AI P ‘ .JQ?)I:)rll:eacll (ghysics

Dynamic magnetic hysteresis and nonlinear susceptibility of antiferromagnetic
nanoparticles
Yuri P. Kalmykov, Bachir Ouari, and Serguey V. Titov

Citation: Journal of Applied Physics 120, 053901 (2016); doi: 10.1063/1.4959816

View online: http://dx.doi.org/10.1063/1.4959816

View Table of Contents: http://scitation.aip.org/content/aip/journal/jap/120/5?ver=pdfcov
Published by the AIP Publishing

Articles you may be interested in
Synthesis, structural characterization and magnetic properties of Fe/Pt core-shell nanoparticles
J. Appl. Phys. 117, 17D708 (2015); 10.1063/1.4908304

Nonlinear susceptibility and dynamic hysteresis loops of magnetic nanoparticles with biaxial anisotropy
J. Appl. Phys. 113, 053903 (2013); 10.1063/1.4789848

Asymmetric hysteresis loops and its dependence on magnetic anisotropy in exchange biased Co/CoO core-shell
nanoparticles
Appl. Phys. Lett. 101, 232405 (2012); 10.1063/1.4769350

Magnetic properties of Sm0.1Ca0.9MnO3 nanoparticles
J. Appl. Phys. 112, 063921 (2012); 10.1063/1.4754310

Size-driven magnetic transitions in La 1/ 3 Ca 2/ 3 MnO 3 nanoparticles
J. Appl. Phys. 108, 063918 (2010); 10.1063/1.3488619

lied Physi ‘
AP ’agelewsm

B -
NEW Special Topic Sections
—

NOW ONLINE PP
Lithium Niobate Properties and Applications: PRHEC BIYSES
Reviews of Emerging Trends AI P | Reviews



http://scitation.aip.org/content/aip/journal/jap?ver=pdfcov
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/1129812696/x01/AIP-PT/JAP_ArticleDL_072016/APR_1640x440BannerAd11-15.jpg/434f71374e315a556e61414141774c75?x
http://scitation.aip.org/search?value1=Yuri+P.+Kalmykov&option1=author
http://scitation.aip.org/search?value1=Bachir+Ouari&option1=author
http://scitation.aip.org/search?value1=Serguey+V.+Titov&option1=author
http://scitation.aip.org/content/aip/journal/jap?ver=pdfcov
http://dx.doi.org/10.1063/1.4959816
http://scitation.aip.org/content/aip/journal/jap/120/5?ver=pdfcov
http://scitation.aip.org/content/aip?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jap/117/17/10.1063/1.4908304?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jap/113/5/10.1063/1.4789848?ver=pdfcov
http://scitation.aip.org/content/aip/journal/apl/101/23/10.1063/1.4769350?ver=pdfcov
http://scitation.aip.org/content/aip/journal/apl/101/23/10.1063/1.4769350?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jap/112/6/10.1063/1.4754310?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jap/108/6/10.1063/1.3488619?ver=pdfcov

JOURNAL OF APPLIED PHYSICS 120, 053901 (2016)

@ CrossMark

Dynamic magnetic hysteresis and nonlinear susceptibility

of antiferromagnetic nanoparticles

Yuri P. Kalmykov,! Bachir Ouari,? and Serguey V. Titov®
'Laboratoire de Mathématiques et Physique (LAMPS, EA 4217), Université de Perpignan Via Domitia,

F-66860, Perpignan, France

2Physics Department, University of Tlemcen, BP 119 Chetouane, Tlemcen, Algeria
3Kotelnikov’'s Institute of Radio Engineering and Electronics of the Russian Academy of Sciences,
Vvedenskii Square 1, Fryazino, Moscow Region, 141190, Russian Federation

(Received 11 February 2016; accepted 14 July 2016; published online 1 August 2016)

The nonlinear ac stationary response of antiferromagnetic nanoparticles subjected to both external ac
and dc fields of arbitrary strength and orientation is investigated using Brown’s continuous diffusion
model. The nonlinear complex susceptibility and dynamic magnetic hysteresis (DMH) loops of an
individual antiferromagnetic nanoparticle are evaluated and compared with the linear regime for
extensive ranges of the anisotropy, the ac and dc magnetic fields, damping, and the specific
antiferromagnetic parameter. It is shown that the shape and area of the DMH loops of
antiferromagnetic particles are substantially altered by applying a dc field that permits tuning of the
specific magnetic power loss in the nanoparticles. Published by AIP Publishing.

