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The itinerant oscillator model describing rotation of a dipole about a fixed axis inside a cage formed
by its surrounding polar molecules is revisited in the context of modeling the dielectric relaxation of a
polar fluid via the Langevin equation. The dynamical properties of the model are studied by averaging
the Langevin equations describing the complex orientational dynamics of two bodies (molecule-
cage) over their realizations in phase space so that the problem reduces to solving a system of three
index linear differential-recurrence relations for the statistical moments. These are then solved in the
frequency domain using matrix continued fractions. The linear dielectric response is then evaluated
for extensive ranges of damping, dipole moment ratio, and cage-dipole inertia ratio and along with the
usual inertia corrected microwave Debye absorption gives rise to significant far-infrared absorption
with a comb-like structure of harmonic peaks. The model may be also regarded as an extension of
Budó’s [J. Chem. Phys. 17, 686 (1949)] treatment of molecules containing rotating polar groups to
include inertial effects. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4993791]

I. INTRODUCTION

The cage model or itinerant oscillator1–6 introduced by
Hill7,8 and Sears9 is a schematic representation of the dynam-
ical behavior of a molecule in a fluid embodying the fact that
a typical molecule of the fluid may vibrate about a tempo-
rary equilibrium position. Sears9 used a translational version
of the model to evaluate the velocity correlation function for
liquid argon, while Hill7,8 used a two-dimensional rotational
version to explain relaxation (Debye) and far-infrared (FIR)
absorption spectrum of dipolar fluids. Hill considered a spe-
cific mechanism whereby at any instant an individual polar
molecule may be regarded as confined to a temporary equi-
librium position in the potential well created by its cage of
polar nearest neighbors, where the potential energy surface
may in general have several minima. The molecule is consid-
ered to librate in this cage, i.e., execute torsional oscillations
about temporary equilibrium positions. The Brownian motion
of the cage gives rise to the Debye absorption,10,11 while the
librational motion of the molecule gives rise to the resonance
absorption in the far infrared region. Using an approximate
analysis of this model based on the Smoluchowski equation10

for the rotational diffusion of an assembly of non-interacting
dipolar molecules, Hill demonstrated that the frequency of the
FIR absorption peak is inversely proportional to the square
root of the moment of inertia of a molecule. Hill’s treatment
based on the small oscillation (harmonic potential) approxi-
mation was further expanded upon, using the Langevin equa-
tion of the theory of the Brownian motion, in a series of
papers by Wyllie12,13 and by Coffey et al.14–17 The angular

velocity and orientational correlation functions were explicitly
evaluated in the small oscillation approximation.5,6,10 These
results are summarized in Refs. 1 and 2. All these analyses,
however, invariably rely on a small oscillation approximation
because no reliable method of treating the finite oscillations
of a pendulum when the Brownian torques are included had
existed. Thus, some of the most important nonlinear aspects
of the relaxation processes were omitted, an example being
the dependence of the frequency of oscillation of the dipole
on the amplitude of the oscillation. A preliminary attempt to
include nonlinear or anharmonic effects (cosine potential) has
been made in Refs. 17 and 18. The equations of motion of
the model when the restriction to fixed axis rotation is relaxed
were given by Coffey.18 Recently it became possible to treat
the Brownian motion in a potential other than a parabolic
one in a general fashion using matrix continued fractions.19

The solution was illustrated19 by considering the Brownian
motion of a rotator in a cosine potential with a fixed equilibrium
position.

The various applications to chemical physics are dis-
cussed extensively in Refs. 20–24. Yet another applica-
tion of the model is relaxation of ferrofluids25 (colloidal
suspensions of single-domain ferromagnetic particles). A
three-dimensional rotational version excluding inertial effects,
termed an “egg model,” has been used by Shliomis and
Stepanov,26 to simultaneously explain the Brownian and Néel
relaxation in ferrofluids,25 which are due to the rotational
diffusion of the particles and random reorientations of the
magnetization inside the particles, respectively. The analysis
in the context of ferrofluids yields similar equations of motion
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to those given by Damle et al.27 and by van Kampen28 for
the translational itinerant oscillator. This formulation has the
advantage that, in the noninertial limit, the equations of motion
automatically decouple into those of the molecule and its sur-
roundings (cage). Such a decoupling of the exact equations
of motion is also possible in the inertial case if we assume
a massive cage. These results are summarized in Refs. 6 and
10. Moreover in Ref. 6, it was also shown how to extend the
model to the fractional time random walk process where the
characteristic waiting time between encounters of molecules
is divergent.

The disadvantage of all these analyses, however, is that
due to the inherent mathematical difficulties arising from the
intrinsically nonlinear nature of the governing Langevin equa-
tions, they invariably rely on the assumption that the inertia of
the molecule is much smaller than the inertia of the cage. The
assumption allows one to decouple the equations of motion
into the equation of motion of the cage itself which is just that
of a free inertial rigid Brownian rotator and the motion of the
encaged dipole or tagged molecule alone which is that of an
inertial rigid Brownian rotator in a sinusoidal potential. Hence
all the correlation functions of the model may be given in a
closed form. However, in using this ansatz, some of the most
important aspects of the relaxation processes are unavoidably
omitted, for example, the perturbation of the cage rotation by
the molecule. As a result, the relaxation modes of the system
separate into those of the tagged molecule and those of its sur-
roundings, irrespective of the form of the interaction potential
between the cage and the tagged molecule, which in general
is not physical.

