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of quantum uniaxial superparamagnets

2

3

Yuri P. Kalmykov,1 Serguey V. Titov,2 and William T. Coffey3
4
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The nonlinear ac stationary response of uniaxial paramagnets and superparamagnets—nanoscale solids or
clusters with spin number S ∼ 100−104—in superimposed uniform ac and dc bias magnetic fields of arbitrary
strength, each applied along the easy axis of magnetization, is determined by solving the evolution equation for
the reduced density matrix represented as a finite set of three-term differential-recurrence relations for its diagonal
matrix elements. The various harmonic components arising from the nonlinear response of the magnetization,
dynamic magnetic hysteresis loops, etc., are then evaluated via matrix continued fractions indicating a pronounced
dependence of the response on S arising from the quantum spin dynamics, which differ markedly from the
magnetization dynamics of classical nanomagnets. In the linear response approximation, the results concur with
existing solutions.
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I. INTRODUCTION21

Nanomagnetism is a rapidly expanding area of research22

with many novel applications particularly in information stor-23

age [1] and in medicine, e.g., in hyperthermia occasioned by24

induction heating of nanoparticles [2,3]. Here single-domain25

ferromagnetic particles exhibit essentially classical behavior26

while smaller entities such as free nanoclusters made of27

many atoms, molecular clusters, and single-molecule magnets28

exhibit pronounced quantum effects. Now, due to their large29

magnetic dipole moment [∼10−105 Bohr magnetons (μB)],30

the magnetization relaxation of nanomagnets driven by an ac31

field will exhibit a pronounced field and frequency dependence32

which is significant in diverse physical applications. These33

include nonlinear dynamic susceptibilities [4–7], stochastic34

resonance [8], the dynamic magnetic hysteresis [9–12], etc. In35

general, however, the nonlinear response to an external field36

invariably poses a difficult problem because that response will37

always depend on the precise nature of the stimulus. Thus, no38

unique response function valid for all stimuli exists unlike in39

the linear response to a weak magnetic field. These difficulties40

are compounded in quantum spin systems such as molecular41

magnets and nanoclusters, where both the field and frequency42

dependence of the dynamic response to an ac driving field43

(which is our main concern here) differ profoundly from their44

classical counterparts due to tunneling effects [4].45

In the context of linear response theory, spin relaxation46

of nanomagnets for arbitrary spin number S was usually47

treated via the evolution equation for the spin-density matrix48

using the second order of perturbation theory in the spin-bath49

coupling (see, e.g., [13–17]). In particular, Garanin [13] and50

Garcı́a-Palacios et al. [16] gave a concise treatment of the51

longitudinal spin relaxation of uniaxial superparamagnets by52

proceeding from the quantum Hubbard operator representation53

of the evolution equation for the spin-density matrix. This54

problem has also been treated [18–20] via the master equation55

for the distribution function of spin orientations in the56

representation (phase) space of the polar and azimuthal angles 57

that is completely analogous [21–24] to the treatment of 58

relaxation of classical spins via the Fokker-Planck equation 59

governing the evolution of the distribution function of spin 60

orientations [25]. An important result of all these studies 61

is that one can now accurately evaluate quantum effects 62

in the linear dynamic susceptibility, signal-to-noise ratio in 63

the stochastic resonance, etc. [16,18–20], in nanomagnets. 64

Furthermore, one can estimate the range of spin numbers S, 65

where the crossover to classical superparamagnetic behavior 66

of nanomagnets pertaining to a giant classical spin and that 67

corresponding to the classical limit, S → ∞, takes place 68

(typically, this appears in the range S ∼ 20−50 [14,17,19]). 69

However, the results obtained in Refs. [13–20] using linear 70

response theory cannot be applied to nonlinear phenomena 71

such as the magnetization reversal in nanomagnets driven 72

by a strong ac external magnetic field, nonlinear stochastic 73

resonance, dynamic magnetic hysteresis (DMH), etc., because 74

they automatically require the nonlinear ac stationary response 75

in the presence of thermal agitation. Hitherto, that response for 76

quantum nanomagnets has been determined via perturbation 77

theory (e.g., Ref. [4]) by supposing that the potential energy 78

of a spin in the external magnetic field is less than the thermal 79

energy so that a small parameter exists. In the response to an ac 80

field of arbitrary strength, however, such small parameters do 81

not exist at all so that perturbation theory as used (implicitly) 82

in the calculation of linear response characteristics (linear 83

dynamic susceptibility, etc.) is now no longer applicable. 84

However, as we shall now demonstrate, quantum effects in 85

the nonlinear ac stationary response of nanomagnets with spin 86

number S ∼ 100−104 to an ac field of arbitrary strength can 87

be determined by generalizing methods developed for classical 88

spins [26] (see also [25], Chap. 9). 89

Here we shall demonstrate quantum effects in the nonlinear 90

ac stationary response of the magnetization taking as an 91

example a uniaxial paramagnet with arbitrary spin number 92

S subjected to superimposed spatially uniform dc and ac fields 93
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H0 and H(t) = H cos ωt , respectively, applied along the Z axis,94

i.e., the easy axis of magnetization. Thus, the time-dependent95

Hamiltonian ĤS(t) has the axially symmetric form96

βĤS(t) = − σ

S2
Ŝ2

Z − ξ0 + ξ cos ωt

S
ŜZ, (1)

where ŜZ is the operator associated with the Z component97

of the spin [24];σ is the dimensionless anisotropy constant;98

ξ0 = βS�γH0 and ξ = βS�γH are the dc bias and ac field99

parameters, respectively; γ is the gyromagnetic ratio; � is100

Planck’s constant; and β = (kT )−1 is the inverse thermal101

energy. This Hamiltonian comprises a uniaxial anisotropy term102

−σ Ŝ2
Z/S2 plus the Zeeman term −(ξ0 + ξ cos ωt)ŜZ/S. In103

particular, it represents a generic model for spin-relaxation104

phenomena in molecular magnets, nanoclusters, etc. For large105

S, the Hamiltonian equation (1) describes the magnetization106

relaxation of classical superparamagnets such as magnetic107

nanoparticles [16]. Moreover, the time-independent Hamilto-108

nian −σ Ŝ2
Z/S2 − ξ0ŜZ/S is commonly used, e.g., to describe109

the magnetic properties of the dodecanuclear manganese110

molecular cluster Mn12 with S = 10, σT/S2 = 0.6 − 0.7 K111

[13,16]. In the standard basis of spin functions |S,m〉, which112

describe the states with definite spin S and spin projection113

m onto the Z axis, i.e., ŜZ|S,m〉 = m|S,m〉, this Hamiltonian114

has an energy spectrum with a double-well structure and two115

minima at m = ±S separated by a potential barrier. Notice that116

in strong bias fields, ξ0 > σ (2S − 1)/S, the barrier disappears.117

Now generally speaking, spin reversal can take place either118

by thermal activation or by tunneling or a combination of119

both. The tunneling may occur from one side of the barrier120

to the other between resonant, equal-energy states coupled121

by transverse fields or high-order anisotropy terms [13,16].122

The evolution equation for the reduced density matrix ρ̂123

describing the spin relaxation of a uniaxial paramagnet with124

the Hamiltonian ĤS(t), Eq. (1), coupled to a thermal bath is125

∂ρ̂(t)

∂t
+ i

�
[ĤS(t),ρ̂(t)] = St{ρ̂(t)}. (2)