[http://dx.doi.org/10.1063/1.4959816]

l. INTRODUCTION

The physical properties of ferromagnets and antiferro-
magnets are drastically modified when their dimensions are
reduced to the nanometric scale. This fact has prompted both
the fabrication of and various studies of the behavior of fer-
romagnetic and antiferromagnetic nanoparticles with the aim
of seeking new properties and applications, especially in data
storage' and medicine.>® Ferromagnetic nanoparticles are
characterized by instability of the magnetization due to ther-
mal agitation causing spontaneous change of particle orienta-
tion from one metastable state to another resulting in the
phenomenon of superparamagnetism.7’8 Furthermore, due to
the large magnetic dipole moment of ferromagnetic nanopar-
ticles (~104—106,u3), the Zeeman energy is large even in rel-
atively weak external magnetic fields causing nonlinear
effects in the dynamic susceptibility, stochastic resonance,
dynamic magnetic hysteresis (DMH), etc. In the case of anti-
ferromagnetic nanoparticles, their magnetization dynamics
may differ in many respects from those of ferromagnetic
ones because of the intrinsic properties of antiferromagnetic
materials. Moreover, the magnetic behavior of antiferromag-
netic nanoparticles can be quite different from that observed
in the bulk, e.g., enhanced magnetic moment and coercivity,
exchange bias, increase in magnetic moment with tempera-
ture, decrease in the susceptibility with temperature below
the ordering (Néel) temperature Ty, and its enhancement
compared to that of the bulk.’ Moreover, due to thermal agi-
tation, antiferromagnetic nanoparticles should become super-
paramagnetic at finite temperatures just as ferromagnetic
nanoparticles (the so-called superantiferromagnetism'°).

The initial theory of the thermal fluctuations in magnetic
nanoparticles due to Néel” was further developed by Brown'''
and is consequently known as the Néel-Brown model. His
treatment utilizes the classical theory of the Brownian motion
in conjunction with the Landau-Lifshitz-Gilbert equation'*'*
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augmented by random fields regarded as the magnetic
Langevin equation governing the thermoactivated transitions
of the magnetic moment in a nanoparticle in the coherent
rotation approximation. This model may also be adapted to
antiferromagnetic nanoparticles. An ideal antiferromagnet
can be divided into two sublattices, with equal and opposite
magnetic moments. If the numbers N; and N, of ions in these
sublattices are equal, we say, the sample is “compensated.”
In fine antiferromagnetic particles, total magnetic compensa-
tion of the sublattices is impossible for a number of reasons
(unequal numbers of spins in crystal planes, spin frustration
near the surface, lattice defects, etc.) so that Ni # N, result-
ing in the effective spontaneous magnetization in such par-
ticles. If we will assume the ionic magnetic moments m
remain the same and N; > N, so the total moments of the
sublattices m; = Nymu and m, = —N,mu are not equal.
Here, u is the antiferromagnetic vector, which specifies
the decompensation magnetic moment p = m; + my = Uy,
where 1= m(N; —N,). In an antiferromagnetic nanoparti-
cle, an external dc magnetic field H, directed along u will
not tend to rotate the moments m; and m,, but a field normal
to u will. Furthermore, an antiferromagnetic nanoparticle
possesses a considerable transverse magnetic susceptibility
14 characterizing the induced magnetic moment of the parti-
cle which can be written as vy, [Hy — u(u - Hp)]/2. Thus, the
magnetic moments of two sublattices of the particle with
allowance for decompensation can be presented as’

ivM5+g—%(Ho~u) u, (1)

mp =
where Mg = m(N; + N;)/(2v) is the bulk sublattice magne-
tization and v is the particle volume. Due to a specific super-
antiferromagnetic effect, y, exceeds that of a bulk crystal by
a factor of 2 or 3 and attains a typical value of order 10~

Published by AIP Publishing.


http://dx.doi.org/10.1063/1.4959816
http://dx.doi.org/10.1063/1.4959816
http://dx.doi.org/10.1063/1.4959816
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4959816&domain=pdf&date_stamp=2016-08-01

053901-2 Kalmykov, Ouari, and Titov

(Refs. 9 and 10), while the magnitude of the magnetic
moment p can be estimated as g~ ug (N1 —N3) (N +N2)1/2,10
where g is the Bohr magneton, so that for a particle with a
diameter ~ 10nm and N ~ 10°~10°, i may vary from a few
tig to few hundred >~ (that is of the same order of mag-
nitude as the magnetization of weak ferromagnets). At tem-
peratures below Ty, as long as the external magnetic fields
are much weaker than the exchange field, one may assume’
that the decompensation magnetic moment is constant in
magnitude so that the unit vector u can only rotate but cannot
change its length. Thus, just as in nanoscale ferromagnets,
the magnetization dynamics of antiferromagnetic nanopar-
ticles in the presence of thermal agitation can be described
using Brown’s diffusion model of a magnetic moment (clas-
sical spin) via a Fokker-Planck equation for the distribution
function W (u,#) of magnetic moment orientations on a unit
sphere, viz., 112