It is the purpose of this paper to illustrate using linear
response theory (which relates the ac response to the step-off
response following the removal of a constant field F) how the
itinerant oscillator model may be solved exactly for the first
time for the case of finite inertia of the cage as compared to
that of the molecule. In this case, the rotational motion of the
cage is no longer independent and is undoubtedly influenced
by the probe. The treatment of a cage with finite inertia may be
justified as follows. In solid bodies (e.g., ferromagnetic parti-
cles), the internal potentials are due to the crystalline structure
of the bodies and in consequence are rather stable.10 This is
not true of fluids and dense liquids where the angular displace-
ment of the surroundings is comparable with the displacement
of a probe. Hence it is reasonable to conceive of the cage as
undergoing drift or diffusive motion as it is intrinsic to the
model. If the number of molecules surrounding the probe is
not very large, it also seems reasonable to use finite cage iner-
tia. Then the rotation of the cage can no longer be simplified
by treating it as merely rotational Brownian motion of a heavy
object since it must now be described in a more complicated
manner as rotation perturbed by the probe molecule.

We shall describe the cage model mainly in the context of
the theory of dielectric relaxation. By averaging the Langevin
equations describing the complex dynamics of two bodies
(molecule-cage) over its realizations, the problem is first
reduced to solving a system of linear differential-recurrence
relations for the statistical moments. It is then shown how these
three-term differential-recurrence relations may be formally
solved for the Fourier transform of the after-effect function

via matrix continued fractions, thereby allowing one to exactly
analyze the susceptibility spectrum χ(ω) of the model regard-
less of the inertia ratio and dipole-cage interaction strength.
In this form, the model may be regarded as an extension
of Budó’s29 treatment of molecules containing rotating polar
groups to include inertial effects, thereby automatically lead-
ing to far infrared resonance (THz) absorption as well as
the accompanying microwave Debye absorption so that both
absorptions may be linked together in the same model.

II. SOLUTION OF THE LANGEVIN EQUATIONS
FOR A DIPOLE INTERACTING
WITH ITS SURROUNDINGS

A typical member of a system of dipolar molecules (speci-
fied by an angle φ1) and cage (specified by an angle φ2) rotating
about a fixed axis in an external uniform dc applied field F
(which is needed in order to use linear response theory) is in
general governed by a Hamiltonian H given by

H =
1
2

I1φ̇
2
1 +

1
2

I2φ̇
2
2 − µ1F cos φ1 − µ2F cos φ2

− µ1R cos (φ1 − φ2) , (1)

where F = |F|, µ1 and I1 are the dipole moment and the
moment of inertia of the molecule, respectively, and µ2 and I2

are the dipole moment and the moment of inertia of the sur-
roundings (i.e., the cage), respectively. The final term in Eq. (1)
represents the dipole-cage interaction, where R is the reaction
field of the surroundings10 which represents their influence
on the probe molecule. Here we shall use the quasi-stationary
approximation for the reaction field R(t) = R. The equation of
motion of the encaged polar molecule in the external uniform
dc field and the field of the rotating cage is in accordance with
that of van Kampen,30

I1φ̈1(t) = ζ1

(
φ̇2(t) − φ̇1(t)

)
− µ1R sin (φ1(t) − φ2(t))

− µ1F sin φ1(t) + λ1(t). (2)

The terms ζ1

(
φ̇2(t) − φ̇1(t)

)
and λ1(t) represent the dissipative

and fluctuating Brownian torques acting on the molecule due
to the heat bath. The equation of motion of the cage in the
presence of the dc field F and the field of the polar molecule
is on applying Newton’s third law30

I2φ̈2(t)= ζ1

(
φ̇1(t)− φ̇2(t)

)
− ζ2φ̇2(t)− µ1R sin (φ2(t) −φ1(t))

− µ2F sin φ2(t) − λ1(t) + λ2(t). (3)

The terms −ζ2φ̇2(t) and λ2(t) are again the dissipative and the
stochastic torques on the surroundings of the cage which are
generated by the heat bath in which the cage is embedded.
In Eqs. (2) and (3), the white noise torques λi(t) are centered
Gaussian random variables with correlation functions

λi (t) λi (t ′) = 2kT ζiδ
(
t − t ′

)
, (4)

where kT is the thermal energy (k is Boltzmann’s constant).
In order to use linear response theory, we consider the

special case where a small external dc field F, which has been
applied to the system in the infinite past, is suddenly switched
off at time t = 0. In our study, we are interested in the relaxation
of the system consisting of the cage and embedded dipole,



034509-3 Coffey et al. J. Chem. Phys. 147, 034509 (2017)

starting from an initial equilibrium state at t = 0 with the
Maxwell-Boltzmann distribution function WF(φ1, φ2, φ̇1, φ̇2)
given by