In Eq. (2), the collision kernel operator St{ρ̂(t)} character-126

izing the spin-bath interaction we will employ is given by (see127

Appendix A)128

St{ρ̂(t)} =
1∑

μ=−1

(−1)μDμ{[Ŝμ,ρ̂(t)eβĤS (t)/2Ŝ−μe−βĤS (t)/2]

+ [e−βĤS (t)/2Ŝ−μeβĤS (t)/2ρ̂(t),Ŝμ]}. (3)

Here the square brackets denote the commutators, viz.,129

[Â,B̂] = ÂB̂ − B̂Â; Dμ are “diffusion” coefficients; Ŝ0 = ŜZ ,130

Ŝ±1 = ∓(ŜX ± iŜY )/
√

2, and ŜX, ŜY , ŜZ are, respectively,131

the spherical and Cartesian components of the spin [27]. The132

above kinetic model was proposed by Hubbard [28] by gen-133

eralizing Redfield’s derivation [29] of the evolution equation134

for the reduced density matrix operator ρ̂ to time-dependent135

Hamiltonians ĤS(t) (the original Redfield derivation [29] was136

limited to time-independent Hamiltonians ĤS). As shown in137

Appendix A, the Hubbard model [28] of the collision kernel138

St{ρ̂(t)} in the short bath correlation time approximation,139

can be simplified to yield Eq. (3) [22,30]. This simplification140

implies that the correlation time τc characterizing the thermal141

bath is short enough to approximate the stochastic process 142

originating in the bath by a Markov process, thus qualitatively 143

describing the spin relaxation in nanomagnets (at least in 144

the high-temperature limit). In the parameter range, where 145

the above approximation fails (e.g., throughout the very-low- 146

temperature region), more general forms of the density matrix 147

evolution equation must be used, e.g., those suggested in 148

Refs. [13,14,16,17]. Using the above model, we will now 149

calculate the nonlinear ac stationary response of a quantum 150

uniaxial paramagnet with arbitrary S. Furthermore, we will 151

show that our results in the weak ac field approximation, 152

ξ � 1, coincide with existing linear response solutions [16,18] 153

while in the classical limit, S → ∞, they correspond with 154

those of Ref. [26]. 155

II. SOLUTION OF THE EVOLUTION EQUATION 156

For the Hamiltonian given by Eq. (1), the reduced density 157

evolution Eq. (2) becomes 158

∂ρ̂

∂t
= i

�β

{
σ

S2

[
Ŝ2

0 ,ρ̂
]+ ξ0 + ξ cos ωt

S
[Ŝ0,ρ̂]

}

+D‖([Ŝ0,ρ̂Ŝ0] + [Ŝ0ρ̂,Ŝ0])

− 2D⊥{e− σ

2S2 − ξ0+ξ cos ωt

2S [Ŝ−1e
− σ

S2 Ŝ0 ρ̂,Ŝ+1]

+ e
σ

2S2 + ξ0+ξ cos ωt

2S [Ŝ+1e
σ

S2 Ŝ0 ρ̂,Ŝ−1]}, (4)

where we have introduced the notation 2D⊥ = D+1 = D−1 159

and D‖ = D0 for the diffusion coefficients and have used the 160

operator relations 161

e
σ

2S2 Ŝ2
0 + ξ0+ξ cos ωt

2S
Ŝ0 Ŝ±1e

− σ

2S2 Ŝ2
0 − ξ0+ξ cos ωt

2S
Ŝ0

= e
− σ

2S2 ± ξ0+ξ cos ωt

2S e
± σ

S2 Ŝ0 Ŝ±1,

Ŝ±1e
∓ σ

S2 Ŝ0 = e
σ

S2 e
∓ σ

S2 Ŝ0 Ŝ±1.

Here the magnitude of the ac field ξ is supposed to be so 162

large that the energy of a spin is either comparable to or higher 163

than the thermal energy kT, i.e., ξ � 1, so that one is always 164

faced with an intrinsically nonlinear problem which is solved 165

as follows. 166

As far as the ac stationary response is concerned, use of the 167

symmetrized collision kernel equation (4), is essential because 168

only this form ensures the absence of the even harmonics in the 169

magnetization nonlinear response for the symmetric uniaxial 170

Hamiltonian −σ Ŝ2
Z/S2. Now the crucial fact is that for axially 171

symmetric Hamiltonians such as Eq. (1), the transformation 172

of the evolution equation, Eq. (4), into differential-recurrence 173

equations for its individual matrix elements may easily be ac- 174

complished because the diagonal entries of the density matrix 175

then decouple from the nondiagonal ones. Hence, only the 176

former contribute to the longitudinal spin relaxation allowing 177

a complete solution. Consequently, we have from Eq. (4) the 178

following three-term differential-recurrence equation for the 179

diagonal entries ρm = ρmm: 180

τN

dρm(t)

dt
= q−

m (t)ρm−1(t) + qm(t)ρm(t) + q+
m (t)ρm+1(t),

(5)
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where m = −S,−S + 1, . . . ,S, τN = (2D⊥)−1 is the char-181

acteristic diffusion time and the time-dependent coefficients182

qm(t) and q±
m (t) are183

qm(t) = −a−
me

−(2m−1) σ

2S2 − ξ0+ξ cos ωt

2S − a+
me

(2m+1) σ

2S2 + ξ0+ξ cos ωt

2S ,

q±
m (t) = a±

me
∓(2m±1) σ

2S2 ∓ ξ0+ξ cos ωt

2S ,

a±
m = (S ∓ m)(S ± m + 1)

2
.

Now, our objective is to calculate the stationary ac response184

of the longitudinal component of the magnetization defined as185

〈ŜZ〉(t) =
S∑

m=−S

mρm(t). (6)

Since we are solely concerned with the ac response186

corresponding to the stationary state, which is independent187

of the initial conditions, we may seek the diagonal elements188

ρm(t) as the Fourier series, viz.,189

ρm(t) =
∞∑

k=−∞
ρk

m(ω)eikωt . (7)

As is evident from Eqs. (6) and (7), 〈ŜZ〉(t) is then rendered 190

as a Fourier series, viz., 191

〈ŜZ〉(t) =
∞∑

k=−∞
Sk

Z(ω)eikωt , (8)

where the amplitudes Sk
Z(ω) are themselves given by the finite 192

series 193

Sk
Z(ω) =

S∑
m=−S

mρk
m(ω). (9)

Next, we recall the Fourier-Bessel expansion [31], 194

e± ξ

2S
cos ωt =

∞∑
k=−∞

Ik

(
± ξ

2S

)
eikωt , (10)

where Ik(z) are the modified Bessel functions of the first kind 195

[31]. Thus by direct substitution of Eqs. (7) and (10) into 196

Eq. (5), we have a recurrence relation in (k,m) between the 197

Fourier coefficients ρk
m(ω), viz., 198

ikωτNρk
m(ω) =

∞∑
k′=−∞

{
a−

me
σ (2m−1)

2S2 + ξ0
2S Ik−k′

(
ξ

2S

)
ρk′

m−1(ω) + a+
me

− σ (2m+1)
2S2 − ξ0

2S Ik−k′

(
− ξ

2S

)
ρk′

m+1(ω)

−
[
a−

me
− σ (2m−1)

2S2 − ξ0
2S Ik−k′

(
− ξ

2S

)
+ a+

me
σ (2m+1)

2S2 + ξ0
2S Ik−k′

(
ξ

2S

)]
ρk′

m (ω)

}
. (11)

