 δ(t)

2

]

, (A.2)

or

dδ

2
√

sin2(δ0/2) − sin2(δ/2)
=

√

ξdt, (A.3)

where δ0 is an integration constant. By integrating eq. (A.3) with the initial condition δ(t0) = 0, we have

∫ δ

0

d(δ/2)
√

m − sin2(δ/2)
=

∫ m−1/2 sin δ/2

0

dt
√

(1 − mt2)(1 − t2)
=

√

ξ(t − t0), (A.4)

where m = sin2 δ0/2, so yielding eq. (4).

Appendix B. Matrix continued fraction solution of damped pendulum equation

In the general case, we have for the function cnq(t) = δ̇nrq with r = e−iδ(t)

d

dt
cnq(t) = nδ̇n−1rq δ̈ − iqδ̇n+1rq

= −iqcn+1q(t) − nδ̇n−1rq
[

βδ̇(t) + ξ sin δ(t) − τ̄m

]

. (B.1)

Here we substitute δ̈(t) = −βδ̇(t) − ξ sin δ(t) + τ̄m from eq. (3). By using sin δ(t) = (r−1 − r)/2i in eq. (B.1), we have
the following differential-recurrence relation for cnq(t):

d

dt
cnq(t) = −βncnq(t) − iqcn+1q(t) −

in

2
[ξcn−1q+1(t) + 2iτ̄mcn−1q − ξcn−1q−1(t)] . (B.2)

By introducing infinite column vectors,

C0(t) = 0, Cn(t) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

...

cn−1−2(t)

cn−1−1(t)

cn−10(t)

cn−11(t)

cn−12(t)

...

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(n > 0), (B.3)

the differential-recurrence equations (B.2) can be transformed into the tri-diagonal matrix form

d

dt
Cn(t) = Q−

n Cn−1(t) + QnCn(t) + Q+
n Cn+1(t). (B.4)
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Here the matrices Qn and Q±
n are

Qn = −β(n − 1)I, (B.5)

Q+
n = −i

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

. . .
. . .

. . .

. . . −1 0
. . .

. . . 0 0 0
. . .

. . . 0 1
. . .

. . .
. . .

. . .

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (B.6)

Q−

n = −(n − 1)

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

. . .
. . .

. . .

. . . τ̄m iξ/2
. . .

. . . −iξ/2 τ̄m iξ/2
. . .

. . . −iξ/2 τ̄m
. . .

. . .
. . .

. . .

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (B.7)

and I is the unit matrix of infinite dimension.
Equation (B.4) is solved by the matrix continued fraction method [6,7]. On considering the initial conditions

δ(0) = δ0 and δ̇(0) = 0 and taking the Laplace transform of eq. (B.4), we obtain the matrix recurrence relations for

the Laplace transforms C̃n(s):

−sC̃1(s) + Q+
1 C̃2(s) = −C1(0), (B.8)

Q−

n C̃n−1(s) + (Qn − sI) C̃n(s) + Q+
n C̃n+1(s) = 0 (n > 1), (B.9)

where

C̃n(s) =

∫ ∞

0

Cn(t)e−stdt. (B.10)

Here we have noted that

C1(0) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

...

e2iδ0

eiδ0

1

e−iδ0

e−2iδ0

...

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, Cn(0) = 0, n > 2.

We seek the solution of the linear eqs. (B.8) and (B.9) as

C̃n(s) = ∆nQ−

n C̃n−1(s) + Rn, (B.11)

where ∆n is the matrix continued fraction defined by the recurrence equation

∆n =
[

sI − Qn − Q+
n ∆n+1Q

−

n+1

]−1
, (B.12)

which allows us to represent ∆n as an infinite matrix continued fraction [7]. Substituting eq. (B.11) into eqs. (B.8)
and (B.9) yields

[

sI − Q1 − Q+
1 ∆2Q

−

2

]

R1 = C1(0) + Q+
1 R2, (B.13)

[

sI − Qn − Q+
n ∆n+1Q

−

n+1

]