WF(φ1, φ2, φ̇1, φ̇2)

= Z−1
F e−η

2
1 φ̇

2
1−η

2
2 φ̇

2
2+ξ1 cosφ1+ξ2 cosφ2+ ξint cos(φ1−φ2) (5)

to another equilibrium state as t → ∞ with the new Maxwell-
Boltzmann distribution function

W0(φ1, φ2, φ̇1, φ̇2) = WF=0(φ1, φ2, φ̇1, φ̇2)

= Z−1
0 e−η

2
1 φ̇

2
1−η

2
2 φ̇

2
2+ξint cos(φ1−φ2). (6)

Here ZF is the partition function defined as

ZF =

2π∫
0

2π∫
0

∞∫
−∞

∞∫
−∞

e−η
2
1 φ̇

2
1−η

2
2 φ̇

2
2+ξ1 cosφ1+ξ2 cosφ2+ ξint cos(φ1−φ2)

× dφ̇1dφ̇2dφ1dφ2,

where η1 =
√

I1/(2kT ) and η2 =
√

I2/(2kT ) are characteristic
time constants, ξ1 = µ1F/(kT ) and ξ2 = αξ1 = µ2F/(kT )
are the field-dipole and field-cage interaction parameters, α
= µ2/µ1 is the ratio of dipole moments, and ξint = µ1R/(kT )
is the dipole-cage interaction parameter. The dynamics of
the cage-dipole system immediately following the removal of
the external dc field may be described using the normalized
relaxation function

C(t) =
ϕ(t) + ψ(t)
ϕ(0) + ψ(0)

, t > 0, (7)

where we have defined the individual response functions

ϕ(t) = µ1
(
〈cos φ1〉 (t) − 〈cos φ1〉0

)
, (8)

ψ(t) = µ2
(
〈cos φ2〉 (t) − 〈cos φ2〉0

)
. (9)

Here the angular brackets 〈A〉 (t) are the time-dependent
ensemble averages associated with an observable A and the
brackets 〈A〉0 designate the equilibrium ensemble averages,
namely,

〈A〉0 =

2π∫
0

2π∫
0

∞∫
−∞

∞∫
−∞

A(φ1, φ2, φ̇1, φ̇2)W0(φ1, φ2, φ̇1, φ̇2)

× dφ̇1dφ̇2dφ1dφ2. (10)

In the linear approximation in the applied dc field, µiF/(kT )
� 1, the initial conditions for the functions ϕ(t) and ψ(t) are

ϕ(0) ≈
F
kT

[
µ2

1

(〈
cos2φ1

〉
0
− 〈cos φ1〉

2
0

)
+ µ1µ2

×
(
〈cos φ1 cos φ2〉0 − 〈cos φ1〉0〈cos φ2〉0

)]
, (11)

ψ(0) ≈
F
kT

[
µ2

2

(〈
cos2φ2

〉
0
− 〈cos φ2〉

2
0

)
+ µ1µ2

×
(
〈cos φ1 cos φ2〉0 − 〈cos φ1〉0〈cos φ2〉0

)]
. (12)

Thus, the individual response function ϕ(t) now refers to the
embedded dipole while ψ(t) refers to that of the surround-
ings. Since we have assumed in order to use linear response
theory that the initial amplitude F of the external uniform
dc field is small (µiF/(kT ) � 1), the complex susceptibil-
ity χ (ω) = χ′ (ω) − iχ′′ (ω) and so the ac response of such
an assembly can then be determined from the linear response
theory formula31,32

χ (ω)
χ
= 1 − iω

∞∫
0

C(t)e−iωtdt, (13)

where χ = χ′ (0) =
[
ϕ(0) + ψ(0)

]
F−1 is the static suscepti-

bility and the normalized relaxation function C(t) is given by
Eqs. (7)–(9).

III. MATRIX CONTINUED FRACTION SOLUTION
FOR THE RESPONSE FUNCTION

The one-sided Fourier transform of the normalized relax-
ation function C(t) is calculated as follows. As shown in
Appendix A, the Langevin equations, Eqs. (2) and (3), can be
transformed into differential-recurrence equations for the sta-
tistical moments f m1 q1

m2 q2
(t) pertaining to the observables, which

are given by

f m1 q1
m2 q2

(t) =
〈
Hm1 (η1φ̇1)Hm2 (η2φ̇2)e−iq1φ1 e−iq2φ2

〉
(t),

mi = 0, 1, 2 . . . , qi = 0,±1,±2 . . . , (14)

where Hm(z) are the Hermite polynomials. The ensuing calcu-
lation advantage is that (in this step-off case) the indices q1 and
q2 are no longer independent of each other; thus, we may intro-
duce the simplified moments cq

m1 m2
(t) = f m1 q

m2 −q+1(t) associated
with the expectation values of observables. Finally taking
account of the general form of the differential-recurrence equa-
tions for the functions f m1 q1