The recurrence relation Eq. (11) can be solved exactly for199

the Fourier amplitudes ρk
m(ω) via matrix continued fractions200

[25,32] (see Appendix B). Thus, having calculated ρk
m(ω), we201

have from Eq. (9) all the constituent Fourier amplitudes Sk
Z(ω)202

of the longitudinal component of the magnetization in Eq. (8).203

III. LINEAR AND NONLINEAR DYNAMIC204

SUSCEPTIBILITIES205

Initially, we treat the frequency-dependent fundamental206

component of the magnetization S1
Z(ω). The simplest example207

is the linear response to a vanishing ac field; i.e., when the208

ac field parameter ξ → 0, then the normalized fundamental209

component S1
Z(ω)/S1

Z(0) of the Fourier series, Eq. (8), which210

is all that is ever needed for the linear response, will yield the211

normalized linear dynamic susceptibility, viz.,212

χ (ω)

χ
= S1

Z(ω)

S1
Z(0)

, (12)

where χ is the static susceptibility defined as213

χ = 〈Ŝ2
Z

〉
0 − 〈ŜZ〉2

0

=
S∑

m=−S

m2ρ0
m −

(
S∑

m=−S

mρ0
m

)2

,

with the matrix elements214

ρ0
m = 1

ZS

eσm2/S2+ξ0m/S,

and the partition function ZS given by 215

ZS =
S∑

m=−S

eσm2/S2+ξ0m/S. (13)

However, the longitudinal linear dynamic susceptibility 216

χ (ω) can also be obtained via the Kubo relation [25,30] 217

χ (ω)

χ
= 1 − iωC̃(ω), (14)

where C̃(ω) = ∫∞
0 C(t)e−iωtdt is the one-sided Fourier trans- 218

form of the normalized longitudinal equilibrium correlation 219

function C(t) given by 220

C(t) = 1

βχ

〈∫ β

0
[ŜZ(−iλ�) − 〈ŜZ〉0][ŜZ(t) − 〈ŜZ〉0]dλ

〉
.

The normalized longitudinal equilibrium correlation func- 221

tion C(t) describes the linear response of a uniaxial param- 222

agnet to infinitesimally small changes in the magnitude of the 223

dc field H0 alone. In determining this response, it is supposed 224

that the uniform dc field H0 is directed along the Z axis of the 225

laboratory coordinate system and that a small probing field H 226

having been applied to the assembly of noninteracting spins 227

in the distant past (t = −∞) so that equilibrium conditions 228

obtain at time t = 0, is suddenly switched off at t = 0. In the 229

low- (ω → 0) and high- (ω → ∞) frequency limits, we have 230
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FIG. 1. (Color online) The normalized linear susceptibility χ (ω)/χ , Eq. (12), vs normalized frequency ωτN for the anisotropy parameter
σ = 10, the uniform field parameter (a) ξ0 = 0 and (b) ξ0 = 3, and various spin numbers S. Asterisks: the two-mode approximation, Eq. (22).
Dashed lines: the high-frequency asymptote, from Eqs. (16) and (18). Filled circles: the classical limit S → ∞.

from Eq. (14)231

χ (ω) ≈ χ (1 − iωτcor + · · ·), ω → 0, (15)

χ (ω) ∼ χ (iωτef)
−1 + · · · , ω → ∞, (16)

where232

τcor =
∫ ∞

0
C(t)dt and τef = −C(0)

Ċ(0)
,

are, respectively, the integral and effective relaxation times233

given by [16,18]234

τcor = 2τN

χ

S∑
k=1−S

[∑S
m=k (m − 〈ŜZ〉0)ρ0

m

]2
[S(S + 1) − k(k − 1)]

√
ρ0

k ρ
0
k−1

, (17)

τef = 2χτN∑S
k=1−S [S(S + 1) − k(k − 1)]

√
ρ0

k ρ
0
k−1

. (18)

We remark that the linear response has been previously235

studied by Garanin [13] and Garcı́a-Palacios and Zueco236

[16] thereby yielding analytic expressions including the237

characteristic relaxation times τcor, τef , and τ ≈ λ−1
1 even238

for more general models of spin-bath interactions than we239

have used here. Garanin’s method yields for the model240

at hand 241

τ = 2τN

χ�

S−1∑
k=−S

×
[∑k

m=−S (m−〈ŜZ〉0)ρ0
m

]{∑k
m=−S[sgn(m−mb)−�]ρ0

m

}
[S(S + 1) − k(k + 1)]

√
ρ0

k ρ
0
k+1

,

(19)

where mb is the quantum number corresponding to the top of 242

the barrier, with 243

� =
S∑

m=−S

sgn(m − mb)ρ0
m

and 244

χ� =
S∑

m=−S

msgn(m − mb)ρ0
m

−
(

S∑
m=−S

mρ0
m

)[
S∑

m=−S

sgn(m − mb)ρ0
m

]
.

In Fig. 1, we plot the real and imaginary parts of the linear 245

dynamic susceptibility χ (ω)/χ as calculated from the matrix 246

continued fraction solution, rendered in the form of Eqs. (9) 247

and (12) for zero dc field, ξ0 = 0 (symmetrical wells) and for 248

nonzero dc field, ξ0 = 3 (asymmetrical wells). Two distinct 249

bands appear in the magnetic loss spectrum −Im[χ (ω)]. The 250

low-frequency band is due to the “overbarrier” relaxation mode 251
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FIG. 2. (Color online) The real and imaginary parts of the normalized fundamental component S1
Z(ω)/S1

Z(0) vs normalized frequency ωτN

(a) for various values of the applied ac stimulus ξ = 0.01 (linear response), 1, 3, 5, and the dc field parameter ξ0 = 3, and (b) for various dc
field parameters ξ0 and ξ = 1; the spin number S = 10 and anisotropy parameter σ = 10.

and can be described by a single Lorentzian, namely,252

χ (ω)

χ
≈ 1 − iωτcor

1 + iωτ
, (20)

where τ is the longest relaxation time, which may be identified253

with the spin reversal time, and is calculated via the inverse of254

the smallest nonvanishing eigenvalue λ1 of the system matrix255

equation (C1) from Appendix C. Now τ must also be related to 256

the frequency ωmax of the low-frequency peak in the magnetic 257

loss spectrum −Im[χ (ω)], where it attains a maximum, and/or 258

the half width �ω of the spectrum of the real part of the 259

susceptibility Re[χ (ω)] via 260

τ ≈ ω−1
max ≈ �ω−1. (21)

FIG. 3. (Color online) The real and imaginary parts of the normalized second- and third-harmonic components S2
Z(ω)/S2

Z(0) and
S3

Z(ω)/S3
Z(0) of the nonlinear response vs ωτN for anisotropy parameter σ = 10, the dc field parameter ξ0 = 3, the ac field parameter

ξ = 1, and various spin numbers S. Filled circles: the classical limit.
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Regarding the second high-frequency band, this is due to261

high-frequency individual “intrawell” modes [16,22], which262

are virtually indistinguishable in the spectrum of χ ′′(ω)263

appearing merely as a single high-frequency Lorentzian band.264

Thus, we may describe the behavior of χ (ω)/χ via a two-mode265

approximation, i.e., by supposing that it is given as a sum of266

two Lorentzians, viz. [16,22,25,33],267

χ (ω)

χ
≈ 1 − δ

1 + iωτ
+ δ

1 + iωτW

. (22)

Here τW is a characteristic relaxation time of the near-268

degenerate high-frequency well modes and δ denotes a269

parameter characterizing their contribution to the susceptibility270

defined as271

δ =
τcor
τ

+ τ
τef

− τcor
τef

− 1
τcor
τ

+ τ
τef

− 2
, τW = τcor − τ

1 − τ
τef

. (23)

