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Spin-transfer torque effects in the dynamic forced response of the magnetization of nanoscale
ferromagnets in superimposed ac and dc bias fields in the presence of thermal agitation
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Spin-transfer torque (STT) effects on the stationary forced response of nanoscale ferromagnets subject to
thermal fluctuations and driven by an ac magnetic field of arbitrary strength and direction are investigated via
a generic nanopillar model of a spin-torque device comprising two ferromagnetic strata representing the free
and fixed layers and a nonmagnetic conducting spacer all sandwiched between two Ohmic contacts. The STT
effects are treated via Brown’s magnetic Langevin equation generalized to include the Slonczewski STT term
thereby extending the statistical moment method [Y. P. Kalmykov et al., Phys. Rev. B 88, 144406 (2013)] to
the forced response of the most general version of the nanopillar model. The dynamic susceptibility, nonlinear
frequency-dependent dc magnetization, dynamic hysteresis loops, etc. are then evaluated highlighting STT effects
on both the low-frequency thermal relaxation processes and the high-frequency ferromagnetic resonance, etc.,
demonstrating a pronounced dependence of these on the spin polarization current and facilitating interpretation
of STT experiments.
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I. INTRODUCTION

One of the most significant developments in magnetization
reversal by thermal agitation in nanoscale ferromagnets since
the seminal treatment of Néel [1] and Brown [2] has been
the spin-transfer torque (STT) effect [3–5] existing because an
electric current with spin polarization in a ferromagnet has an
associated flow of angular momentum [3–7] thereby exerting
a macroscopic spin torque. Consequently, the magnetization
M of the ferromagnet may be altered by spin-polarized
currents which underpin the novel subject of spintronics [8],
i.e., current-induced control over magnetic nanostructures.
Applications include (a) very high speed current-induced
magnetization switching by reversing the orientation of
magnetic bits [5,9] and (b) using spin-polarized currents to
manipulate steady state microwave oscillations [9] via the
steady state magnetization precession due to STT representing
the conversion of dc input current into an ac output voltage
[5]. Now due to thermal fluctuations [5,9], STT devices
invariably represent an open system on the nanoscale in
an out-of-equilibrium steady state quite unlike conventional
nanostructures characterized by the Boltzmann equilibrium
distribution. Therefore, the thermal fluctuations cannot be ig-
nored. They lead to mainly noise-induced switching at currents
far less than the critical switching current without noise as
well as introducing randomness into the precessional orbits
which now exhibit energy-controlled diffusion [10]. Thus the
effect of the noise is generally to reduce the current-induced
switching time. This phenomenon has been corroborated
by many experiments (e.g., [11]) demonstrating that STT
near room temperature alters thermally activated switching
processes, which then exhibit a pronounced dependence on
both material and geometrical parameters. However, in marked
contrast to the well-developed zero temperature limit T = 0,

and to nanomagnets at finite temperature without STT, various
treatments of the thermally activated magnetization reversal
in STT systems (e.g., escape rates [12–15] and stochastic
dynamic simulations [16–19]) are still in a state of flux
[20]. Therefore, accurate solutions of generic STT models at
finite temperatures are necessary both to properly assess such
theories and to achieve further improvements in the design and
interpretation of experiments, particularly due to the manifold
practical applications in spintronics, random access memory
technology, and so on.

The archetypal model (Fig. 1) of a STT device is a
nanostructure comprising two magnetic strata labeled the free
and fixed layers and a nonmagnetic conducting spacer. The
fixed layer is much more strongly pinned along its orientation
than the free one. On passing an electric current through the
fixed layer it becomes spin polarized which, as it encounters the
free layer, induces a STT that alters the magnetization M of that
layer. Both ferromagnetic layers are assumed to be uniformly
magnetized [8]. Although the single-domain or coherent
rotation approximation cannot explain all observations of the
magnetization dynamics in spin-torque systems, nevertheless
many qualitative features needed to interpret experimental
data are satisfactorily reproduced. Thus the current-induced
magnetization dynamics in the free layer including thermal
fluctuations may be described by the Landau-Lifshitz-Gilbert-
Slonczewski equation [3], i.e., the Landau-Lifshitz-Gilbert
equation [21] including the STT augmented by a Gaussian
white noise field h(t) so becoming a Langevin equation
[5,7,20], viz.,

u̇ = −γ u × (Heff + u̇|ST + h) + αu × u̇. (1)

Here u = M−1
S M is a unit vector along M, MS is the

saturation magnetization, γ is the gyromagnetic-type constant,
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FIG. 1. (Color online) (a) Geometry of the problem: A STT
device consists of two ferromagnetic strata labeled the free and fixed
layers, respectively, and a normal conducting spacer all sandwiched
on a pillar between two Ohmic contacts [12]. The fixed layer has a
fixed magnetization along the direction eP . Je is the spin-polarized
current density, M is the magnetization of the free layer, H0 is the
dc bias magnetic field, and H cos ωt is the applied ac field. (b) Free
energy potential presented in the standard form of superimposed
easy-plane and in-plane easy-axis anisotropies.

α is a dimensionless phenomenological damping parameter,
representing the combined effect of all the microscopic degrees
of freedom,

Heff = − 1

μ0MS

∂V

∂u
(2)

is the effective magnetic field comprising the anisotropy
and external applied fields, while ∂/∂u denotes the gradient
operator on the surface of the unit sphere, μ0 = 4π ×
10−7 J A−2 m−1 in SI units, V is the free energy density of
the free layer, and the STT term u̇|ST in Eq. (1) is defined as

u̇|ST = − 1

μ0MS
u × ∂�

∂u
,

where � is the nonconservative potential due to the spin-
polarized current [3,4,20].