m2 q2
(t) from Appendix A, Eq. (A6),

we have the corresponding differential-recurrence equations
for the moments cq

m1 m2
(t) (where the external field parameters

ξ1 and ξ2 are now zero), viz.,

η
d
dt

cq
m1 m2

= − *
,
γ1 β1m1 +

γ2
2

γ1
β1m2 + γ2 β2m2+

-
cq

m1m2
+ γ2 β1m2cq

m1+1 m2−1 + γ2 β1m1cq
m1−1 m2+1 + 2γ2 β1m1m2cq

m1−1m2−1

− 2
γ2

2

γ1
β1m2 (m2 − 1) cq

m1 m2−2 +
iξint

2

[
γ1m1

(
cq−1

m1−1 m2
− cq+1

m1−1 m2

)
+ γ2m2

(
cq+1

m1 m2−1 − cq−1
m1 m2−1

)]
−

i
2
γ1q

(
cq

m1+1m2
+ 2m1cq

m1−1m2

)
+

i
2
γ2(q − 1)

(
cq

m1m2+1 + 2m2cq
m1m2−1

)
. (15)
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Here η−1 = η−1
1 + η−1

2 , γi = η/ηi is an inertia ratio, and all other
notations are given in Appendix A. The set of Eq. (15) repre-
sents three index linear differential-recurrence equations. The
solution of this system of equations for cq

m1 m2
(t) = f m1 q

m2 −q+1(t) is

far simpler than those for f m1 q1
m2 q2

(t) which comprise four index
differential-recurrence equations and which are obtained when
F , 0.

Proceeding, we first introduce the supercolumn vector
Cn(t), which is defined as follows:

Cn(t) =

*.......
,

c0 n(t)

c1 n−1(t)

...

cn 0(t)

+///////
-

, cm1 m2 (t) =

*............
,

...

c−1
m1 m2

(t)

c0
m1 m2

(t)

c1
m1 m2

(t)

...

+////////////
-

, n ≥ 0. (16)

Thus the multi-term differential-recurrence equation recur-
rence Eq. (15) for the expectation values of the observables
can be transformed into a supermatrix four-term differential-
recurrence equation of the form

η
d
dt

Cn(t) = Q−−n Cn−2(t) + Q−n Cn−1(t) + QnCn(t)

+ Q+
nCn+1(t), (17)

where the supermatrices Q−n , Qn, and Q+
n are given in

Appendix B. By taking the Laplace transform of Eq. (17),
we have the algebraic four-term recurrence equation in the
frequency domain

ηsC̃n(s) − δn 0ηC0(0) = Q−−n C̃n−2(s) + Q−n C̃n−1(s)

+ QnC̃n(s) + Q+
nC̃n+1(s), (18)

where

C̃n(s) =

∞∫
0

Cn(t)e−stdt. (19)

Here we have used the initial condition Cn(0) = 0 for n > 0
because

〈
Hne−iqφi

〉
= 0 for n > 0 as demanded by the ini-

tial Maxwell-Boltzmann distribution. The initial value vector
C0(0) is given in Appendix B. Next by invoking the general
continued-fraction method for solving matrix recurrence rela-
tions,10,33 we have the formal solution for the spectrum C̃0(s)
which contains the elements of interest to us as defined in Eq.
(22), viz.,

C̃0(s) = η∆0(s)C0(0), (20)

where the matrix ∆n(s) is to be calculated from its matrix
continued-fraction definition, viz.,

∆n(s) =
[
ηsI−Qn −Q+

n∆n+1(s)
(
Q−n+1 + Q+

n+1∆n+2(s)Q−−n+2

)]−1
.

(21)

Having determined the column vector C̃0(s), we then have the
spectrum of the relaxation function C(t) given by Eq. (7),

C̃(iω) =
ϕ̃(iω) + ψ̃(iω)
ϕ(0) + ψ(0)

=
c̃1

00(iω) + c̃1 ∗
00 (−iω) + α

[
c̃0

00(iω) + c̃0 ∗
00 (−iω)

]

c1
00(0) + c1 ∗

00 (0) + α
[
c0

00(0) + c0 ∗
00 (0)

] , (22)

where the asterisks denote the complex conjugate and we have
noted that the response functions of the dipole ϕ(t) and cage
ψ(t) are given in terms of the elements of the column vector
C0(t), Eq. (16), as

ϕ(t) =
µ1

2

(
c1

00(t) + c1 ∗
00 (t)

)
,

ψ(t) =
µ2

2

(
c0

00(t) + c0 ∗
00 (t)

)
, (23)

while the corresponding spectra in the frequency domain are

ϕ̃(iω) =
µ1

2

[
c̃1

00(iω) + c̃1 ∗
00 (−iω)

]
,

ψ̃(iω) =
µ2

2

[
c̃0

00(iω) + c̃0 ∗
00 (−iω)

]
. (24)

These equations, on calculating the matrix continued-fraction
Eq. (21), will yield an exact numerical solution of our problem.