The parameters δ and τW in Eqs. (22) and (23) have been272

determined by imposing the condition that the approximate273

two-mode equation (22) must obey the exact asymptotic274

equations (15) and (16). In order to verify this analytical275

description of the quantum behavior, we compare it in Fig. 1276

with the real and imaginary parts of χ (ω)/χ as calculated277

from the exact numerical solutions. It is apparent from Fig. 1278

that at low frequencies no practical difference exists between279

the numerical solution and the two-mode approximation (the280

maximum relative deviation between the corresponding curves281

does not exceed a few percent). In the classical limit, S →282

∞, the axially symmetric Hamiltonian defined by Eq. (1)283

corresponds to a normalized free energy V given by284

βV (ϑ) = −σcos2ϑ − ξ0 cos ϑ. (24)

This classical limit is also shown in Fig. 1 for comparison.285

Our conclusions mirror those of Garcı́a-Palacios and Zueco286

[16] who have also shown that the two-mode approximation,287

which was originally developed for classical systems [33],288

accurately describes the linear response of quantum paramag-289

nets.290

Turning our attention to the nonlinear response, where all291

terms in k in Eq. (10) must now be included, we see that292

in strong ac fields, pronounced nonlinear effects occur as the293

amplitude of the field increases (see Figs. 2 and 3). As in the294

linear response, two distinct absorption bands again appear295

in the spectrum of the imaginary part of the fundamental,296

viz.,−Im[S1
Z(ω)/S1

Z(0)]. Thus, two corresponding dispersion297

regions occur in the spectrum of Re[S1
Z(ω)/S1

Z(0)]. However,298

due to the pronounced nonlinear effects (see Fig. 2) the low-299

frequency band of −Im[S1
Z(ω)/S1

Z(0)] now deviates from the300

Lorentzian shape so that it may no longer be approximated by301

a single Lorentzian. Nevertheless, the frequency of maximum302

absorption as defined in Eq. (21) may still be used to estimate303

an effective reversal time τ as τ ≈ �ω−1. The behavior of304

the low-frequency peak of −Im[S1
Z(ω)/S1

Z(0)] as a function305

of the ac field amplitude crucially depends on whether or306

not a dc field is applied. For strong dc bias, ξ0 > 1 (see307

Fig. 2), the low-frequency peak shifts to lower frequencies308

reaching a maximum at ξ ∼ ξ0, thereafter shifting to higher309

frequencies with increasing ξ0. In other words, as the dc field310

increases, the reversal time of the spin initially increases and311

having attained its maximum at some critical value ξ ∼ ξ0,312

thereafter decreases. This behavior agrees with that observed 313

in the classical case [16,33]. The fundamental component 314

S1
Z(ω)/S1

Z(0), which in principle now depends on all the 315

other frequency components, is also shown in Fig. 2 for 316

various dc field parameters ξ0. Also for zero dc bias, ξ0 = 0, 317

the low-frequency peak shifts to higher frequencies with 318

increasing ξ . 319

Now, a striking feature of the nonlinear response is that 320

the effective reversal time may also be evaluated from either 321

the spectrum of the (now) frequency-dependent dc component 322

S0
Z(ω) (for nonzero dc bias, ξ0 �= 0) or those of the higher- 323

order harmonics Sk
Z(ω) with k > 1 because the low-frequency 324

parts of these spectra are themselves, like the spectra of the 325

fundamental, dominated by overbarrier relaxation processes. 326

For illustration, the real and imaginary parts of the normalized 327

second- and third-harmonic components S2
Z(ω)/S2

Z(0) and 328

S3
Z(ω)/S3

Z(0) of the response are shown in Fig. 3. Like the 329

fundamental, the behavior of both −Im[S2
Z(ω)/S2

Z(0)] and 330

−Im[S3
Z(ω)/S3

Z(0)] depends on whether or not a dc field is 331

applied. For weak dc bias field ξ0 < 0.5, the low-frequency 332

peak shifts monotonically to higher frequencies. For strong dc 333

FIG. 4. (Color online) DMH loops [m(t) = 〈ŜZ〉(t)/S vs h(t) =
cos ωt] for various anisotropy parameters σ = 10 (a), 15 (b), 20
(c), and various spin numbers S = 3/2 (1: short-dashed lines), 4 (2:
solid lines), 10 (3: dashed-dotted lines), 20 (4: dashed lines), and ∞
(asterisks) at ωτN = 10−4, ξ0 = 0, and ξ = 9.
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bias field, ξ0 > 1, on the other hand, the low-frequency peak334

shifts to lower frequencies reaching a maximum at ξ ∼ ξ0,335

thereafter decreasing with increasing ξ.336

IV. DYNAMIC MAGNETIC HYSTERESIS337

Studies of DMH in magnetic nanoparticles subjected to338

thermal fluctuations having been initiated by Ignatchenko and339

Gekht [9] were later extended in many other investigations340

(see, e.g., Refs. [10–12]). Like the classical case, DMH loops341

for quantum nanomagnets represent a parametric plot of the342

steady-state time-dependent normalized magnetization as a343

function of the applied ac field, i.e.,344

m(t) = 〈ŜZ〉(t)/S vs h(t) = H (t)/H = cos ωt.

Thus, we can calculate the normalized area of the DMH345

loop An defined as346

An = 1

4

∮
m(t)dh(t) = − π

2S
Im
[
S1

Z(ω)
]
, (25)

which is the energy loss per particle over one cycle of the ac347

field.348

11−

−1

1 (a)

3
2

1

 σ = 10  ξ
0
 = 0   ωτ

Ν
 = 0.01

      ξ = 4

1: S = 4
2: S = 10
3: S = 20

S→∞

h(t)

m(t)

 

0.15.05.0−0.1−

−1.0

−0.5

0.5

1.0 (b)

3

2

1

ξ = 9

h(t)

m(t)

 

11−

−1

1 (c)

3

2

1

ξ = 16

h(t)

m(t)

FIG. 5. (Color online) DMH loops for various ac external field
parameters ξ = 4 (a), 9 (b), 16 (c), and various spin numbers S = 4
(1: dashed lines), 10 (2: dashed-dotted lines), 20 (3: solid lines), and
∞ (asterisks) at σ = 10, ξ0 = 0, and ωτN = 10−2.

In Figs. 4–7 we show the effects of ac and dc bias magnetic 349

fields on the DMH loops in a uniaxial nanomagnet with 350

arbitrary S. For a weak ac field, ξ → 0, the DMH loops are 351

[cf. Eq. (26) below] ellipses with normalized area An given by 352

Eq. (25); the behavior of An ∼ −Im[S1
Z(ω)] being similar [cf. 353

Eq. (25)] to that of the magnetic loss χ ′′(ω) (see Fig. 1). The 354

susceptibility given by the two-mode equation (22) implies that 355

the overall relaxation process consists of two distinct entities, 356

namely, the slow thermally activated (overbarrier or interwell) 357

process and the fast (intrawell) relaxation in the wells. Now, 358

at low frequencies and for large barriers between the wells, 359

only the first term on the right side in Eq. (22) for Im[S1
Z(ω)] 360

need be considered. Furthermore, for weak dc bias fields, 361

ξ0/(2σ ) � 1, the approximation δ ≈ 1 may also be used so 362

that the normalized magnetization m(t) = 〈ŜZ〉(t)/S is given 363

by the simple (linear response) formula [14], 364

m(t) = 1

S
〈ŜZ〉0 + χξ

S

cos ωt + ωτ sin ωt

1 + ω2τ 2
, (26)