ow_ 1
al‘_Z‘L’N

{vzw + B(V-WVV) +§(u Vv x vw])},

2

where V is the free-energy of the particle comprising the
magnetic anisotropy and Zeeman energy densities, TN
= 19(+ o7 is the characteristic free diffusion time, 1o
= Buon/(2y), tty = 4m - 1077 JA">m~" is the permeability of
free space in SI units, § = 1/(kT), k is the Boltzmann’s con-
stant, T is the absolute temperature, y is gyromagnetic ratio,
and o is the damping parameter. In spherical polar coordi-
nates basis (e,,ey,e,),” V =0/0u = eydy + e,csct d, is
the gradient operator on the unit sphere, where ¢} and ¢ are
the polar and azimuthal angles, respectively, and u =e,
= (sin¥ cos @, sinsin @, cos ). Without the third (gyro-
magnetic) term in the right hand side of Eq. (2), the
Fokker—Planck equation has the same mathematical form
as the diffusion equation for the noninertial rotational
Brownian motion of a particle in a mean field potential.”*>
In the simplest case of a uniaxial antiferromagnetic particle,
if the easy axis of the nanoparticle coincides with the Z-axis
of the laboratory coordinate system, its free energy V (14, ¢, t)
in superimposed magnetic dc and ac fields H(z) = Hp
+H, cos ot is given by”'®

V (9, @,t) = vK sin®* 9 — pouH (f)cos ©

1
- Ev,uo;{AHz(t) sin’ ©. 3)
Here, H(t) = Hyo 4+ H, cos wt since the vectors Hy and H;
are assumed parallel, ® is the angle between the unit vectors
u and h = Hy/H, so that

cos® = (u-h) =y, sindcos ¢ + y, sin ¥ sin ¢ + 5 cos ¥,

Y1, 72,73 are the direction cosines of Hy, and K is the anisot-
ropy constant with an archetypal order of a few 10* J/m? for
ferritin.'® For 14 = 0, Eq. (3) yields the free energy for uni-
axial ferromagnetic nanoparticles with the anisotropy and
Zeeman terms. The last term in the right-hand side of Eq. (3)
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is a contribution due to the induced moment non-existent for
ferromagnetic nanoparticles. This term affects the dynamics
of the magnetic moment in the presence of an ac driving field
and determines main features of the nonlinear response of
nanoscale antiferromagnets. Thus, even moderate external
magnetic fields can produce nonlinear effects in the particle
magnetization dynamics that may differ from those observed
in ferromagnetic nanoparticles.

Using Brown’s continuous diffusion model, Raikher and
Stepanov’ have evaluated characteristic relaxation times and
the linear dynamic susceptibility of a suspension of antiferro-
magnetic nanoparticles in the particular case of dc and ac mag-
netic fields parallel to the easy axis of the particle. Their
results were extended in Ref. 23 for the general case when a
dc magnetic field is applied at an arbitrary angle to the easy
axis. Moreover, the magnetization reversal time 7 of antiferro-
magnetic nanoparticles has been evaluated in Ref. 24 via the
Kramers escape rate theory adapted to magnetic nanopar-
ticles;*>* the analytic equations for 7 so obtained agree favor-
ably with the numerical solution of the Fokker-Planck’s
equation (2).2** The primary goal of this paper is to give a
detailed investigation of the magnetization, nonlinear dynamic
magnetic susceptibility, and dynamic magnetic hysteresis
(DMH) of antiferromagnetic nanoparticles and to demonstrate
that in superimposed dc and ac fields these magnetic character-
istics change substantially leading to interesting nonlinear
effects. We remark that the theoretical treatment of nonlinear
response phenomena inherently poses a complicated mathe-
matical problem because no unigue response function govern-
ing the transient and ac stationary responses, unlike in linear
response, exists. However, these difficulties may be overcome
by extending the method developed in Refs. 26-32 to the
dynamic nonlinear stationary response of ferromagnetic nano-
particles driven by an ac magnetic field. The essential feature
of this method is that it allows one to evaluate both the linear
and nonlinear ac stationary responses in a wide range of damp-
ing and at all frequencies of interest from the very low fre-
quencies up to the very high (GHz) frequencies. If the field H
is applied at an arbitrary angle to the easy axis of the particle,
a strong intrinsic dependence of magnetic characteristics (such
as the reversal time, complex magnetic susceptibility, etc.)
on the damping o arising from coupling of the longitudinal
and transverse modes of the magnetization exists. As shown
by Garcia-Palacios and Svedlindh,?® the nonlinear dynamical
response of nanomagnets in the underdamped regime, o < 1,
is very sensitive to the damping due to the coupling induced
by the driving field between the precession of the magnetic
moment and its thermoactivated reversal. The large damping
dependence of the nonlinear response can be used to determine
the damping coefficient o.%°

Il. BASIC EQUATIONS

For convenience, we introduce the following dimension-
less variables: ¢ = vfK, &y = PuouHo, and & = fuyuH, are,
respectively, the anisotropy, dc, and ac applied field parame-
ters, and { = vy, /(Buop?) is the “antiferromagnetic” param-
eter. We remark that due to the decompensation origin of
the magnetic moment, the field parameters &, and ¢ for
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antiferromagnetic nanoparticles are about two orders of mag-
nitude smaller than those for ferromagnetic nanoparticles of
the same size ~10nm.’ Nonlinear effects (saturation, etc.) in
the ac stationary response of antiferromagnetic nanoparticles
become pronounced at & > 1; however, their main features
can be studied at ¢ < 1. On seeking the solution of the
Fokker-Planck equation (2), where the free energy potential
defined by Eq. (3), as a series of spherical harmonics
Y (9, @), viz.,

d

Ec,,m(t)