Rn = Q+
n Rn+1 (n > 1). (B.14)
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Equations (B.13) and (B.14) can be solved exactly for the desired particular solutions Rn in terms of the matrix
continued fraction ∆1:

R1 = ∆1C1(0), Rn = 0 (n > 1). (B.15)

Substituting eq. (B.15) into eq. (B.11) yields the matrix continued-fraction solution of eqs. (B.8) and (B.9) for the

Laplace transforms C̃n(s) [7]

C̃1(s) = ∆1C1(0), (B.16)

C̃n(s) = ∆nQ−

n C̃n−1(s) = ∆nQ−

n ∆n−1Q
−

n−1 . . . ∆1C1(0) (n > 1). (B.17)

The matrix continued fraction solution we have obtained is very convenient for the purpose of computation (various
algorithms for calculating matrix continued fractions are discussed in refs. [6] and [7]). As far as the calculation of the
infinite matrix continued fraction ∆n is concerned, we approximated it by some matrix continued fraction of finite
order (by putting Qn+1 = 0 at some n = K). At the same time, we confined the dimensions of the matrices Qn

and Q±
n to some finite number 2M + 1. Both K and M depend on the model parameters and must be chosen taking

account of the desired degree of accuracy of the calculation. The calculation of the time-dependent functions cnq(t)
can be then accomplished using the Fast Fourier Transform (FFT) algorithm as

cnq(t) ≈
1

π
Re

[

∫ Ω′(N−1)

0

c̃nq(iω)eiωtdω

]

=
Ω′

π
Re

[

N
∑

s=1

c̃nq (iΩ′(s − 1)) eiΩ′(s−1)t

]

, (B.18)

or

cnq (T (r − 1)) =
Ω′

π
Re

[

N
∑

s=1

c̃nq (iΩ′(s − 1)) eiΩ′T (s−1)(r−1)

]

(r = 1, 2, . . . , N), (B.19)

where

Ω′ =
2π

NT
, N = 2k. (B.20)

Appendix C. Matrix continued fraction solution of eqs. (8) and (9)

Equations (8) and (9) can be rewritten as

θ̈i + βi(θ̇i − θ̇j) + ξi sin (θi − θj) = τ̄i (i = 1, 2 and j = 2, 1), (C.1)

where θ1 = θgrid, β1 = K1
D/Jgrid, ξ1 = τel max/Jgrid, θ2 = θgen, β2 = K2

D/Jgen, ξ2 = τel max/Jgen, τ̄1 = τ1/Jgrid and
τ̄2 = τ2/Jgrid.

Now we introduce
cn1q1

n2q2
= θ̇n1

1 θ̇n2

2 rq1

1 rq2

2 , n = 0, 1, 2 . . . , q = 0,±1,±2 . . . , (C.2)

where ri = e−iθi(t). Then, noting eqs. (C.1) and (C.2), we have

d

dt
cn1q1

n2q2
= − (β1n1 + β2n2) cn1q1

n2q2
+ β1n1c

n1−1q1

n2+1q2
+ β2n2c

n1+1q1

n2−1q2
− iq1c

n1+1q1

n2q2
− iq2c

n1q1

n2+1q2

+ τ̄1n1c
n1−1q1

n2q2
+

i

2
ξ1n1

(

cn1−1q1−1
n2q2+1 − cn1−1q1+1

n2q2−1

)

+ τ̄2n2c
n1q1

n2−1q2
+

i

2
ξ2n2

(

cn1q1+1
n2−1q2−1 − cn1q1−1

n2−1q2+1

)

. (C.3)

Thus on introducing column vectors Cn(t) defined as

C1(t) = (c00) , C2(t) =

(

c10

c01

)

, . . . , Cn(t) =

⎛

⎜

⎜

⎜

⎜

⎝

cn−10

cn−21

...

c0n−1

⎞

⎟

⎟

⎟

⎟

⎠

, (C.4)
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where the subvectors are

cn1n2
(t) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

...

cn1−1
n22

(t)

cn10
n21

(t)

cn11
n20

(t)

cn12
n2−1(t)

...