FIG. 6. (Color online) DMH loops for various dimensionless
frequencies ωτN = 10−2 (a), 1 (b), 102 (c), and various spin numbers
S = 3/2 (1: solid lines), 4 (2: dashed lines), 10 (3: dashed-dotted
lines), 20 (4: short-dashed lines), and ∞ (asterisks) at σ = 10,
ξ0 = 0, and ξ = 9.
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FIG. 7. (Color online) DMH loops for various constant field parameters ξ0 = 0 (a), 3 (b), 5 (c), 7 (d), and various spin numbers S = 4 (1:
dashed lines), 10 (2: dashed-dotted lines), 20 (3: solid lines), and ∞ (asterisks) at ξ = 9, σ = 10, and ωτN = 10−2.

with τ = λ−1
1 and μ is the magnetic moment. If we introduce365

the normalizations366

x(t) = cos ωt and y(t) = Sm(t) − 〈Ŝz〉0

χξ
,

and eliminate the time between these two equations, we then367

have the Cartesian equation of an ellipse in the (x,y) plane,368

namely, [12b],369

x2 + 1

ω2τ 2
[(1 + ω2τ 2)y − x]2 = 1. (27)

370

For moderate ac fields corresponding to ξ ≈ 1, although an371

analytical formula for m(t) is now unavailable, nevertheless,372

the DMH loops still have approximately an ellipsoidal shape373

implying that only a few harmonics actually contribute to the374

weakly nonlinear response. In contrast in strong ac fields,375

ξ > 1, the shape alters substantially and so the normalized area376

An now exhibits a pronounced dependence on the frequency377

ω, and the ac and dc bias field amplitudes ξ and ξ0, as well378

as on the anisotropy parameter σ and the spin number S379

(see Figs. 4–7). In this regime, the external ac field is able380

to saturate the paramagnetic moment as well as to induce381

its inversion (i.e., switching between the directions of the382

easy axis). In Figs. 4 and 5, we plot the loops for various383

S and anisotropy (σ ) and ac field (ξ ) parameters exemplifying384

how their shapes (and consequently their areas) alter as these385

parameters vary. Clearly, the remagnetization time is highly386

sensitive to variations of these parameters. For example, with387

a strong ac driving field, the Arrhenius dependence of the388

reversal time on temperature log(τ ) ∝ 1/T , which accurately389

accounts for the linear response regime, is modified because390

the strong ac field intervenes so drastically reducing the 391

effective response time of the paramagnet. Thus, the nonlinear 392

behavior facilitates remagnetization regimes, which are never 393

attainable with weak ac fields—the reason being that the dc 394

bias component under the appropriate conditions efficiently 395

tunes this effect by either enhancing or blocking the action 396

of the strong ac field. The pronounced frequency dependence 397

of the loops is highlighted in Fig. 6 for various S. At low 398

frequencies, the field changes are quasiadiabatic, so that the 399

magnetization reverses due to the cooperative shuttling action 400

of thermal agitation combined with the ac field. The dc bias 401

field effects on the DMH are illustrated in Fig. 7 showing the 402

changes in the DMH caused by varying ξ0 for various spin 403

numbers S. In order to understand the effect of the dc bias 404

field on the loop area, one must first recall that the magnetic 405

relaxation time depends on the actual value of the applied field. 406

Under the conditions of Fig. 7, the positive limiting (saturation) 407

value of m(t) → 1 corresponds to a total field H0 + H , thus 408

favoring the magnetization relaxation to the positive saturation 409

value m(t) → 1. However, for negative h(t), the total field 410

H0 − H is much weaker and so cannot induce relaxation to the 411

negative saturation value m(t) → −1. Therefore, the “center 412

of area” of the loop moves upwards. In the classical limit, 413

S → ∞, our results concur with those for classical uniaxial 414

nanomagnets [11,12]. 415

The temperature dependence of the DMH is governed by 416

the dimensionless anisotropy (inverse temperature) parameter 417

σ ∝ 1/T . The normalized DMH area An as a function of σ−1
418

is shown in Fig. 8 for various S showing that the tuning action 419

of the dc bias field described above is effective over a certain 420

temperature interval. This conclusion once again indicates that 421
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0.02 0.06 0.10
0.0
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ξ /(2σ) = 0.45

ωτ
Ν
 = 10−4

σ −1

A
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1
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0.5
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0
 /(2σ) = 0.15
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3

FIG. 8. (Color online) Normalized area of the DMH loop An vs
the dimensionless temperature σ−1 under variation of the dc bias
field parameter h0 = ξ0/(2σ ) = 0 (a) and 0.15 (b) for various spin
numbers S = 4 (dashed-dotted lines), 10 (dashed lines), 20 (solid
lines), and ∞ (asterisks) at the frequency ωτN = 10−4 and the ac
field amplitude ξ/(2σ ) = 0.45.

the relaxation of the magnetization is mostly caused by thermal422

fluctuations, implying that the magnetic response time retains423

a strong temperature dependence. The normalized area as a424

function of the frequency ω and ac field parameter ξ/(2σ ) is425

shown in Figs. 9 and 10, respectively. Clearly An can invariably426

be represented as a nonmonotonic curve with a maximum the427

position of which is determined by S as well as by the other428

model parameters. The peak in An (Fig. 9) is caused by the429

field-induced modifications of the reversal time as strongly430

tuned by the dc bias field. As in Fig. 9, variation of the dc431

field strength shifts the frequency, where the maximum is432

attained, by several orders of magnitude. The normalized loop433

area presented in Fig. 10 illustrates the dependence of An on434

the ac field amplitude, which is similar to that of classical435

superparamagnets.436

V. CONCLUSIONS437

We have studied the nonlinear ac stationary response of438

uniaxial paramagnets with arbitrary spin number S subjected439

to superimposed ac and dc magnetic fields in the high-440

temperature and weak spin-bath coupling limit. The nonlinear441

dynamic susceptibility and DMH in such nanomagnets has442

been treated without any a priori assumptions regarding443

the magnetizing field strength and the spin number S. In444

general, it appears that given appropriate conditions a small445

(in comparison with the internal anisotropy field) bias dc field446

can profoundly affect the nonlinear dynamic susceptibility and447

shape of the DMH loops in nanomagnets accompanied by a448
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0.0

0.5

1.0

A
n

(a)
ξ

0
 = 0

1: S = 4
2: S = 10
3: S = 20
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ξ = 22.5

ωτ
Ν

1 2 3

10−6 10−4 10−2
0.0

0.4

0.8
ξ

0
 = 5

(b)

A
n

ωτ
Ν

1
2
3

FIG. 9. (Color online) Normalized area of the DMH loop An vs
the dimensionless frequency ωτN under variation of the dc bias field
ξ0 = 0 (a) and 5 (b) for various spin numbers S = 4 (dashed-dotted
lines), 10 (dashed lines), 20 (solid lines), and ∞ (asterisks). The
anisotropy parameter σ = 25 and the ac field parameter ξ/(2σ ) =
0.45.