Almost invariably, the effects of thermal fluctuations
combined with STT have been investigated via the mag-
netic Langevin equation (1) or its associated Fokker-Planck
equation [20]. This Langevin equation without STT was
originally proposed by Brown [2] for magnetic relaxation
over the anisotropy-Zeeman energy barrier in a single domain
ferromagnetic particle due to the shuttling action of the
Brownian motion. The Brownian motion being represented
by augmenting Gilbert’s equation by a stochastic magnetic
field h. His primary objective was to securely anchor Néel’s
conjectures [1] concerning the nature of the superparamagnetic
relaxation of a single domain ferromagnetic particle within the
framework of the theory of stochastic processes. Now Brown’s
description [2], based on the magnetic Langevin equation (1)
for the time evolution of the magnetization with zero STT term,
i.e., u̇|ST = 0, and the associated Fokker-Planck equation, is
in essence an analog of that in the Debye theory [22,23] of
dielectric relaxation of polar liquids at microwave frequencies.
In the present situation, the magnetic Langevin equation (1)
arises from the random magnetic field, which is assumed
to have Gaussian white noise properties and is imposed
by the heat bath along with the Gilbert damping. During
the last decade via the Langevin equation including STT

various analytical and numerical approaches to the calculation
of the measurable parameters of STT devices have been
extensively developed. These include generalizations (e.g.,
Refs. [12–14,20]) of the Kramers escape rate theory [24–27]
and stochastic dynamics simulations (e.g., Refs. [12,16–19]).
For example, the pronounced time separation between fast
precessional and slow energy changes in lightly damped
(α � 1) closed phase space trajectories (called Stoner-
Wohlfarth orbits) at energies near the barrier energy has been
exploited in Refs. [7,12,13] to formulate a one-dimensional
Fokker-Planck equation for the energy distribution function
essentially similar to that derived by Kramers [24] for point
particles. These generalizations yield STT effects in the
thermally assisted magnetization reversal via the Langevin
and/or Fokker-Planck equations as a function of temperature,
damping, external magnetic field, and spin-polarized current.
In particular, varying the spin-polarized current may alter the
reversal time by several orders of magnitude concurring with
experimental results [11].

Now we have previously treated [28] STT effects on certain
out-of-equilibrium time- and frequency-independent station-
ary observables in the presence of a dc bias field alone via
the generic nanopillar model (Fig. 1) by solving the magnetic
Langevin equation (1) using the statistical moment method
[27]. These observables comprise the stationary distribution of
the magnetization orientations, the effective potential, the in-
plane component of the magnetization of the free layer, and the
static susceptibility. In particular, these time- and frequency-
independent observables have been studied [28] for wide
ranges of the spin-polarized current, the dissipative coupling to
the thermal bath, the anisotropy parameters, and the magnitude
and orientation of the applied external dc field H0, which
was supposed constant in time. Besides the calculation of
these stationary observables, the reversal time of the in-plane
component of the magnetization of the free layer has also been
evaluated [28] via the smallest nonvanishing eigenvalue of the
corresponding Fokker-Planck operator [29] again as a function
of the parameters mentioned. Now in Ref. [28] the external
applied (bias) field was supposed time independent, i.e., it
represents a dc field applied in the infinite past. Hence, the
results of Ref. [28] cannot be applied to virtually all dynamical
aspects of the time-dependent magnetization response. These
include magnetization switching of STT devices and line
shape of STT nano-oscillators driven by ac external magnetic
fields and currents [30–35], stochastic resonance [36–39],
etc. In particular, as has been proved experimentally, the
magnetization reversal in STT devices driven by superimposed
direct and alternating currents or by a direct spin-polarized
current combined with an ac magnetic field may allow one
a more efficient STT magnetization reversal when compared
to that by purely direct currents that represent the greatest
technological interest in improving switching characteristics
of magnetic random access memories [35]. Nevertheless, an
accurate theoretical description of STT effects in the response
of a nanomagnet to an ac force of arbitrary strength in
the presence of thermal agitation has not yet been fully
developed due to the inherent difficulties generally associated
with modeling a nonlinear response. As a result, most of the
theoretical methods, which were developed for STT effects
(see, e.g., [30–39]), concern the response to an alternating
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current over limited ranges of the frequency and amplitude.
Hence, they do not cover many other dynamical characteristics
of nanomagnets including the nonlinear complex magnetic
susceptibility and dynamic magnetic hysteresis (DMH) loops,
which require the response to a strong ac magnetic field over a
wide frequency range. Therefore, to comprehensively investi-
gate the influence of STT on the dynamical characteristics of
the generic nanopillar model (Fig. 1) due to an ac magnetic
field of arbitrary strength and frequency, we generalize the
approach of Titov et al. [40] developed originally for zero
STT. The advantage of this approach over all others is that
one can obtain the nonlinear response for all frequencies of
interest ranging from the very low ones corresponding to
overbarrier relaxation processes up to the very high frequencies
appropriate to the ferromagnetic resonance (GHz) range using
a single model. Now a priori STT effects in the ac stationary
response of a nanomagnet inherently pose a more complicated
problem than the time-independent out-of-equilibrium case
of Ref. [28] because the observables are now both time
and frequency dependent. However, these difficulties may
be overcome using the matrix continued fraction method
[27,29] just as with the nonlinear ac response without STT
[40,41].

The paper is arranged as follows. In Sec. II the basic
equations for the calculation of the ac stationary response are
given. In Sec. III the spectra of the linear dynamic suscepti-
bility in all frequency ranges characterizing the magnetization
dynamics are given demonstrating a strong dependence on
STT. In Sec. IV STT effects on the stationary time-independent
but frequency-dependent magnetization and spectra of the
nonlinear dynamic susceptibility are illustrated, while STT
effects on DMH loops and specific absorption rate are studied
in Sec. V. Appendixes A and B contain a detailed account
of the matrix continued fraction solution for the stationary
response of a nanoscale ferromagnet to an ac magnetic field of
arbitrary strength.