IV. APPROXIMATE EXPRESSIONS
FOR THE COMPLEX SUSCEPTIBILITY

For purposes of calculation, it is also useful to have ana-
lytical solutions for particular limiting cases, thereby yielding
some insight into the underlying physics as well as serving as
a benchmark for the matrix continued fraction solution given
above. First by adding Eqs. (2) and (3), we have for F = 0,

I2φ̈2(t) + I1φ̈1(t) = −ζ2φ̇2(t) + λ2(t). (25)

Next on dividing Eq. (2) by I1 and Eq. (3) by I2 and subtracting
the second equation from the first, we have

θ̈(t) +
ζ1

I1

(
1 +

I1

I2

)
θ̇(t) −

I1ζ2

I2
φ̇2(t) +

µ1R
I1

(
1 +

I1

I2

)
sin θ(t)

= λ1(t) +
I1

I2
[λ1(t) − λ2(t)] , (26)

where θ(t) = φ1(t)− φ2(t). Clearly, Eqs. (25) and (26) decou-
ple in the limit I1/I2 � 1 and so lead to the itinerant oscillator
equations34

I2φ̈2(t) = −ζ2φ̇2(t) + λ2(t), (27)

I1θ̈(t) = −ζ1θ̇(t) − µ1R sin θ(t) + λ1(t). (28)

The equations of motion have now been reduced to the
Langevin equation of a free Brownian rotator and that of a
dipole in a cosine potential. Furthermore, for infinite cage iner-
tia I1 � I2, the cage (surroundings) autocorrelation function
is6,10,34 available in the closed form,

Cs(t) =
ψ(t)
ψ(0)

=
〈cos φ2〉 (t) − 〈cos φ2〉0

〈cos φ2〉 (0) − 〈cos φ2〉0
≈
〈cos φ2(0) cos φ2(t)〉
〈cos φ2(0) cos φ2(0)〉

= exp

{
−

1
2β2

[
t
η2

+
1
β2

(
e−

β2 t
η2 − 1

)]}
. (29)
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On expanding the double exponential, we have

Cs(t) = eγ2

∞∑
n=0

1

(−2β2
2)

n
n!

e−(1+2β2
2 n) t

2η2β2 . (30)

The Laplace transform of Eq. (30) is (s = iω)

C̃s(iω) =
2η β2

γ2
e(2β2

2 )
−1

×

∞∑
n=0

1

(−2β2
2)

n
n!

(
1 + 2β2

2n + 2iωη β2/γ2

) . (31)

Equation (31) is useful for calculating the susceptibility of the
surroundings via the linear response formula, Eq. (13), which
in this case is

χs(ω)
χ′s(0)

= 1 − iωC̃s(iω). (32)

Now the dipole autocorrelation function ϕ(t) has been
examined in detail10,15,35 in the small oscillation (itinerant
oscillator) approximation. Invariably ϕ(t) gives rise to a pro-
nounced FIR absorption peak in the frequency domain. The
characteristic frequency ω0 of this FIR peak is given by

ω0 =
γ1

η

√
ξint

2
, (33)

and the complete expression for the overall correlation func-
tion C(t) as defined by Eq. (7) is given in the small oscillation
and large cage approximation by the product

C(t) = Cs(t)Cµ1 (t) = Cs(t) exp

{
−

1
ξint

[
1 − exp

(
−
β1γ1t

2η

)
×

(
cos (ω1t) +

β1

2ω1
sin (ω1t)

)]}
, (34)

where the damped natural frequency of dipole librations ω1 is
given by the equation

ω1 =
γ1

2η

√
2ξint − β

2
1 . (35)

The term in curly braces in Eq. (34) obviously represents an
infinite set of decaying harmonic oscillations giving rise in the
frequency domain to a comb-like harmonic peak structure at
FIR frequencies.

Furthermore, if the cage inertial parameter as defined in
Ref. 4 is sufficiently small

(
β−2

2 = I2kT/ζ2
2 ≤ 0.1

)
and the

dipole kinetic energy satisfies the condition I1ω
2
0 � kT , the

exact complex susceptibility for small oscillations, using Eqs.
(13) and (34), may be closely approximated by the simple
closed expression10,34,35

χ(ω)
χ
=

1
1 + iηωτD



2β2
2

2β2
2 + iηωτD

+
iηωτD

ξint − 2(ηω/γ1)2 + 2iβ1ηω/γ1

]
, (36)

where τD = 2β2/γ2 is the Debye relaxation time of the cage.
The form of Eq. (36) was originally given in Ref. 14 for the
single friction itinerant oscillator model (see also Ref. 1). The
first (or non-resonant) term in Eq. (36) stemming from Cs(t)
is essentially the well-known Rocard equation36 of the inertia

corrected Debye theory of dielectric relaxation of noninteract-
ing dipoles, and so due to the heavily damped cage motion,
the second lightly damped harmonic oscillator term Cµ1 (t)
represents in our simplified picture the high frequency FIR
effects due to the cage-embedded dipole interaction. If the
series expansion of the exact small oscillation solution Eq.
(34) leading directly to the approximate Eq. (36) is continued,
one can clearly see the emergence of the FIR peak structure
at harmonics of the fundamental frequency given by Eq. (35).