0.15.0
0.0
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1.0

3 1

ξ /(2σ)

(a)

A
n

ξ
0
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ωτ
N
 = 10−4

0.15.0
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ξ /(2σ)
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1

FIG. 10. (Color online) Normalized area of the DMH loop An

vs the ac field amplitude ξ/(2σ ) under variation of the bias field
parameter ξ0 = 0 (a), 2.5 (b), 5 (c), and 7 (d) for various spin numbers
S = 4 (dashed-dotted lines), 10 (dashed lines), 20 (solid lines),
and ∞ (asterisks). The anisotropy parameter σ = 25 and frequency
ωτN = 10−4.
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strong dependence on S. The overall conclusion is that just as in449

linear response [16,19], one may determine the transition from450

quantum elementary spin relaxation to that pertaining to a giant451

spin as a function of the spin number S yielding explicitly the452

evolution of the nonlinear ac stationary response and DMH453

from that of molecular magnets (S ∼ 10) to nanoclusters454

(S ∼ 100), and to classical superparamagnets. In the large455

spin limit, the solutions obtained via the evolution equation456

for the density matrix reduce to those yielded by the Fokker-457

Planck equation for the orientation distribution function of458

classical spins [25,26], while for linear response, the results459

entirely agree with those given in Ref. [19]. Hence, the results460

indicate that quantum effects in the nonlinear spin relaxation461

can be treated in a manner linking directly to the classical462

representations. Here we have only considered the nonlinear463

dynamic susceptibility and DMH of uniaxial paramagnets in464

the simplest configuration, i.e., where the ac and dc magnetic465

fields are applied along the easy axis of the nanomagnet.466

The calculation may, in principle, be generalized to other467

interesting cases such as arbitrary directions of applied fields468

and nonaxially symmetric anisotropies (cubic, biaxial, etc.).469
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APPENDIX A: COLLISION KERNEL FOR THE475

TIME-DEPENDENT HAMILTONIAN IN THE476

HIGH-TEMPERATURE LIMIT477

To derive Eq. (3), we follow Hubbard [28] who con-478

sidered the general case of the time-dependent Hamiltonian479

ĤS = ĤS(t). The collision kernel used by Hubbard is (in our 480

notation) 481

St(ρ̂) =
1∑

μ=−1

∑
r

(−1)μeiω
−μ
r tDμ

(
ω−μ

r

)

× {eβ�ω
−μ
r /2
[
Ŝμ,ρ̂Û−1(t)Ŝr

−μÛ (t)
]

+ e−β�ω
−μ
r /2
[
Û−1(t)Ŝr

−μÛ (t)ρ̂,Ŝμ

]}
, (A1)

where Ŝr
μ′ are the coefficients in the series expansion of 482

the time-dependent spin operators Ŝμ′(t) = Û (t)Ŝμ′Û−1(t), 483

namely, 484

Ŝμ′(t) =
∑

r
Ŝr

μ′e
iω

μ′
r t , (A2)

where ω
μ′
r represents a parameter, while the operator Û (t) is 485

defined as 486

Û (t) = e
i
�

∫ t

0 ĤS (t ′)dt ′ , (A3)

and Dμ(ω) is the correlation function of the bath written in the 487

frequency domain as 488

Dμ = C̃sym
μ (ω)sech(β�ω/2), (A4)

with the symmetrized spectral density C̃
sym
μ (ω) = 489

[C̃μ,−μ(−ω) + C̃∗
μ,−μ(ω)]/2 which determines the spectrum 490

of the symmetrized bath correlation functions. Then by 491

reconverting the result to operator form [see Eq. (A2)], we 492

have for the collision kernel 493

St(ρ̂) =
1∑

μ=−1

∑
r

(−1)μDμeiω
−μ
r t
{
eβ�ω

−μ
r /2
[
Ŝμ,ρ̂Û−1(t)Ŝr

−μÛ (t)
]+ e−β�ω

−μ
r /2
[
Û−1(t)Ŝr

−μÛ (t)ρ̂,Ŝμ

]}

=
1∑

μ=−1

(−1)μDμ

{[
Ŝμ,ρ̂Û−1(t)Û (t − iβ�/2)Ŝ−μÛ−1(t − iβ�/2)U (t)

]

+ [Û−1(t)Û (t + iβ�/2)Ŝ−μÛ−1(t + iβ�/2)Û (t)ρ̂,Ŝμ

]}
. (A5)

Next, we consider typical products such as Û−1(t)Û (t ±494

iβ�/2) given by495

Û−1(t)Û (t ± iβ�/2) = e
i
�

∫ t±iβ�/2
t

ĤS (t ′)dt ′ . (A6)

In the high temperature limit, we have for the integral496

i

�

∫ t±iβ�/2

t

ĤS(t ′)dt ′ ≈ ∓β

2
ĤS(t). (A7)

497

Here we have supposed that the operator ĤS(t) does not 498

alter significantly during small time increments �t ∼ β�/2 � 499

1. Thus, we can simply take the value of that operator value at 500

time t and consequently may place it outside the integral. By 501

treating in like manner all other such time-dependent functions 502

in Eq. (A5), we have the Hubbard form of the collision kernel 503

equation (A5) with time-dependent Hamiltonian ĤS(t) which 504

in the high-temperature limit simplifies to Eq. (3). The form of 505

the collision kernel given by Eq. (3) corresponds to the high- 506

temperature limit and short correlation time of the Markovian 507

approximation. 508
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APPENDIX B: MATRIX CONTINUED FRACTION509

SOLUTION OF EQ. (11)510

On introducing the frequency-dependent column vector,511

ρn =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

...

ρ−1
n (ω)

ρ0
n(ω)

ρ1
n(ω)
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(B1)

(n = m + S), we then have a homogeneous matrix three-term512

recurrence equation between column vectors ρn, namely,513

Q−
n ρn−1 + Qnρn + Q+

n ρn+1 = 0, (B2)

where the matrix elements of the infinite matrices Qn and Q±
n514

are given by515

[Qn]kk′ = −iωτNkδkk′ − a+
n e

(2n−2S+1) σ

S2 + ξ0
S Ik−k′

(
ξ

2S

)

− a−
n e

−(2n−2S−1) σ

2S2 − ξ0
2S Ik−k′

(
− ξ

2S

)
,

[Q±
n ]kk′ = a±

n e
∓(2n−2S±1) σ

2S2 ∓ ξ0
2S Ik−k′

(
∓ ξ

2S

)
.

However, a nontrivial solution of the homogeneous Eq. (B2)516

exists because according to the general method of solution517

of three-term recurrence relations [25,32], all higher-order518

column vectors ρn defined by Eq. (B1) can always be expressed519

in terms of the lowest-order vector column ρ0 via the products520

ρn = SnSn−1 . . . S1ρ0, (B3)

where the Sm are finite matrix continued fractions defined by521

the matrix recurrence relation522

Sm = [−Qm − Q+
mSm+1]−1Q−

m.

Now the zero-order column vector ρ0 itself can be found523

from the normalization condition for the density matrix524

elements, viz.,525

2S∑
n=0

ρn(t) =
∞∑

k=−∞

(
2S∑

n=0

ρk
n(ω)

)
eiωkt = 1, (B4)

thereby immediately yielding an inhomogeneous equation for526

ρ0, viz.,527

2S∑
n=0

ρn = Cρ0 = v, (B5)

where the matrix C is given by528

C = I + S1 + S2S1 + · · · + S2S · · · S2S1. (B6)

I is the unit matrix, and the infinite column vector v has529

only one nonvanishing element, vk = δk0, −∞ < k < ∞.530

Consequently, we have for the zero-order column vector ρ0,531

ρ0 = C−1v. (B7)

Having calculated all the ρ0, we can determine via Eq. (B3) 532

the other column vectors ρn as 533

ρn = SnSn−1 . . . S1C−1v, (B8)

and thus we can evaluate all the Sk
Z(ω) from Eq. (9) yielding 534

the nonlinear stationary ac response of a uniaxial paramagnet. 535

APPENDIX C: EVALUATION OF THE LONGEST 536

RELAXATION TIME τ 537

In the absence of the ac driving field, i.e., ξ = 0, the 538

recurrence relation, Eq. (5), can be written in the homogeneous 539

matrix form 540

Ḟ(t) = � · F(t),

where the column vector F(t) and the tridiagonal system matrix 541

� are 542

F(t) =

⎛
⎜⎜⎝

ρ0(t)
ρ1(t)

...
ρ2S(t)

⎞
⎟⎟⎠,

� = 1

τN

⎛
⎜⎜⎜⎜⎝

p0 p+
0 0 · · · 0

p−
1 p1 p+

1 · · · ...
...