II. STATISTICAL MOMENT EQUATIONS

Now the main thrust of our investigation is the study of
STT effects on the complex magnetic susceptibility and DMH
loops of a nanoscale ferromagnet subjected to superimposed
ac and dc bias fields H0 + H cos ωt of arbitrary strengths
and orientations using the generic nanopillar model illustrated
by Fig. 1. Here the normalized free energy per unit volume
βV (ϑ,ϕ,t) of the free layer may conveniently be written as
(H0 and H are assumed parallel)

βV (ϑ,ϕ,t) = σ (δcos2ϑ − sin2ϑcos2ϕ)

−(ξ0 + ξ cos ωt) cos �(ϑ,ϕ), (3)

where ϑ and ϕ are the angular coordinates specifying the
orientation of the magnetization M in spherical polar co-
ordinates [see Fig. 1(b)], σ = βμ0M

2
SD‖ and δ = D⊥/D‖

are the dimensionless anisotropy and biaxiality parameters,
respectively, D‖ and D⊥ account for both demagnetizing and
magnetocrystalline anisotropy effects [20], ξ0 = βμ0MSH0

and ξ = βμ0MSH are the dc and ac external field parameters,
respectively, β = v/(kT ), v is the volume of the free layer, k

is Boltzmann’s constant, T is the absolute temperature, while

� is the angle between H and M so that

cos �(ϑ,ϕ) = (u · H)
/
H

= γ1 sin ϑ cos ϕ + γ2 sin ϑ sin ϕ + γ3 cos ϑ. (4)

Here γ1 = cos ϕξ sin ϑξ , γ2 = sin ϕξ sin ϑξ , and γ3 = cos ϑξ

are the direction cosines of the applied dc and ac fields.
The first term on the right-hand side of Eq. (3), namely
σ (δcos2ϑ − sin2ϑcos2ϕ), constitutes a conservative potential
taken in the standard form of superimposed easy-plane and
in-plane easy-axis anisotropies [see Fig. 1(b)]. This potential,
in general, represents an energyscape with two minima and
two saddle points compelling the magnetization to align in a
given direction in either of the energy minima in the equatorial
or XY plane [28] [see Fig. 1(b)]. As in Ref. [28], Z is taken as
the hard axis while the X axis is the easy one. Furthermore, the
nonconservative potential � due to the spin-polarized current
may sensibly be approximated [28] for all polar angles ϑ and
ϕ and arbitrary orientation of the unit vector eP identifying the
magnetization direction in the fixed layer by a finite series of
spherical harmonics Yl,m(ϑ,ϕ) [42], viz.,

β� ∼=
2∑

r=0

r∑
s=−r

Br,sYrs(ϑ,ϕ), (5)

where the expansion coefficients Br,s are listed explicitly in
Ref. [28].

Now the task of calculating the ac stationary response from
the Langevin equation (1) can always be reduced to the solution
of an infinite hierarchy of differential-recurrence relations
for the statistical moments [averaged spherical harmonics
〈Yl,m〉(t), where the angular brackets 〈 〉 mean statistical
averaging] as with zero STT [40,41]. Such a hierarchy has
been derived in Ref. [28] for the nonconservative potential
due to spin-polarized current given by Eq. (5) and the biaxial
anisotropy plus the Zeeman term due to a spatially uniform
dc bias field H0. In a like manner we can generalize this
derivation to our case representing the response to a dc bias
field temporally modulated by an ac field H cos ωt . Here the
total free energy density V is given by Eq. (3) above and the
infinite hierarchy of 25-term differential-recurrence relations
for 〈Yl,m〉(t) becomes

τN

d

dt
〈Yl,m〉(t) =

2∑
r=−2

2∑
s=−2

el,m,l+r,m+s(t) 〈Yl+r,m+s〉(t), (6)

where the coefficients el,m,l+r,m+s(t) are now time dependent
and are given explicitly in Appendix A, τN = τ0σ (α + α−1)
is the free rotational diffusion time of the magnetization, and
τ0 = (2γμ0MSD‖) is a normalizing time. By using Eq. (4) and
the definition of spherical harmonics of first rank, viz. [42],

Y1,0 =
√

3

4π
cos ϑ, Y1,±1 = ∓

√
3

8π
sin ϑe±iϕ,

the magnetization MH (t) = MS〈cos �〉(t) in the direction of
the ac driving field H cos ωt may be formally expressed via
the statistical moments 〈Y1,0〉(t) and 〈Y1,1〉(t) as

MH (t) = MS

√
4π

3
{γ3〈Y1,0〉(t) −

√
2Re[(γ1 − iγ2)〈Y1,1〉(t)]}.

(7)
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However, due to the sinusoidal term in the applied field
H0 + H cos ωt , the stationary response of MH (t) must in
general be developed in a Fourier series because with the
notable exception of the linear response all harmonics of the
ac field will now be involved, viz.,

MH (t) = MS

∞∑
k=−∞

mk
1(ω)eikωt , (8)

where the Fourier coefficients mk
1(ω) of the kth harmonic of

MH (t) are given by

mk
1(ω) =

√
2π

3

[√
2γ3c

k
1,0(ω) + (γ1 + iγ2)ck

1,−1(ω)

− (γ1 − iγ2)ck
1,1(ω)

]
(9)

and ck
l,m(ω) are themselves the Fourier coefficients in a Fourier

series development in the time of the average spherical
harmonics

〈Yn,m〉(t) =
+∞∑

k=−∞
ck
n,m (ω) eikωt . (10)