N
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00 !
WD, 0,0 = Z Cm(0)Y5,(9, 9) “)
=0 m=

the task of calculating the nonlinear ac stationary response of
an antiferromagnetic nanoparticle to an external driving field
can be reduced” to the solution of an infinite hierarchy of 25-
term differential-recurrence relation for the statistical moments
(the expectation values of the spherical harmonics) ¢, (7)

= V;m_Cn,mez(l) + V;mC,,,2m,1 (t) + Vnmch(f> + VrJlrmcn72m+1< ) + vnm Cn—2m+2 (t)

+ erm_cﬂflmﬂ(t) + W;m(t)cnflmfl(’) + an(t>cn 1m(2) + an( Oen-tmi1 (1) + ernjcanerZ(l‘)
er;njcnn?—Z( ) Jrxnm( )Cnm—l( ) +xnm( )Cnm( ) + xnm( )Cnm+1( ) +x:yjcnm+2(t)

- . . . \ ++ .
+ynm Cn+1m—2 + ynm( )CnJrlmfl(t) + ynm(t)cnﬂm( ) + ynm(t)CnJrlerl (t) + ynm Cn+1m+2(t)

+ 2y Cnam—2(1) + ZpCrtam—1(8) + ZCrsam () + 2o Cromr1 (8) + 20 Cuvoma (2). 5)

Here, the asterisks designate the complex conjugate, and the
spherical harmonics Y;,,(¥, ) are defined as®'

21+ 1) —m)

A v (R

Yim(9, ) = e™? P (cos ),

P/'(x) are the associated Legendre functions®'

cm(t) = Yim) (1) = | [ Yi(9, @)W (I, @, 1) sin ddddp, (6)

ohl:\,’
Se—A

and the time-dependent coefficients v, (1), w,,,(t), x,,(t),
etc., are given in the Appendix. Since the ac stationary
response is independent of the initial conditions, we need
only the steady state solution of Eq. (5) so that ¢;,(¢) can be
expanded in a Fourier series as

o0

cm(t) = Z cf (w)e . 7

k=—00

The Fourier coefficients ¢}, (w) can be evaluated using matrix
continued fractions (see the Appendix). Consequently, the
average magnetic moment of the particle in the direction of
the ac driving field

gy (1)

which is expressed via the statistical moments (Y, )(f) (see
Egs. (AS) and (A6) in the Appendix), can also be presented
as a Fourier series

= u[(cos ®)(f) + {(&y + Ecos wr)(sin® ) (1)], (8)

f) =u Z m/{ (a))eik(ut7 (9)

k=—o00

where m! (w) is the amplitude of the kth harmonic in the non-

linear response given by Eq. (A4) in the Appendix

In order to illustrate the nonlinear effects induced by the
ac field, we focus on the time-independent or dc component
of the magnetization M defined by the mean value

21/
w
M= 5o | @t =@, o)
0

which we note is entirely real yielding in the limits of van-
ishing ac field, £ — 0, the static dc magnetization given by

limM: =My =

lim (cos @) + (&(1 — (cos? @)),  (11)

where the angular brackets ( ), denote equilibrium ensem-
ble averaging defined as

2n

1
(cos" @), = J cos” © e 509 sin Ydid,
0

O —

2n w
Z= J Je_EU (:2) sin ¥ddd g,
00

is the partition function, and the free energy Eo(9,¢) is
given by

£2

Eo(9, ¢) = asin’* 1 — &mos@—% sin” @. (12)
The free energy potential, Eq. (12), has, in general, a bista-
ble structure with two minima separated by a potential bar-
rier with a saddle point.23 Henceforth, we shall assume
without loss of generality that the dc magnetic field vector
Hj lies in the XZ-plane of the laboratory coordinate system
making an angle \ with respect to the easy axis so that the
direction cosines of the vector Hy are y, = siny, y, =0,
and y; = cos Y yielding
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y =0, wr,=0.001, o= 10, (@ 157 o=10, £=2 4 (b)
1.0 £=02 a=1 3
1,7 1.0 2
s’ / 273 4 s . 1
0.54 1: £=0.01 1: £=0
2 E=1 0.5 2: =02
3. E=2 3:4=04 . . o
4 ¢=3 3:£=06 FIG. 1. Dimensionless magnetization
0.0 T 2 0.0 T M vs. the dc bias field ((a) and (b))
0 é:o 4 and anisotropy (inverse temperature)
parameters ((c) and (d)) for various ac
1.0 E=2, £=1 (d) fields and antiferromagnetic parame-
0 ters at damping o = 1, oblique angle
¥ = 0, and frequency wty = 0.001.

cos © = cos iy cos ) + siny sin 1 cos ¢.