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (C.5)

it follows that the differential-recurrence equation (C.3) can be transformed into the matrix three-term recurrence
equation (B.4), namely,

d

dt
Cn(t) = Q−

n Cn−1(t) + QnCn(t) + Q+
n Cn+1(t), (C.6)

where the matrices Qn and Q±
n are given by

Qn = −β1

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

(n − 1)I (n − 1)I 0 · · · 0

0 (n − 2)I (n − 2)I
. . .

...

0
. . .

. . .
. . . 0

...
. . . 0 I I

0 · · · 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

− β2

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 · · · 0

I I 0
. . .

...

0
. . .

. . .
. . . 0

...
. . . (n − 2)I (n − 2)I 0

0 · · · 0 (n − 1)I (n − 1)I

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (C.7)

Q+
n = −i

⎛

⎜

⎜

⎜

⎜

⎜

⎝

q+ q+ 0 · · · 0

0 q+ q+
. . .

...

...
. . .

. . .
. . . 0

0 · · · 0 q+ q+

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, (C.8)

Q−

n =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

(n − 1)q− 0 · · · 0

q− (n − 2)q−
. . .

...

0 2q−

. . . 0

...
. . .

. . . q−

0 · · · 0 (n − 1)q−

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (C.9)

where

q+ =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

−qmax + 1 0 · · · 0

0 −qmax + 2
. . .

...

...
. . .

. . . 0

0 · · · 0 qmax

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, q+ =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

qmax 0 · · · 0

0 qmax − 1
. . .

...

...
. . .

. . . 0

0 · · · 0 −qmax + 1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

(C.10)

q− =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

τ̄1 −iξ1/2 · · · 0

iξ1/2 τ̄1
. . .

...

...
. . .

. . . −iξ1/2

0 · · · iξ1/2 τ̄1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, q− =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

τ̄2 iξ2/2 · · · 0

−iξ2/2 τ̄2
. . .

...

...
. . .

. . . iξ2/2

0 · · · −iξ2/2 τ̄2

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, (C.11)

and I is a unit matrix with dimension 2qmax (here we have confined the dimensions of the matrices q± and q± to
some finite number 2qmax).
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Using the Laplace transformation, eq. (C.6) can be reduced to the matrix recurrence relations for the Laplace

transforms C̃n(s), eqs. (B.8) and (B.9), where

C1(0) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

...

c0−1
02 (0)

c00
01(0)

c01
00(0)

c02
0−1(0)

...

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (C.12)

c0q1

0q2
(0) = e−i(q1θ1(0)+q2θ2(0)), and Cn(0) = 0 for n = 2, 3, . . ., because θ̇1(0) = θ̇2(0) = 0. Then by invoking the general

method for solving the matrix recurrence equations [6], we have the matrix continued fraction solution, eq. (B.16).
The calculation of the time-dependent functions cn1q1

n2q2
(t) can be then accomplished using the FFT algorithm.

Finally, the following properties of eqs. (8) and (9) can be useful in practical applications. First by adding eqs. (8)
and (9), we have

Jgridθ̈grid + Jgenθ̈gen = τ1 + τ2. (C.13)

Next writing eqs. (8) and (9) in the form of eq. (C.1) and subtracting the second equation from the first equation, we
have

θ̈1 − θ̈2 + (β1 + β2)
(

θ̇1 − θ̇2

)

+ (ξ1 + ξ2) sin (θ1 − θ2) = τ̄1 − τ̄2. (C.14)

Equation (C.14) is identical in form to eq. (3) thus it can be solved in a similar way using matrix continued fraction
solution of the damped pendulum equation (see appendix B). However, the difference is that now the grid dynamics
are influenced by the generator in accordance with eq. (C.13) and the grid does not oscillate anymore with a constant
frequency ω0 as in a grid with infinite inertia. However we still need to integrate eq. (C.13) twice and combine it with
the continued fraction solution of eq. (C.14) in order to determine the overall dynamics of the system.
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