The coefficients ck
l,m(ω) can then be evaluated using matrix

continued fractions as described in Appendix B. Equation
(8) includes the linear response as a special case ξ → 0,
whereupon all higher harmonics may be discarded in Eq. (8)
and only the term m1

1(ω) linear in ξ remains.
Having determined the Fourier amplitudes mk

1(ω), we have
MH (t) and other related parameters such as the dynamic
susceptibility, etc. This procedure will also yield the DMH loop
representing a parametric plot of the stationary time-dependent
magnetization as a function of the ac field [i.e., MH (t) vs
H (t) = H cos ωt] and the area enclosed by the loop, viz.,

A = −vμ0

∮
MH (t) dH (t). (11)

Equation (11) represents the energy loss per nanomagnet
in one cycle of the ac field. The physical meaning of A

is that it determines the so-called specific absorption rate
(SAR) defined as SAR = ωA/(2π ). Here we shall calculate
(because of its direct relation to the complex susceptibility)
the normalized area of the DMH loop An = A/(4vμ0MSH )
given by [43]

An = − 1

4MSH

∮
MH (t) dH (t) = −π

2
Im

(
m1

1

)
. (12)

The DMH phenomenon (originally predicted in nanomag-
nets by Ignachenko and Gekht [44]) signified by the loop is of
much practical interest since it occurs in magnetic information
storage and magnetodynamic hyperthermia occasioned by
induction heating of nanomagnets.

The vectors H0, H, and eP (as defined in spherical polar
coordinates in Fig. 1) are assumed throughout to lie in
the equatorial or XY plane with colatitudes ϑξ = π/2 and
ϑP = π/2, respectively. Thus, the orientations of H0, H,
and eP are entirely specified by the azimuthal angles of the
applied fields ϕξ and spin polarization ϕP , respectively. The
values ϕξ = ϕP = 0 correspond to the particular configura-
tion, whereby the vectors H0, H, and eP are all directed
along the easy (X) axis. The spin polarization azimuthal

angle ϕP , biaxiallity parameter δ, spin-polarization factor P,
and damping α selected are ϕP = 0, δ = 20, P = 0.3 (P ≈
0.3–0.4 are typical values for ferromagnetic metals [20]), and
α = 0.01 (for high damping α � 1, the STT effects become
very small [28]). For D‖ = 0.034, γ = 2.2 × 105 m A−1 s−1,
MS ≈ 1.4 × 106 A m−1 (cobalt), we have τ0 ≈ 4.8 × 10−11 s.
Furthermore, for v ∼ 10−24 m3 and T ∼ 293 K, the dc and
ac field parameters ξ0 and ξ are of the order of unity for
H0,H ∼ kT /(vμ0MS) ≈ 2.3 × 103 A m−1.

III. LINEAR DYNAMIC SUSCEPTIBILITY

For a weak ac field ξ → 0, all nonlinear effects in the
response may be ignored, so that the magnetization MH (t)
is simply given by the linear response

MH (t) = M0 + Re{χ (ω)ξeiωt }, (13)

where

M0 = MSm
0
1(ω) = MS〈cos �〉st = ω

2π

∫ 2π/ω

0
MH (t)dt

is the stationary time- and frequency-independent magneti-
zation, 〈〉st is the statistical average, and χ (ω) = 2m1

1(ω)/ξ
is the linear dynamic susceptibility which is independent of
the ac field strength. The corresponding plots of the real
and imaginary parts of the normalized susceptibility χ (ω)/χ
vs ω τN are shown in Fig. 2, where χ = χ (0) is the static
susceptibility. Just as with the zero STT case, analysis and
subsequent interpretation of the linear response radically
simplifies at low frequencies because the low-frequency
behavior of χ (ω) = χ ′(ω) − iχ ′′(ω) can then be accurately
described by a single Lorentzian, viz.,

χ (ω)

χ
≈ 1 − �

1 + iωτ
+ �. (14)

In Eq. (14) τ is the longest (overbarrier) relaxation time
without the ac external field, and � is a parameter accounting
for the mid- and high-frequency relaxation processes. Now τ

is related to the frequency ωmax of the low-frequency peak in
the loss spectrum −Im[χ (ω)], where it attains a maximum,
and the half-width �ω of the spectrum of the real part of the
susceptibility Re[χ (ω)] via

τ ≈ ω−1
max ≈ �ω−1. (15)

Since τ is the magnetization reversal time (effectively the
inverse escape rate), it can be associated with the inverse
of the smallest nonvanishing eigenvalue λ1 of the Fokker-
Planck operator as comprehensively described in Ref. [28].
Comparison of τ as extracted from the spectra χ (ω) via
Eq. (14) with τ = λ−1

1 calculated independently via λ1 of
the Fokker-Planck operator [28] shows that both methods
yield identical results. The variation of the material and
geometrical model parameters may alter the reversal time τ by
orders of magnitude concurring with experimental results [11].
The dependence of τ on the model parameters (damping α,
spin-polarized current parameter J , the external field strength
and orientation, etc.) has been given in Ref. [28].