13)

Furthermore, we evaluate the spectrum of the fundamental
component of the magnetization defined by

1
w(w) = 6m1—<w)7 (14)
<
which represents the linear and lowest order nonlinear sus-
ceptibility. Furthermore, via m} (w), we can calculate the
dimensionless area of the DMH loop A,, which is the energy
loss per particle and per cycle of the ac field, defined as**

A = o P 0dH() = =S mlml@)]  15)
(the phenomenon of the DMH in single-domain magnetically
isotropic nanoparticles was discovered by Ignatchenko and
Gekht*®). The DMH loop represents a parametric plot of the
steady-state time-dependent magnetization as a function of
the ac field, i.e., My (1) = py(t)/v vs. H(t) = Hcos wt. All
other harmonic components 7 (w) with & > 1 may be inves-

tigated in a similar way.

lll. RESULTS AND DISCUSSION

In order to illustrate the nonlinear effects in the time-
independent but frequency-dependent magnetization, M:(w)
is plotted in Fig. 1 as a function of the dc field and anisotropy
(or the inverse temperature) parameter ¢ for various ac field
magnitudes ¢ and antiferromagnetic parameter (. The imagi-
nary y’(w) = —Im[y(w)] and the real y'(w)=Re[y(w)]
parts of the susceptibility as functions of the anisotropy
parameter ¢ and frequency @ are shown in Figs. 2 and 3,
respectively, for various antiferromagnetic parameters { both
in the linear (¢ < 1) and nonlinear (¢ > 1) regimes. (The
condition ¢ — 0 corresponds to the linear response, where
Wy (t)/H,; is independent of the ac field strength.) The calcu-
lations indicate that a marked dependence of y(w) on the
antiferromagnetic parameter {, anisotropy o, ac field &, dc

field &,, damping o, and angle ¥ exists. For the special case
of linear response, & < 1, the results agree with the indepen-
dent numerical calculations.*® In strong ac fields, ¢ > 1, pro-
nounced nonlinear effects occur; see Figs. 1-3 illustrating
the dependence of the nonlinear response on the ac field
parameter ¢. Just as for ferromagnetic nanoparticles,®’ '
three peaks appear in the spectra of the magnetic loss y”(®)
in the neighborhood of frequencies where y'(w) changes (see
Fig. 3). The characteristic frequencies of these peaks, i.e.,
where 7”(w) reaches local maxima, are t~!, oy, and oy,
where 7 is the switching (reversal) time of the magnetic
moment between two minima of the free energy separated
by a potential barrier with a saddle point, and wp, = yH,s is
the precession frequency of the magnetic moment in the
effective magnetic field Her. The low-frequency behavior of
7'(w) and y"(w) is dominated by the barrier-crossing relaxa-
tion mode. Here, the reversal time of the magnetization 7 can
be evaluated from the characteristic frequency wmax, Where

&=2,y=rnl4 a=1, wr, =0.1

1.5 ----&=107

Re[(@)]

—Im[ ()]

0.0

FIG. 2. Real and imaginary parts of the dynamic susceptibility vs. ¢ ~ T~
for various antiferromagnetic parameters ( at dc field parameter &, = 2, fre-
quency w1y = 0.1, damping o = 1, angle y = 7/4, and ac field parameters
¢ =0.001 (linear response) and ¢ =2 (nonlinear response). Dashed and
solid lines: the linear and nonlinear response, respectively.



053901-5 Kalmykov, Ouari, and Titov J. Appl. Phys. 120, 053901 (2016)
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1074 1074 |
3 <
= 3
E107 _ E 107
S —=2 2: | 2: w=rml/4 ) ‘ )
g 210" (lincar) ‘o 3y 2l FIG. 3. Imaginary part of the dynamic
107 e 03 g =13 oo S susceptibility —Im[y(w)] vs. the dimen-
107 10” 10 wr 10 10 10 107 ' ] (')74 1(5’2 " 1'00 ' 1;)2 sionless frequency wty for (a) various
o T anis ars . 4 S
0 anisotropy parameters a, (b) angles v/, (c)
0=10,y=7/4,a=001, ¢= 0.15 (d) damping o, and (d) dc field parameters
y ; & at the ac field amplitudes ¢ = 0.001
(linear response: dashed lines) and 2
— (nonlinear response: solid lines).
s
[ 104_/ 3 2:a=0.1 “ 2\\\ )
3a=1 LN 0 3 &=4
6 AN N o A 6 A i "0 2
10 10 10 oA 10 10 10 10 10 or 10 10