V. RESULTS AND DISCUSSION

We exhibit the results of numerical analysis of the suscep-
tibility χ(ω) of the model in Figs. 1–8. In Figs. 1 and 2, we
show χ(ω) versusω for various values of the dipole-cage inter-
action parameter ξint for a relatively lightly damped cage and
dipole. Clearly the real part of the susceptibility χ′(ω) does not
differ appreciably from that of the cage alone even for strong
dipole-cage interaction. However, this is not so for the imagi-
nary part of the susceptibility χ′′(ω) where even for moderate
dipole-cage coupling (curve 1), we see a pronounced FIR
shoulder. The shoulder gradually evolves into a distinct peak
structure as the interaction increases with a steady progress of

FIG. 1. Real and imaginary parts of susceptibility: numerically exact solution
from Eq. (13) vsω for various values of the dipole-cage interaction parameter
ξint . Circles: pure cage susceptibility Eq. (32).

FIG. 2. Real and imaginary parts of susceptibility: numerically exact solution
from Eq. (13) vsω for various values of the dipole-cage interaction parameter
ξint . Circles: result yielded by the closed form small oscillation solution for
the correlation function Eq. (34).
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FIG. 3. Real and imaginary parts of susceptibility: numerically exact solution
from Eq. (13) vsω for various values of the dipole-cage interaction parameter
ξint . Circles: approximate small oscillation solution Eq. (36).

the fundamental frequency of the peak structure to higher and
higher frequencies as ξint increases which is to be expected in
view of the damped natural frequency Eq. (35). Figure 2 which
pertains to relatively strong damping of both dipole and cage
shows that the closed form small oscillation solution, Eq. (34),
provides a reasonable approximation to the exact solution in
this case, the accuracy of which decreases as the dipole-cage
coupling strength increases. Here the damping on both entities
is so strong that the distinct peak structure does not appear at
all, the only manifestation of the high frequency behavior being
the more rapid high frequency fall-off of χ′′(ω) in comparison
to that of the cage alone as depicted in Fig. 1. Figure 3 for a
lightly damped dipole shows how the approximate small oscil-
lation solution Eq. (36) provides a good approximation to the
exact matrix continued fraction solution. Furthermore for the
parameter values chosen, Eq. (36) provides a better and better
approximation to the exact continued fraction solution as the
interaction strength is increased together with a progressive
shift of the fundamental frequency to higher and higher val-
ues as the interaction strength is increased again in accordance
with Eqs. (33) and (35). Figure 4 shows that the effect of the
dipole moment ratio as compared to the pure cage susceptibil-
ity is profound with the FIR response effects becoming more
and more pronounced as the cage dipole moment increases.

FIG. 4. Real and imaginary parts of susceptibility: numerically exact solution
from Eq. (13) vs ω for various values of the dipole moment ratio parameter
α. Circles: cage susceptibility Eq. (32).

FIG. 5. Real and imaginary parts of susceptibility: numerically exact solution
from Eq. (13) vsω for various values of the cage friction parameterβ2. Circles:
approximate small oscillation solution Eq. (36).

FIG. 6. Real and imaginary parts of susceptibility: numerically exact solu-
tion from Eq. (13) vs ω for various values of the dipole friction parameter
β1. Circles: approximate small oscillation solution Eq. (36). Exact solution
displays the characteristic comb-like structure.

Figure 5 shows the complex susceptibility for various values
of the cage friction parameter β2 for given dipole-cage inter-
action. It is clear that in this case of a relatively highly damped
dipole that the simple single resonance formula given by Eq.
(36) provides a reasonable description of the high frequency
behavior. In contrast, Fig. 6 shows that for small damping of
the dipole, Eq. (36) fails as the high frequency peak structure

FIG. 7. Real and imaginary parts of susceptibility: numerically exact solution
from Eq. (13) vsω for various values of the dipole-cage interaction parameter
ξint .
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FIG. 8. Real and imaginary parts of susceptibility: numerically exact solution
from Eq. (13) vs ω for various values of the dipole inertia parameter γ1.

predicted by the exact solution cannot be reproduced at all.
Figure 7 shows that as the dipole-cage interaction parame-
ter ξint is increased, the FIR resonance absorption is greatly
increased at the expense of the mid-frequency absorption
(curve 1). Figure 8 shows that the FIR absorption becomes
more and more pronounced as the dipole inertia parameter
increases again as one would intuitively expect.

VI. CONCLUSION

The caging phenomenon is a common hallmark of dif-
fusion in both dense liquids37 and granular systems.38 As far
as applications to dielectric relaxation are concerned, the cage
model or itinerant oscillator is a simple mechanical system
which seamlessly links the microwave and FIR absorption
and can explain their role, namely, a caged-dipole effect (i.e.,
the FIR absorption peaks) and a rotational diffusion effect at
low frequencies (i.e., Debye-like peak). In essence, the model
represents the diffusion of a dipole molecule in a periodic
cosine potential under the influence of a thermal bath. The
periodic potential, representing the dipole-cage interaction, is
not fixed but moves since the cage itself undergoes rotational
Brownian motion. The model, which was originally used in
translational guise to describe diffusion in cold liquids,10,39 has

also recently found applications in the description of microrhe-
ology in living matter40 and mesorheological granular exper-
iments.38 Also in a much modified form, it has been used to
examine the stability of large synchronous generators con-
nected to low inertia systems where predominantly renewable
energy sources like wind turbine generators or photovoltaic
installations are connected.41