The main features of the normalized linear susceptibility
plots are as follows. For J of intermediate magnitudes, the
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FIG. 2. (Color online) Real and imaginary parts of the normalized linear susceptibility χ (ω)/χ vs the normalized frequency ωτN for various
spin-polarized current parameters J = 6, 0,−3,−6,−12 and for various orientations of the applied fields ϕξ = 0 (a) and ϕξ = π/4 (b) with
the anisotropy parameter σ = 20 and the dc field parameter ξ0 = 2. Solid lines: Matrix continued fraction solution. Asterisks: Approximate
Eq. (14) with the reversal time τ = λ−1

1 calculated using the independent method of Ref. [28].

overall picture is more or less similar to that for J = 0,
i.e., we have the usual low-frequency overbarrier (interwell)
relaxation, mid-frequency intrawell relaxation, and very high-
frequency resonant behavior in a biaxial potential. Thus, we
have, in general, three dispersion regions in Re[χ (ω)/χ]
and three corresponding absorption bands in the magnetic
loss spectrum −Im[χ (ω)/χ] (see Fig. 2). The broad low-
frequency peak in −Im[χ (ω)/χ] corresponds to slow reversal
of the magnetization vector over the potential barriers and is
accurately described by the approximate Eq. (14). The most
pronounced STT effect is that the decrease of J from large
positive values initially shifts the low-frequency relaxation
peak to lower frequencies until the peak frequency ωmax

reaches a minimum at some intermediate value of J above
which the peak is shifted to higher frequencies (only the
shift to higher frequencies is shown in Fig. 2). This minimum
frequency peak corresponds to the particular situation, where
the STT has annulled the effect of the dc bias field so that the
effective potential has equal well depths. This corresponds to
the maximum relaxation time at a definite value of Jmax, which
has been depicted graphically in Fig. 10 of Ref. [28]. For high
positive or negative J , the magnitude of the low-frequency
peak in −Im[χ (ω)/χ] decreases until it merges with the
mid-frequency peak, signifying that the overbarrier relaxation
process has been completely extinguished due to the action
of STT. Thus, high magnitude spin-polarized current seems to
have virtually the same effect on the magnetization reversal as
that of a strong dc bias field in single domain ferromagnetic
particles at zero STT [45,46] (see also [27], Chap. 9). Here
at a certain critical value of that field [45,46], which is much
less than the nucleation field, the integral relaxation time (area
under the curve of the magnetization decay) diverges exponen-
tially from the overbarrier relaxation time due to the depletion
of the population of the shallowest well of the potential by the

dc field. This event is also signified by the virtual disappearance
of the low-frequency peak in the magnetic loss spectrum. Thus,
all that remains are the dynamical processes within the wells.
The explanation appears to be that the high positive or negative
J reduces the effective potential barrier so that the overbarrier
time decreases. Regarding the second peak at intermediate
frequencies, this is due to fast near-degenerate exponential
decays in the wells of the effective potential and comprises
the usual longitudinal intrawell relaxation. Lastly, we see
a third ferromagnetic resonance (FMR) peak at the Larmor
frequency ωpr . The origin of this peak lies in the magnetization
precession in an effective field due to both the anisotropy
and applied dc field. Notice that the susceptibility is strongly
influenced by the azimuthal angle ϕξ of the applied ac field.
For ϕξ = 0, high-frequency resonant harmonic modes are
discernible in the FMR band generating a comblike structure
with characteristic frequencies nωpr, n = 2,3, . . . reminiscent
of that which occurs in inertia-corrected dielectric relaxation
of polar molecules at THz frequencies under the influence of a
mean field potential [27,47]. This comblike structure virtually
disappears, however, for ϕξ = 0. The STT has no effect on the
mid-frequency and FMR regions with any apparent changes
being purely an artifact of the normalization.

IV. NONLINEAR RESPONSE

In strong applied ac fields, ξ > 1, pronounced frequency-
dependent nonlinear effects occur (see Figs. 3 and 4 illustrating
the dependence of the nonlinear response on the ac field
strength parameter ξ ). In contrast to the linear response,
the stationary time-independent but now frequency-dependent
magnetization M0(ω) = MSm

0
1(ω) and the nonlinear dynamic

susceptibility χ (ω) = 2m1
1(ω)/ξ as well as all other higher

harmonics mk
1(ω) with k > 1 now strongly depend on the
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FIG. 3. (Color online) (a) Time-independent (dc) component of
the magnetization M0/MS vs the spin-polarized current parameter
J for (a) various ac field amplitudes ξ = 0.01, 1, 2, and 3 (ξ =
0.01 represents linear response) and ωτN = 1 and for (b) various
dimensionless frequencies ωτN = 10−1, 10, and 103 at ξ = 2 at
σ = 5, ϕξ = 0, and ξ0 = 0.

magnitude ξ of the ac field. Moreover, for given ξ , all
mk

1(ω) also markedly depend on the azimuthal angle ϕξ ,
dc bias field ξ0, anisotropy parameters σ and δ, damping
α, and spin-polarized current parameter J , while the time
independent (dc) component of the magnetization M0 alters
profoundly leading to new nonlinear effects. In particular, that

component in typical nonlinear fashion becomes dependent on
both the amplitude and frequency of the ac field (see Fig. 3).
Such behavior is in sharp contrast to that of nanomagnets in
an ac field omitting STT, where one must also apply a dc bias
in combination with a strong ac field in order to observe the
frequency dependence of the dc response. This effect being
due to entanglement of the nonlinear ac and dc responses
[48]. However, with STT included the ac field amplitude and
frequency dependence of M0 always exists even for zero dc
bias field, i.e., ξ0 = 0. Hence, the spin-polarized current seems
to have the same effect on M0(ω) as that of a dc bias field at zero
STT. Furthermore, the dc response in Fig. 3 is not an odd func-
tion of J due to the nature of the nonconservative potential �.