7" (w) reaches a maximum, and/or the half-width Aw of the
spectrum of /() as

ol Ao (16)
In weak ac fields, ¢ < 1, the magnetization reversal time 7
can be associated with the inverse of the smallest nonvanish-
ing eigenvalue /4, of the Fokker-Planck operator in Eq. (2).%>
In this case, comparison of 7 as extracted from the spectra
7 (w) and %" (w) via Eq. (16) with = A" calculated using
the independent method?* via A; of the Fokker-Planck opera-
tor shows that both methods yield identical results.
Furthermore, our calculations indicate that when the dc field
parameter &, is increased, the magnitude of the low-
frequency peak decreases due to the depletion of the popula-
tion in the shallowest potential well of the free-energy den-
sity Eo(¢, @), Eq. (12); this effect is signified by the virtual
disappearance of the low-frequency peak in the magnetic
loss spectrum y”(w) (see Fig. 3(d)). For weak dc bias field,
&y < 0.3, the low-frequency peak shifts monotonically to
higher frequencies as the ac field amplitude & is increased.
For strong dc bias field, &, > 1, the low frequency peak
shifts to lower frequencies reaching a maximum at & ~ &,
thereafter decreasing rapidly with increasing &. In other
words, as the dc field increases, the reversal time of the mag-
netization initially increases and then having attained its
maximum at some critical value ¢ ~ &, decreases. In addi-
tion, a second relaxation peak in y”(w) and the correspond-
ing dispersion of y'(w) appearing at higher frequencies
~awp are due to the near degenerate “intrawell” relaxation
modes, which are virtually indistinguishable in the frequency
spectra. Now for &y/0 < 0.1, the amplitude of this peak is
far weaker than that of the low-frequency one. However, for
&y/o > 0.4, this peak may come to dominate the spectra
because as /g increases, the magnitude of the low-frequency
peak drastically decreases (see Fig. 3(d)). Figure 3(d) also
illustrates the inherent dependence of y(w) on the damping
parameter o arising from the coupling of the longitudinal and
transverse relaxation modes.?® This coupling appears in the
dynamical equation of motion of the magnetic moment p(7),

where its longitudinal component is entangled with the trans-
verse components resulting in the appearance of a third anti-
ferromagnetic resonance (AFMR) peak in the spectrum of
7" (w) due to excitation of transverse modes with characteris-
tic frequencies close to the precession frequency wy, in the
effective magnetic field He; (see Fig. 3). The AFMR peak
appears only for low damping (« < 1) and strongly mani-
fests itself at high frequencies w ~ w,, (see Fig. 3(c); a fea-
ture which is absent for o > 1). As seen in Fig. 3, with
increasing ac field &, the magnitude of the AFMR peak
decreases and the peak half-width broadens showing pro-
nounced nonlinear effects. In addition, a second weak reso-
nance peak owing to parametric resonance of the nonlinear
oscillatory (precessional) motion of the magnetic moment
n(r) appears at frequencies ~owy,/2 (Fig. 3(a)), while for
very low damping, o < 0.01, resonance peaks with charac-
teristic frequencies nwy, n=2, 3,... due to the high-
frequency resonant modes are discernible in the spectrum
(only the peak with n =2 is visible in Figs. 3(b)-3(d)). These
peaks virtually disappear, however, for iy = 0. Such nonlin-
ear effects always exist in nonlinear oscillator systems driven
by an ac external force.’

The DMH loops, i.e., m(t) = py(t)/u vs. h(t) = H(t)/H
= cos wt, for various antiferromagnetic { and inverse temper-
ature ¢ < 1/T parameters are presented in Figs. 4 and 5 for a
wide range of other model parameters (damping, oblique
angle, etc.). At finite temperatures due to thermal motion, the
particle magnetic moment is never completely saturated wan-
dering between the “up” and “down” states. Furthermore, the
shape of the DMH loops for given values of anisotropy
parameter ¢, antiferromagnetic parameter {, damping o, obli-
que angle v, and dc field &, depends on the amplitude ¢ and
frequency @ of the ac field. Figures 4(a) and 4(b) show,
respectively, that the shape and area of the DMH loops
strongly depend on the anisotropy ¢ and the dc field parame-
ters &y. In particular, Fig. 4(b) illustrates that the area of the
DMH loops decreases with increasing the dc field parameter
&o. Also, with decreasing anisotropy parameter g, i.e., with
increasing temperature, the DMH loops become narrow (Fig.
4(a)), which implies that a small amount of energy is used up
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-3
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2
3: 0T = 10
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N

y=r/6,a=05 0r=10",£=3,0=10, {=0.15

1

1: §=0
2:4=1
3:4=2
4:£=3

FIG. 4. DMH loops for (a) various
anisotropy parameters ¢ = 6,10, 12,
(b) dc fields &, =0, 1,2, 3, (c) angles

@ Y =mn/6,n/4,7/3, and (d) frequency
wty = 1074,1073,1072, 1.