Here we have restricted ourselves to linear response the-
ory which nevertheless is able to reproduce some noticeable
phenomena observed in a liquid. Previously for the pur-
pose of mathematical simplification, the cage was consid-
ered as being much heavier in comparison to the embedded
dipolar molecule, which allowed one to separate the equa-
tions of motion of the cage and molecule. Here, in con-
trast we have given a rigorous solution of the problem in
terms of matrix continued fractions by taking into account
the finite inertia of the cage as well as large oscillations of
the dipole in the cosine potential. For the purposes of physi-
cal interpretation, some limiting cases have been recovered,
namely, the case of a massive cage and small oscillations
of the dipole allowing one to assess the accuracy of these
solutions.

The assumption of a cage with finite inertia and the exact
matrix continued fraction solution is the main advance on the
previous treatments.10 The exact solution which we have pre-
sented here permits one to analyse the situation when the cage
diffusion is no longer independent and is simultaneously influ-
enced by the probe allowing one to reproduce previous results
which have been obtained for heavy cages. Thus, it also allows
one to examine the range of validity of the existing approxima-
tions. This influence is reflected in the susceptibility spectrum
χ(ω) of the model. The calculations may with suitable adap-
tation be used to describe ferrofluids. Here relaxation over the
internal magnetocrystalline anisotropy barriers inside a fer-
rofluid particle occurs along with Debye relaxation of the fluid
particle itself.

APPENDIX A: RECURRENCE RELATIONS
FOR THE FUNCTIONS fm1 q1

m2 q2
(t)

The time derivative of the function f m1 q1
m2 q2

(t) associated
with the observables is

d
dt

f m1 q1
m2 q2

(t) =

〈[
Ḣm1 −

iq1

2η1

(
Hm1+1 + 2m1Hm1−1

)]
Hm2 e−iq1φ1 e−iq2φ2 +

[
Ḣm2 −

iq2

2η2

(
Hm2+1 + 2m2Hm2−1

)]
Hm1 e−iq1φ1 e−iq2φ2

〉
.

(A1)

The terms involving derivatives like Ḣm1 Hm2 e−iq1φ1 e−iq2φ2 and Hm1 Ḣm2 e−iq1φ1 e−iq2φ2 occurring on the right hand side of Eq. (A1)
can be written as

Ḣm1 Hm2 e−iq1φ1 e−iq2φ2 = 2η1φ̈1m1Hm1−1Hm2 e−iq1φ1 e−iq2φ2 = −m1Hm1−1Hm2 e−iq1φ1 e−iq2φ2

(
2β1

(
φ̇1 − φ̇2

)
+
ξint

η1
sin (φ1 − φ2) +

ξ1

η1
sin φ1 −

λ1

η1kT

)
, (A2)

where

βi =
ζiηi

Ii
=

ζi

2ηikT
. (A3)
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Thus averaging10 of the term Ḣm1 Hm2 e−iq1φ1 e−iq2φ2 leads to〈
Ḣm1 Hm2 e−iq1φ1 e−iq2φ2

〉
= −

β1

η1
m1

〈
Hm1 Hm2 e−iq1φ1 e−iq2φ2

〉
+
β1

η2
m1

〈
Hm1−1

(
Hm2+1 + 2m2Hm2−1

)
e−iq1φ1 e−iq2φ2

〉
+

iξint

2η1
m1

〈
Hm1−1Hm2

(
e−i(q1−1)φ1 e−i(q2+1)φ2 − e−i(q1+1)φ1 e−i(q2−1)φ2

)〉
+

iξ1

2η1
m1

〈
Hm1−1Hm2 (e−i(q1−1)φ1 − e−i(q1+1)φ1 )e−iq2φ2

〉
. (A4)

In a similar manner, averaging10 of the term Hm1 Ḣm2 e−iq1φ1 e−iq2φ2 yields〈
Hm1 Ḣm2 e−iq1φ1 e−iq2φ2

〉
=
β1

η2
m2

〈
Hm1+1Hm2−1e−iq1φ1 e−iq2φ2

〉
−
β2

η2
m2

〈
Hm1 Hm2 e−iq1φ1 e−iq2φ2

〉
−
η1 β1

η2
2

m2
〈
Hm1

(
Hm2

+ 2 (m2 − 1) Hm2−2
)

e−iq1φ1 e−iq2φ2
〉

+
iξint

2η2
m2

〈
Hm1 Hm2−1

(
e−i(q1+1)φ1 e−i(q2−1)φ2

− e−i(q1−1)φ1 e−i(q2+1)φ2
)〉

+
iξ2

2η2
m2

〈
Hm1 Hm2−1e−iq1φ1

(
e−i(q2−1)φ2 − e−i(q2+1)φ2

)〉
. (A5)

Finally, by utilizing Eqs. (A4) and (A5), we have the differential-recurrence equations for the statistical moments f m1 q1
m2 q2