Now in strong ac fields, it appears that the low-frequency
band of −Im[χ (ω)] deviates substantially from the Lorentzian
shape so that it can no longer be approximated by the
single Lorentzian equation (14). Nevertheless, Eq. (15) may
still be used in order to estimate an effective magnetization
reversal time τ as τ ≈ �ω−1. In addition, as the ac field
strength ξ increases, the magnitude of the low-frequency
peak in −Im[χ (ω)] is enhanced (Fig. 4). Furthermore, as
the ac field ξ increases the overbarrier peak on initially
shifting to lower frequencies attains a minimum frequency,
and thereafter shifts to higher frequencies. Omitting STT,
this minimum frequency peak occurs at ξ ∼ ξ0. However,
this is not true when STT is included as the STT acts in
combination with the applied field (Fig. 4). We remark that
the reversal time τ may also be evaluated from the spectra of
both the dc component M0(ω) and the higher-order harmonics
mk

1(ω) with k > 1 because the low-frequency parts of these
spectra are themselves dominated by overbarrier relaxation
processes with the characteristic time τ . Now as seen in
Fig. 4(b), with increasing ξ , the magnitude of the main FMR
peak at the precession frequency ωpr decreases and also
broadens showing pronounced saturation effects. Moreover,
a new high-frequency dispersion of resonant character near
the frequency ∼ ωpr/2 due to parametric resonance appears
just as that commonly occurring in nonlinear oscillators driven
by an ac external force. Nevertheless, the high-frequency
(ω � ωpr ) behavior of the spectrum remains virtually

FIG. 4. (Color online) (a) Real and imaginary parts of the nonlinear susceptibility Re[χ (ω)] and −Im[χ (ω)] vs ωτN for various ac field
amplitudes ξ and J = −3, ϕξ = π/4, σ = 20, and ξ0 = 2 using the matrix continued fraction solution. Solid lines: Linear response. Dashed
lines: Nonlinear response. (b) The high-frequency parts of the spectra alone.
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FIG. 5. (Color online) Real and imaginary parts of the nonlinear
susceptibility Re[χ (ω)] and −Im[χ (ω)] vs ωτN for various spin-
polarized current parameter J = 6, 0,−3,−6,−12 [ σ = 20, ϕξ =
π/4, ξ0 = 2, and ξ = 4] using the matrix continued fraction
solution.

unchanged (see Fig. 4). Parametric excitations of a current-
biased nanomagnet by a microwave magnetic field were
observed recently by Urazhdin et al. [34] amply demonstrating
that this phenomenon can be used to determine dynamical
properties of nanomagnets.

The nonlinear susceptibility for various J (Fig. 5) exhibits
many of the same characteristics as the corresponding lin-

FIG. 6. (Color online) DMH loops for various spin-polarized
current parameter J = −1, 0, 1 for (a) ξ = 2 and (b) ξ = 5 with
ωτN = 1, ϕξ = 0, α = 0.01, σ = 5, ξ0 = 0,

ear susceptibility (Fig. 2), i.e., three dispersion regions in
Re[χ (ω)/χ] and three corresponding absorption bands in the
magnetic loss spectrum −Im[χ (ω)/χ] for J of intermediate
magnitude, merging of the overbarrier peak with the mid-
frequency peak for high positive or negative J , and virtually
no STT effect in the mid-frequency and FMR regions. For
J < 0 the magnitude of the low-frequency overbarrier peak
decreases and the peak is shifted to higher frequencies, while
for J > 0 the magnitude of this peak increases and the peak
also shifts to higher frequencies.

V. DYNAMIC MAGNETIC HYSTERESIS

For a weak ac field ξ → 0, the DMH loops [m(t) =
MH (t)/MS vs reduced ac field h(t) = cos ωt] are ellipses
with normalized area An given by Eq. (12); the behavior of
An ∼ χ ′′ ∼ −Im(m1

1) being similar [cf. Eq. (12)] to that of the
magnetic loss χ ′′(ω) (see Figs. 2, 4, and 5). Now for moderate
ac fields ξ ≈ 1, the DMH loops still have an ellipsoidal shape
implying that only a few harmonics actually contribute to the
nonlinear response. However, in strong ac fields ξ > 1, the
loop shape alters substantially (see Figs. 6–9). In Figs. 6 and
7 the DMH loops for various values of J and ac amplitude
ξ are plotted showing that both the shape of the loops and
their areas alter as these parameters vary. The pronounced
frequency dependence of the DMH is highlighted in Figs. 8 and
9 for ϕξ = 0 and ϕξ = π/4, respectively, which also illustrates
their azimuthal angle dependence. In the low frequency band
[Figs. 8(a)–8(c) and 9(a)–9(c)] the negative and positive J

FIG. 7. (Color online) DMH loops for various spin-polarized
current parameter J = −1, 0, 1 (a) and J = −2, 0, 2 (b) with ωτN =
1, ϕξ = 0, α = 0.01, ξ0 = 0, ξ = 3, and σ = 5.
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FIG. 8. (Color online) DMH loops for various spin-polarized current parameters J = −1, 0, 1 and frequencies ωτN = 10−2 (a), 10−1 (b),
1 (c), 10 (d), 102 (e), and 3981 (f) with ϕξ = 0, α = 0.01, ξ0 = 0, ξ = 5, and σ = 5.

shifts the DMH loops to the left and right respectively. More-
over, at low frequencies, the field changes are quasiadiabatic,
so that the magnetization reverses due to the cooperative
shuttling action of thermal agitation, STT, and ac field. In
contrast at high frequencies [see Figs. 8(e), 8(f), 9(e), and
9(f)], the origin of the DMH lies in the resonant dispersion
and absorption in the FMR band. Here the phase difference
�φ between MH (t) and H (t), governing loop orientation, may
undergo a pronounced variation (as is typical of a resonant pro-
cess) in the very high frequency FMR band. In particular, the

phase difference may exceed π/2 (see, e.g., [49]). Obviously
this large resonant effect does not exist at low and intermediate
frequencies, where �φ is always less than π/2. In summary at
FMR frequencies, DMH occurs due to the resonant behavior of
the nonlinear response [see Fig. 8(f)] and under such conditions
the switching may be termed “resonant,” leading naturally to
the concept of resonant switching of the magnetization. Since
the resonant DMH occurs at very high (GHz) frequencies,
the magnetization switching is, therefore, for the most part
governed by the frequency of the external driving field, or
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FIG. 9. (Color online) DMH loops for various spin-polarized current parameters J = −1, 0, 1 and frequencies ωτN = 10−2 (a), 10−1 (b),
1 (c), 10 (d), 102 (e), and 3981 (f) with ϕξ = π/4, α = 0.01, ξ0 = 0, ξ = 5, and σ = 5.

equivalently, the rate of change of the amplitude of the latter.
Hence, the magnetization may be advantageously switched in
this situation, because the field needed to reverse it is then
much smaller than the quasistatic coercive force [49].