...
...

. . . p+
2S−1

0 · · · 0 p−
2S p2S

⎞
⎟⎟⎟⎟⎠, (C1)

with matrix elements 543

pn = −n(2S − n + 1)

2
e
−(2n−2S+1) σ

2S2 − ξ0
2S

− (n + 1)(2S − n)

2
e

(2n−2S+1) σ

2S2 + ξII
2S ,

p+
n = 1

2
(2S − n)(n + 1)e−(2n−2S−1) σ

2S2 − ξ0
2S ,

p−
n = n

2
(2S − n + 1)e(2n−2S−1) σ

2S2 + ξ0
2S .

(These matrix elements are obtained from coefficients qm(t) 544

and q±
m (t) in Eq. (5) by introducing a new index n defined as 545

n = m + S). The secular equation, which determines all the 546

eigenvalues, is as usual 547

det (� − λI) = 0. (C2)

Now the left-hand side of Eq. (C2) represents a polynomial 548

of the order 2S + 1, viz., 549

(k2S+1λ
2S + k2Sλ

2S−1 + · · · + k2λ + k1)λ = 0, (C3)

where 550

k1 = −
2S∑
i=0

Mi
i , k2 =

2S−1∑
i=0

2S∑
j=i+1

M
ij

ij ,

and so on, and we have used the fact that det(�) = 0. Here 551

the Mi ′
i are the first minors of the matrix �, which are the 552

determinants of the square matrices as reduced from � by 553

removing the ith row and the i′th column of � while the 554

M
i ′j ′
ij are the minors of the matrix �, which are in turn the 555

determinants of the square matrix as reduced from � by 556
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removing two (the ith and the j th) of its rows and two (the i ′th557

and the j ′th) columns. Now in the high-barrier approximation558

when λ1 � 1, that quantity can be evaluated analytically by559

neglecting all higher powers λn with n > 2 in the secular560

equation (C3). Thus, we have from that equation,561

λ1 ≈ −k1

k2
. (C4)

However, Eq. (C4) can be equivalently written in matrix562

form as563

λ1 ≈ Tr(M(1))

Tr(M(2))
, (C5)

where M(1) is the matrix formed from all the first minors,564

M(1) =

⎛
⎜⎜⎜⎜⎜⎝

M2S
2S M2S−1

2S · · · M0
2S

M2S
2S−1 M2S−1

2S−1 · · · M0
2S−1

...
...

. . .
...

M2S
0 M2S−1

0 · · · M0
0

⎞
⎟⎟⎟⎟⎟⎠,

and the matrix M(2) contains all the other M
i ′j ′
ij minors,565

M(2) =

⎛
⎜⎜⎜⎜⎜⎝

M
2S,2S−1
2S,2S−1 M

2S,2S−2
2S,2S−1 · · · M

0,0
2S,2S−1

M
2S,2S−1
2S,2S−2 M

2S,2S−2
2S,2S−2 · · · M

0,0
2S,2S−2

...
...

. . .
...

M
2S,2S−1
0,0 M

2S,2S−2
0,0 · · · M

0,0
0,0

⎞
⎟⎟⎟⎟⎟⎠.

The matrices M(1) and M(2) have, respectively, dimensions566

n × n and n(n − 1)/2 × n(n − 1)/2, where n = 2S + 1. Fur-567

thermore, the ordering of the elements of the matrix M(2)
568

is such that by reading across or down the final matrix, the569

successive lists of positions appear in lexicographic order.570

Now the traces Tr(M(1)) and Tr(M(2)) can be calculated571

analytically as 572

Tr(M(1)) = (−1)2S

τ 2S
N

2S∑
i=0

[(
i∏

s=1

p−
s

)(
2S−1∏
r=i

p+
r

)]

= (2S)!

22Sτ 2S
N

S∑
k=−S

e
(k2−S2) σ

S2 +k
ξ0
S = (2S)!e−σ

22Sτ 2S
N

ZS,

and 573

Tr(M(2)) = (−1)2S+1

τ 2S−1
N

2S−1∑
i=0

2S∑
j=i+1

×
⎛
⎝ i∏

s=1

p−
s

2S−1∏
r=j

p+
r

j−i∑
m=1

j∏
u=j+2−m

p−
u

j−m−1∏
v=i

p+
v

⎞
⎠

= (2S)!e−σ

22S−1τ 2S−1
N

S−1∑
k=−S

S∑
n=k+1

n−k∑
m=1

× e
[2k2−2n−1+2m(2n−m+1)] σ

2S2 +(2k+2m−1) ξ0
2S

(S + n − m + 1)(S − n + m)
.

Here we have used the result
∏b

m=a p±
m = 1 if b < a. Thus 574

in the high-barrier approximation, τ/τN ≈ λ−1
1 is given by the 575

following approximate equation: 576

τ ≈ 2τN

ZS

S−1∑
k=−S

S∑
n=k+1

n−k∑
m=1

× e
[2k2−2n−1+2m(2n−m+1)] σ

2S2 +(2k+2m−1) ξ0
2S

(S + n − m + 1)(S − n + m)
. (C6)
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and Y. P. Kalmykov, Nonlinear magnetization relaxation of
superparamagnetic nanoparticles in superimposed ac and dc
magnetic bias fields, Phys. Rev. B 82, 100413(R) (2010).

[27] D. A. Varshalovich, A. N. Moskalev, and V. K. Khersonskii,
Quantum Theory of Angular Momentum (World Scientific,
Singapore, 1998).

[28] P. Hubbard, Quantum-mechanical and semiclassical forms of
the density operator theory of relaxation, Rev. Mod. Phys. 33,
249 (1961).

[29] A. G. Redfield, On the theory of relaxation processes, IBM J.
Res. Dev. 1, 19 (1957).

[30] A. Nitzan, Chemical Dynamics in Condensed Phases: Relax-
ation, Transfer, and Reactions in Condensed Molecular Systems
(Oxford University Press, New York, 2006).

[31] Handbook of Mathematical Functions, edited by M.
Abramowitz and I. A. Stegun (Dover, New York, 1972).

[32] H. Risken, The Fokker-Planck Equation, 2nd ed. (Springer-
Verlag, Berlin, 1989).

[33] Y. P. Kalmykov, W. T. Coffey, and S. V. Titov, Analytic
calculation of the longitudinal dynamic susceptibility of uniaxial
superparamagnetic particles in a strong uniform dc magnetic
field, J. Magn. Magn. Mater. 265, 44 (2003); Y. P. Kalmykov
and S. V. Titov, Calculation of longitudinal susceptibility of
superparamagnetic particles, Fiz. Tverd. Tela (S.P-eterburg) 45,
2037 (2003) [Sov. Phys. Solid State 45, 2140 (2003)].