=10, £=0,a=5, or=10", {=03,¢=3

in reversing the magnetization. Figure 4(c) illustrates the
dependence of the shape and area of the DMH loops on the
oblique angle /, while in Fig. 4(d), the DMH loops are pre-
sented for very low and intermediate frequencies. At low fre-
quencies, wty ~ 107* — 1073, the loops are large while at
intermediate frequencies, @ty ~ 1, the shape of loops
becomes elliptic with small area. At low frequencies, where
changes of the ac field are quasi-adiabatic, the magnetization
dynamics represent the so-called switching regime meaning
that the magnetization may reverse due to the cooperative
shuttling action of thermal agitation and applied field. Here,
the DMH loop area decreases as the antiferromagnetic param-
eter { increases. Moreover, the coercivity, the remanent mag-
netization, and the saturation magnetization strongly depend
on ¢ so that considerable variations in the area and shape of
loops exist at low frequencies. At high frequencies, mty > 1,
the DMH is mainly due to the absorption and dispersion in
the “intrawell” and AFMR modes. Thus, the DMH arising
from a high-frequency periodic signal may be evaluated per-
mitting quantitative analysis of ultrafast switching of the mag-
netization in nanoscale antiferromagnets. At @ ~ @y, the
DMH occurs due to the resonant behavior of the nonlinear
response, and under such conditions, the switching may be
termed “resonant,” leading naturally to the concept of reso-
nant switching of the magnetization.**>" Since the resonant
DMH occurs at very high (GHz) frequencies, the magnetiza-
tion switching is, for the most part, governed by the frequency
of the external driving field. Hence, the magnetization may be
advantageously switched in this situation because the field
needed to reverse it is then much smaller than the quasi-static
coercive force. Here, the phase difference 6 between uy,(?)
and H(r), governing loop orientation, may undergo a pro-
nounced variation. In particular, the phase difference o may
exceed 7/2 as typical of a resonant process.”*! Obviously,

0=10, y=r/6,¢=3,& =0,a=2, (=04

this effect does not exist at low and intermediate frequencies,
where relaxation processes dominate and 0 is always less than
/2.

The shape and area of the DMH loops alter as the antifer-
romagnetic parameter { varies (see Figs. 5 and 6). In particu-
lar, as seen in Fig. 6, A, strongly depends on temperature,
namely, on increasing o, i.e., decreasing temperature, the
loop area initially increases, reaches a maximum, and then
decreases. Furthermore, at low ¢ (high temperatures), the
behavior of A, for antiferromagnetic and ferromagnetic nano-
particles is very similar, while for large ¢ > 10, it can differ
substantially. Figure 7 shows the behavior of the area A,,, Eq.
(15), as a function of the ac field ¢ for various anisotropy
(inverse temperature) parameters ¢ ~ T~'. For a weak ac
field, the DMH loops are ellipses with area A, given by Eq.
(15); the behavior of A, ~ —Im(m}) being similar to that of

m(@)

1: =0
2:£=023

w=r/6,0=35, £=0,a=2,£=3, T = 0.1

FIG. 5. DMH loops for various antiferromagnetic parameters { at wty = 0.1,
o=50=2,y=mn/6,¢=3,and & = 0.
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~.

w=0,£=0,6=3, 01, =107, a=1

FIG. 6. Area A, of the DMH loop vs. the anisotropy (inverse temperature)
parameter ¢ ~ T~! for various antiferromagnetic parameters { at & = 3,
o= 1,and &, = 0.

0.6, =8 =04, y=x/4,&=0  (a)
20=10 =2, 07,=10" 4
A 3:
n
4:
2
0.2
A 3
" 0.14
1:w=ma6 2: w=7m4 3: y=7/3
0.0 : . .
0 2 E 4 6

FIG. 7. Area A, of the DMH loop vs. the ac field &: (a) for various barrier
parameters ¢ = 8, 10, 12, 14 with the antiferromagnetic parameter { = 0.4,
dc field parameter &, = 0, frequency wty = 1073, and damping o = 2; (b)
angles Y = n1/6,n/4, /3.

the magnetic loss —Im[y()] [cf. Eq. (14)]. In strong ac
fields, ¢ > 1, the DMH area alters substantially (see Fig. 7);
nevertheless, A, is still determined by —Im(m}) [cf. Eq. (15)]
with maxima appearing at strong fields, £ > 2.

IV. CONCLUSION

The nonlinear forced ac stationary response of antiferro-
magnetic nanoparticles in superimposed ac and dc bias exter-
nal magnetic fields is studied via continuous diffusion
model.” Tt is shown that the nonlinear dynamic susceptibility
and DMH in an ac field applied at an angle to the easy axis
of the particle, so that the axial symmetry is broken, are very
sensitive to both the ac field orientation and amplitude owing
to the coupling induced by the symmetry breaking driving
field between the precession of the magnetic moment and its
thermally activated reversal. This explains why the nonlinear
ac stationary response of antiferromagnetic nanoparticles is

J. Appl. Phys. 120, 053901 (2016)

very sensitive to damping representing a signature of the
coupling between the longitudinal and precessional modes of
the magnetization just as nanoscale ferromagnets.’® 2
Furthermore, it is found that under appropriate conditions a
small (in comparison with that of internal anisotropy) bias dc
field can strongly affect the shape of the DMH loops in anti-
ferromagnetic nanoparticles. This result implies that by vary-
ing the dc bias field strength, one may control the heat
production (specific power loss) in a nanoparticle. Since the
results are valid for ac fields of arbitrary strength and orien-
tation, they provide a rigorous basis for the treatment of the
nonlinear ac stationary response of antiferromagnetic nano-
particles in strong ac fields, where perturbation theory is no
longer valid. Our calculations of the nonlinear response of an
individual antiferromagnetic nanoparticle can be generalized
to calculate the average magnetic moment of an assembly of
randomly oriented noninteracting nanoparticles by averaging
over particle easy axis orientations as described in detail in
Ref. 27. We have also assumed that all the particles are iden-
tical and interparticle interactions are negligible. In order to
account for the polydispersity, it is necessary to average over
the appropriate distribution function over the particle vol-
umes. The neglect of interparticle interactions in the present
model suggests that the results apply only to systems, where
interactions are ignored, such as individual nanoparticles and
dilute solid suspensions of nanoparticles.
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APPENDIX: MATRIX CONTINUED FRACTION
SOLUTION OF EQ. (5) FOR THE AC STATIONARY
RESPONSE