By plotting the normalized area An vs the spin-polarized
current (Fig. 10) An can invariably be represented as a bell
curve with the height, width, and center of the peak determined
by the various parameters. This is similar to a plot of An

vs the dc bias field strength ξ0 except that the latter will

always have the center of the peak along ξ0 = 0. In strong
ac fields ξ > 1, the normalized area alters substantially [see
Fig. 10(a)]. Nevertheless, An is still determined by −Im(m1

1),
i.e., χ ′′(ω) [cf. Eq. (12)]. Thus An strongly depends on the
frequency ω, the angles ϕξ , ϕP , ac and dc bias field amplitudes
ξ , ξ0, as well as the anisotropy parameters σ , δ, damping α,
and the spin-polarized current parameter J . In Fig. 10(a) on
increasing the ac field strength ξ , An also increases and the
range of J, for which a significant DMH loop area exists,
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FIG. 10. (Color online) Normalized area of the DMH loop An

[Eq. (12)] vs spin-polarized current parameter J (a) for various ac
field amplitudes ξ and ωτN = 1 and (b) for various frequencies ωτN

and ξ = 2 with ϕξ = 0, α = 0.01, ξ0 = 0, and σ = 5.

broadens. In Fig. 10(b) on increasing the driving frequency,
the normalized area initially increases, reaches a maximum,
and then decreases.

VI. CONCLUSIONS

We have treated STT effects on ac stationary forced
response of nanoscale ferromagnets driven by an ac magnetic
field of arbitrary strength using a nonperturbative approach
constituting an extension of the computationally efficient
matrix continued fraction algorithm for the solution of re-
currence relations originally developed [27] for single domain
ferromagnetic nanoparticles omitting STT. Our method, based
on the solution of the differential-recurrence relation for the
infinite hierarchy of statistical moments generated by either
the Langevin or Fokker-Planck equations as augmented by
STT terms, indicates that STT profoundly alters the nonlinear
response of a nanomagnet leading to new effects. Furthermore,
the statistical moment approach holds for the most comprehen-
sive formulation of the generic nanopillar model (Fig. 1), i.e.,
for arbitrary directions of the dc and ac external fields allowing
us to treat STT effects on frequency-dependent characteristics
under conditions which are otherwise inaccessible. Clearly, at
low damping, the stationary response to an ac driving field is
very sensitive to both the intensity of the spin-polarized current

and the frequency and amplitude of that field owing to the
intrinsic coupling between the magnetization precession and
its thermally activated reversal. Furthermore, our calculations,
since they are valid for ac fields of arbitrary strength and orien-
tation, quantify the role played by STT in nonlinear phenom-
ena in nanoscale ferromagnets such as nonlinear stochastic
resonance and dynamic magnetic hysteresis, nonlinear ac field
effects on the switching field curves, etc., where perturbation
theory is no longer valid. In addition, the moment method
yields the response for all frequencies of interest including
very high frequencies covering the ferromagnetic resonance
(GHz) range exemplifying various nonlinear phenomena such
as parametric resonance and higher harmonic generation
(which we hope will stimulate new experiments). Hence, the
high-frequency linear and nonlinear FMR spectra (see Figs. 2
and 4) may be suitable for the purpose of explaining the line
shape of STT nano-oscillators driven by ac external magnetic
fields and currents. Likewise, the DMH loops and their area
(yielding the Joule heating during the switching process) as
well as the calculations of the effective magnetization reversal
time via the low-frequency band of the magnetic loss spectra
may be useful for the prediction, modeling, and interpretation
of switching processes in recording techniques. Furthermore,
the DMH arising from a high-frequency periodic signal may be
exactly evaluated permitting quantitative analysis of ultrafast
switching of the magnetization. In particular, accurate solu-
tions in the manner outlined of the hierarchy of the statistical
moment equations for a generic model are essential for the
future development of both escape rate theory and stochastic
dynamics simulations of the magnetization reversal process
in STT systems just as they were in single domain particles.
For the limit of zero STT, our results concur with established
solutions for nanomagnets with biaxial anisotropy [41] while,
for nonzero STT, they constitute rigorous benchmark solutions
with which calculations of nonlinear response characteristics
via any other approach must comply. Finally, the statistical
moment method may be similarly generalized to the forced
response of a nanoscale ferromagnet driven by an alternating
spin-polarized current.
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APPENDIX A: EXPLICIT FORM OF THE
COEFFICIENTS en,m,n′,m′ (t)

By applying the general approach [27,28,40] for the deriva-
tion of differential-recurrence relations from the magnetic
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Langevin equation (1) as specialized to the potentials Eqs. (3) and (5), we have the 25 term differential recurrence Eq. (6) for the
statistical moments cl,m(t) = 〈Yl,m〉(t), viz.,

τN
d

dt
cn,m(t) = v−−

n,mcn−2,m−2(t) + v−
n,mcn−2,m−1(t) + vn,mcn−2,m(t) + v+

n,mcn−2,m+1(t) + v++
n,mcn−2,m+2(t)

+w−−
n,mcn−1,m−2(t) + w−

n,m(t)cn−1,m−1(t) + wn,m(t)cn−1,m(t) + w+
n,m(t)cn−1,m+1(t) + w++

n,mcn−1,m+2(t)