(t),
Eq. (14), viz.,

η
d
dt

f m1 q1
m2 q2

= − *
,
γ1 β1m1 +

γ2
2

γ1
β1m2 + γ2 β2m2+

-
f m1 q1
m2 q2

+ γ2 β1m2f m1+1 q1
m2−1 q2

+ γ2 β1m1f m1−1 q1
m2+1 q2

+ 2γ2 β1m1m2f m1−1 q1
m2−1 q2

− 2
γ2

2

γ1
β1m2 (m2 − 1) f m1 q1

m2−2 q2
+

iξint

2

[
γ1m1

(
f m1−1 q1−1
m2 q2+1 − f m1−1 q1+1

m2 q2−1

)
+ γ2m2

(
f m1 q1+1
m2−1 q2−1 − f m1 q1−1

m2−1 q2+1

)]
−

i
2

[
γ1q1

(
f m1+1 q1
m2 q2

+ 2m1f m1−1 q1
m2 q2

)
+ γ2q2

(
f m1 q1
m2+1 q2

+ 2m2f m1 q1
m2−1 q2

)]
+

i
2

[
γ1ξ1m1(f m1−1 q1−1

m2 q2
− f m1−1 q1+1

m2 q2
)

+ γ2ξ2m2

(
f m1 q1
m2−1 q2−1 − f m1 q1

m2−1 q2+1

)]
. (A6)

APPENDIX B: MATRICES Q−n, Qn, and Q+
n

AND INITIAL VALUE VECTOR Cn(0)

The supermatrices Q−n , Qn, and Q+
n in Eq. (17) are

Qn =

*...........
,

q0 n pn 0 · · · 0

p1 q1 n−1 pn−1
. . .

...

0 p2
. . .

. . . 0
...

. . .
. . . qn−11 p1

0 · · · 0 pn qn 0

+///////////
-

, (B1)

Q+
n =

i
2

*.......
,

γ2(r − I) −γ1r 0 · · · 0

0 γ2(r − I) −γ1r
. . .

...
...

. . .
. . .

. . . 0
0 · · · 0 γ2(r − I) −γ1r

+///////
-

, (B2)

Q−n =
i
2

*...........
,

γ2wn 0 · · · 0

−γ1s1 γ2wn−1
. . .

...

0 −γ1s2
. . . 0

...
. . .

. . . γ2w1

0 · · · 0 −γ1sn

+///////////
-

, (B3)

Q−−n =

*..........
,

un 0 · · ·

v1n−1
. . .

. . .

0
. . . u2

...
. . . vn−11

0 · · · 0

+//////////
-

, (B4)

while the submatrices have the form

qn1 n2
= − *

,
γ1 β1n1 +

γ2
2

γ1
β1n2 + γ2 β2n2+

-
I, (B5)

pn = γ2 β1nI, (B6)

un = −2
γ2

2

γ1
β1n (n − 1) I, (B7)

vn1 n2 = 2γ2 β1n1n2I, (B8)

r =

*.............
,

. . .
. . .

. . .
. . . −1 0 0
. . . 0 0 0

. . .
. . . 0 0 1

. . .
. . .

. . .
. . .

. . .
. . .

+/////////////
-

, (B9)
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sn = n

*.....................
,

. . .
. . .

. . .
. . .

. . . −4 ξint 0
. . .

. . . −ξint −2 ξint 0
. . .

. . . 0 −ξint 0 ξint 0
. . .

. . . 0 −ξint 2 ξint
. . .

. . . 0 −ξint 4
. . .

. . .
. . .

. . .
. . .

+/////////////////////
-

, (B10)

wn = n

*.....................
,

. . .
. . .

. . .
. . .

. . . −6 ξint 0
. . .

. . . −ξint −4 ξint 0
. . .

. . . 0 −ξint −2 ξint 0
. . .

. . . 0 −ξint 0 ξint
. . .

. . . 0 −ξint 2
. . .

. . .
. . .

. . .
. . .

+/////////////////////
-

. (B11)

The initial value vector in Eq. (18) is calculated in the following
manner:

C0(0) =

*............
,

...

c−1
00 (0)

c0
00(0)

c1
00(0)

...

+////////////
-

, (B12)

where the elements are given by

cq
00(0) =

〈
e−iqφ1+i(q−1)φ2

〉
(0) −

〈
e−iqφ1+i(q−1)φ2

〉
0

= Z−1

2π∫
0

2π∫
0

eξ1 cosφ1+ξ2 cosφ2+ξint cos(φ1−φ2)dφ1dφ2

−Z−1
0

2π∫
0

2π∫
0

eξint cos(φ1−φ2)dφ1dφ2. (B13)

Next using the series expansion of Eq. (B13) with respect to
ξ, we have cq

00(0) in terms of the modified Bessel functions,

cq
00(0) ≈ ξ1

〈
(cos φ1 + α cos φ2)

(
e−iqφ1+i(q−1)φ2

)〉
0

=
Iq−1(ξint) + αIq(ξint)

2I0(ξint)
, (B14)

where Iq(z) are the modified Bessel functions of the first kind
and we have also used the fact that 〈cos φ1 + α cos φ2〉0 = 0.
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