The time-dependent coefficients w,, (), x,,, (), etc., in
Eq. (5) can be presented as

an(l‘) = W2m + W/an(eimt + e_fwl) + Wﬁm (e2iu)f + e—Ziwf)’
x’ml(t) = xgm + xitm (eiw[ + eiiwl) + X%m(emwt + eiziw1)7
ynm(t) = ygm + yim (el'wf + eiiwl) + y%m(e%wt —+ e*Ziwt%

etc., where the various time-independent coefficients w', ,
i

X, €tc., are given by
o _ nln+1)  Eomy,
Tom =TT T Ty

I P
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The coefficients with the superscripts + and +-+ can be cal-
culated according to the rule: @) = (a, ,)" and af
= (a,,)"

The stationary ac response can be calculated from the
formally exact matrix continued fraction solution because
Eq. (5) can be rearranged as matrix three-term recurrence

relations
Q,Ci(w) +QfCy(w) =R, (A1)

Q,(0)Ci(0) +Q, Cpr1 (@) +Q, Cyi (@) =0, n=2,3,...,
(A2)

(n+ D&, + iny)? \/<n+m—3><n+m—z><—1+n+m><n+m>_

(2n+1)(2n—3)

C]Eann(w)

¢, ()

&' (0) )

g o (@

Ci=| v |, c’,‘l(a)) =l 2n2 )(a)) ,

Ci((})) 2n—1-2n+1

¢ (@)

cén712n71 (CO)

with ¢o(w) = (). Here, cf (w) are the Fourier coefficients
in the Fourier series in the time. The elements of the three-
diagonal supermatrixes Q, and Q, are defined as
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[Qn} 51 2mr +5l lmpy, +5lmqn +5I+1mpn

+ S1poml,,

[Qn]lm - 51—2mrn + 5l—lmpn + 5lm(qn - imTN(DI) + 5l+lmpn

+ 5l+2mrn»

and

r;
P
T Jan q; |»
P
ry

where ¢, is Kronecker’s delta; the supermatrixes
q,,49,. 9, . P, P, P, . T, Iy, r; are defined in Ref. 27, and
the column vectors ¢ (w), py, q; , and r| are given by

—\/3/400E0E(r, — i)
—/3/100E0E(y) — i72)7s
(&E(1 = 373)/v20
pr = \/3/—15505 (7 +iv2) “/% 7
—\/3/400EE(, + iny)°
\/Wf(% —iy,)0
&y3/V12
—V/IJ24(y, + i)
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—/3/160 c25§+é2 )Yy, — ipy)?

—\/3/400(2&; Y = i72)73
20 + (28 + 52)(1 —33)/41/V5
V/3/40(( 2 Y+ i72)73

q7 =
: —/3/160 c250+é2 )y + ipy)?
\/—wfo (71— i72)
foh/\/_

—/1/6&0 (7, +i7,)

—(n — in)’
=2(y1 — 172)73
2(1-3y3)/V6

2(y1 +172)73

—(n +in)’

0
0
0

The exact solution of Egs. (A1) and (A2) is then rendered by
the matrix continued fraction

Ci =-5Q;Cy, (A3)

where the infinite matrix continued fraction S; is defined by
the recurrence equation

Sn = _[Qn + Q,TS;H-IQ;JA ]71

Having calculated the Fourier amplitudes ¢f () from Eq.
(A3), we can evaluate the Fourier amplitudes m(w) in Eq.
(9) for the average dipole moment y, (t), Eq. (8), as

mh (o) = 2&0 ——= 0ok +— - (51k +0_u) + \/232{\/5005 ycho(w) +siny [ () — & ()] }

- ?751{\/5(3(:05 ‘//_1)< Eochy (@ )Jrg[céol( )+c§0“(w)]>

+sin2y <‘fo ¢4 (0) — by ()] +5 [dh ) + () — di' () - c';ﬂw)])

ssint (G lehfo) + b a ()] +5 [ () + (o >+c§—;<w>+c§+5<w>])}- (A%)

Here, we have assumed without loss of generality that the direction cosines of the vector Hy are y, = siny, y, =0, y; =
cos i/ and have used the known definitions of the spherical harmonics of the first and second rank and equations for ( cos ®)(¢)
and ( cos® ®)(¢) expressed via the statistical moments (Y1,,)(¢) and (Y5,,)(¢) as
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