004400-13

http://dx.doi.org/10.1063/1.358424
http://dx.doi.org/10.1063/1.358424
http://dx.doi.org/10.1063/1.358424
http://dx.doi.org/10.1063/1.358424
http://dx.doi.org/10.1063/1.1355347
http://dx.doi.org/10.1063/1.1355347
http://dx.doi.org/10.1063/1.1355347
http://dx.doi.org/10.1063/1.1355347
http://dx.doi.org/10.1016/j.physb.2003.08.105
http://dx.doi.org/10.1016/j.physb.2003.08.105
http://dx.doi.org/10.1016/j.physb.2003.08.105
http://dx.doi.org/10.1016/j.physb.2003.08.105
http://dx.doi.org/10.1103/PhysRevB.82.174423
http://dx.doi.org/10.1103/PhysRevB.82.174423
http://dx.doi.org/10.1103/PhysRevB.82.174423
http://dx.doi.org/10.1103/PhysRevB.82.174423
http://dx.doi.org/10.1063/1.3445879
http://dx.doi.org/10.1063/1.3445879
http://dx.doi.org/10.1063/1.3445879
http://dx.doi.org/10.1063/1.3445879
http://dx.doi.org/10.1063/1.3551582
http://dx.doi.org/10.1063/1.3551582
http://dx.doi.org/10.1063/1.3551582
http://dx.doi.org/10.1063/1.3551582
http://dx.doi.org/10.1063/1.3359722
http://dx.doi.org/10.1063/1.3359722
http://dx.doi.org/10.1063/1.3359722
http://dx.doi.org/10.1063/1.3359722
http://dx.doi.org/10.1063/1.3551582
http://dx.doi.org/10.1063/1.3551582
http://dx.doi.org/10.1063/1.3551582
http://dx.doi.org/10.1063/1.3551582
http://dx.doi.org/10.1063/1.3681361
http://dx.doi.org/10.1063/1.3681361
http://dx.doi.org/10.1063/1.3681361
http://dx.doi.org/10.1063/1.3681361
http://dx.doi.org/10.1103/PhysRevE.55.2569
http://dx.doi.org/10.1103/PhysRevE.55.2569
http://dx.doi.org/10.1103/PhysRevE.55.2569
http://dx.doi.org/10.1103/PhysRevE.55.2569
http://dx.doi.org/10.1002/9781118135242.ch4
http://dx.doi.org/10.1002/9781118135242.ch4
http://dx.doi.org/10.1002/9781118135242.ch4
http://dx.doi.org/10.1002/9781118135242.ch4
http://dx.doi.org/10.1103/PhysRevB.78.144413
http://dx.doi.org/10.1103/PhysRevB.78.144413
http://dx.doi.org/10.1103/PhysRevB.78.144413
http://dx.doi.org/10.1103/PhysRevB.78.144413
http://dx.doi.org/10.1103/PhysRevB.62.15026
http://dx.doi.org/10.1103/PhysRevB.62.15026
http://dx.doi.org/10.1103/PhysRevB.62.15026
http://dx.doi.org/10.1103/PhysRevB.62.15026
http://dx.doi.org/10.1088/0305-4470/39/42/005
http://dx.doi.org/10.1088/0305-4470/39/42/005
http://dx.doi.org/10.1088/0305-4470/39/42/005
http://dx.doi.org/10.1088/0305-4470/39/42/005
http://dx.doi.org/10.1103/PhysRevB.73.104448
http://dx.doi.org/10.1103/PhysRevB.73.104448
http://dx.doi.org/10.1103/PhysRevB.73.104448
http://dx.doi.org/10.1103/PhysRevB.73.104448
http://dx.doi.org/10.1103/PhysRevLett.95.190401
http://dx.doi.org/10.1103/PhysRevLett.95.190401
http://dx.doi.org/10.1103/PhysRevLett.95.190401
http://dx.doi.org/10.1103/PhysRevLett.95.190401
http://dx.doi.org/10.1103/PhysRevB.81.094432
http://dx.doi.org/10.1103/PhysRevB.81.094432
http://dx.doi.org/10.1103/PhysRevB.81.094432
http://dx.doi.org/10.1103/PhysRevB.81.094432
http://dx.doi.org/10.1103/PhysRevB.86.104435
http://dx.doi.org/10.1103/PhysRevB.86.104435
http://dx.doi.org/10.1103/PhysRevB.86.104435
http://dx.doi.org/10.1103/PhysRevB.86.104435
http://dx.doi.org/10.1103/PhysRevB.81.172411
http://dx.doi.org/10.1103/PhysRevB.81.172411
http://dx.doi.org/10.1103/PhysRevB.81.172411
http://dx.doi.org/10.1103/PhysRevB.81.172411
http://dx.doi.org/10.1088/0953-8984/22/37/376001
http://dx.doi.org/10.1088/0953-8984/22/37/376001
http://dx.doi.org/10.1088/0953-8984/22/37/376001
http://dx.doi.org/10.1088/0953-8984/22/37/376001
http://dx.doi.org/10.1007/BF01020134
http://dx.doi.org/10.1007/BF01020134
http://dx.doi.org/10.1007/BF01020134
http://dx.doi.org/10.1007/BF01020134
http://dx.doi.org/10.1143/JPSJ.38.656
http://dx.doi.org/10.1143/JPSJ.38.656
http://dx.doi.org/10.1143/JPSJ.38.656
http://dx.doi.org/10.1143/JPSJ.38.656
http://dx.doi.org/10.1143/JPSJ.49.15
http://dx.doi.org/10.1143/JPSJ.49.15
http://dx.doi.org/10.1143/JPSJ.49.15
http://dx.doi.org/10.1143/JPSJ.49.15
http://dx.doi.org/10.1143/JPSJ.49.1234
http://dx.doi.org/10.1143/JPSJ.49.1234
http://dx.doi.org/10.1143/JPSJ.49.1234
http://dx.doi.org/10.1143/JPSJ.62.381
http://dx.doi.org/10.1143/JPSJ.62.381
http://dx.doi.org/10.1143/JPSJ.62.381
http://dx.doi.org/10.1143/JPSJ.62.381
http://dx.doi.org/10.1063/1.3272082
http://dx.doi.org/10.1063/1.3272082
http://dx.doi.org/10.1063/1.3272082
http://dx.doi.org/10.1063/1.3272082
http://dx.doi.org/10.1103/PhysRevB.82.100413
http://dx.doi.org/10.1103/PhysRevB.82.100413
http://dx.doi.org/10.1103/PhysRevB.82.100413
http://dx.doi.org/10.1103/PhysRevB.82.100413
http://dx.doi.org/10.1103/RevModPhys.33.249
http://dx.doi.org/10.1103/RevModPhys.33.249
http://dx.doi.org/10.1103/RevModPhys.33.249
http://dx.doi.org/10.1103/RevModPhys.33.249
http://dx.doi.org/10.1147/rd.11.0019
http://dx.doi.org/10.1147/rd.11.0019
http://dx.doi.org/10.1147/rd.11.0019
http://dx.doi.org/10.1147/rd.11.0019
http://dx.doi.org/10.1016/S0304-8853(03)00222-1
http://dx.doi.org/10.1016/S0304-8853(03)00222-1
http://dx.doi.org/10.1016/S0304-8853(03)00222-1
http://dx.doi.org/10.1016/S0304-8853(03)00222-1
http://dx.doi.org/10.1134/1.1626752
http://dx.doi.org/10.1134/1.1626752
http://dx.doi.org/10.1134/1.1626752
http://dx.doi.org/10.1134/1.1626752