+ x−−
n,m cn,m−2(t) + x−

n,m(t)cn,m−1(t) + xn,m(t)cn,m(t) + x+
n,m(t)cn,m+1(t) + x++

n,mcn,m+2(t)

+ y−−
n,mcn+1,m−2 + y−

n,m(t)cn+1,m−1(t) + yn,m(t)cn+1,m(t) + y+
n,m(t)cn+1,m+1(t) + y++

n,mcn+1,m+2(t)

+ z−−
n,mcn+2,m−2(t) + z−

n,mcn+2,m−1(t) + zn,mcn+2,m(t) + z+
n,mcn+2,m+1(t) + z++

n,mcn+2,m+2(t). (A1)

Here the coefficients xn,m(t), yn,m(t), etc. corresponding to the matrix elements en,m,n′,m′ (t) in Eq. (6) have the same form as
those in Eq. (C1) of Ref. [28] save that they are now time dependent. To keep in step with the notation of Ref. [28], we define
reduced fields

h0 = H0/(2MSD‖) and h = H/(2MSD‖). (A2)

Thus in our particular case of a single ac forcing term, we have

h(t) → h0 + 2h cos ωt → h0 + h(eiωt + e−iωt ). (A3)

Equation (A3) then implies that for a constant field superimposed on a periodic ac one, the time-dependent coefficients xn,m(t),
etc. in Eq. (A1) may be written as the sum of a dc term and one oscillating at the fundamental frequency, viz.,

wn,m(t) = w0
n,m + w1

n,m(eiωt + e−iωt ),

xn,m(t) = x0
n,m + x1

n,m(eiωt + e−iωt ),

yn,m(t) = y0
n,m + y1

n,m(eiωt + e−iωt ),

etc. The various coefficients are then given by

x0
n,m = −n(n + 1)

2
+ i

mσh0γ3

α
+ i

√
π

3
mbP JY ∗

10(ϑP ,ϕP )

+ n(n + 1) − 3m2

(2n − 1) (2n + 3)

{
−σ

(
1

2
+ δ

)
+ 2πcP bP J

3α

[
Y ∗2

10 (ϑP ,ϕP ) + Y ∗
11(ϑP ,ϕP )Y ∗

1−1(ϑP ,ϕP )
]}

,

x1
n,m = i

mσhγ3

α
,

x±0
n,m =

√
(1 + n ± m) (n ∓ m)

{
(γ1 ∓ iγ2)

iσh0

2α
∓ i

√
π

6
bP JY ∗

1±1(ϑP ,ϕP ) +
√

2πcP bP J (1 ± 2m)

3α (2n − 1) (2n + 3)
Y ∗

10(ϑP ,ϕP )Y ∗
1±1(ϑP ,ϕP )

}
,

x±1
n,m =

√
(1 + n ± m) (n ∓ m) (γ1 ∓ iγ2)

iσh

2α
,

x±±0
n,m = −3

√
(n ± m + 1) (n ± m + 2) (n ∓ m − 1) (n ∓ m)

4(2n − 1)(2n + 3)

(
σ + 4πcP bP J

3α
Y ∗2

1±1(ϑP ,ϕP )

)
,

y0
n,m =

√
(n + 1)2 − m2

(2n + 1) (2n + 3)

{
− imσ

α

(
1

2
+ δ

)
− nσh0γ3 + bP Jn

α

√
π

3
Y ∗

10(ϑP ,ϕP )

− im4πcP bP J

3

[
Y ∗2

10 (ϑP ,ϕP ) + Y ∗
11(ϑP ,ϕP )Y ∗

1−1(ϑP ,ϕP )
]}

,

y1
n,m = −n

√
(n + 1)2 − m2

(2n + 1) (2n + 3)
σhγ3,
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y±0
n,m =

√
(1 + n ± m) (2 + n ± m)

(1 + 2n) (3 + 2n)

{
bP Jn

α

√
π

6
Y ∗

1±1(ϑP ,ϕP )

±n

2
σh0 (γ1 ∓ iγ2) ± i

√
2πcP bP J (n ∓ 2m)

3
Y ∗

10(ϑP ,ϕP )Y ∗
1±1(ϑP ,ϕP )

}
,

y±1
n,m = ±n

2

√
(1 + n ± m) (2 + n ± m)

(1 + 2n) (3 + 2n)
σh (γ1 ∓ iγ2),

y±±0
n,m = ∓i

(
σ

4α
− πcP bP J

3
Y ∗2

1±1(ϑP ,ϕP )

)√
(1 + n ± m) (2 + n ± m) (3 + n ± m) (n ∓ m)

(1 + 2n) (3 + 2n)
,

w0
n,m =

√
n2 − m2

4n2 − 1

{
− imσ

α

(
1

2
+ δ

)
+ (n + 1)σh0γ3

− bP J (n + 1)

α

√
π

3
Y ∗

10(ϑP ,ϕP ) − im2πcP bP J

3

[
Y ∗2

10 (ϑP ,ϕP ) + Y ∗
11(ϑP ,ϕP )Y ∗

1−1(ϑP ,ϕP )
]}

,

w1
n,m =

√
n2 − m2

4n2 − 1
(n + 1)σhγ3.

w±0
n,m =

√
(n ∓ m) (n ∓ m − 1)

4n2 − 1

{
bP J (n + 1)

α

√
π

6
Y ∗

1±1(ϑP ,ϕP )

± n + 1

2
σh0 (γ1 ∓ iγ2) ± i

√
2πcP bP J (n + 1 ± 2m)

3
Y ∗

10(ϑP ,ϕP )Y ∗
1±1(ϑP ,ϕP )

}
,

w±1
n,m = ±n + 1

2

√
(n ∓ m) (n ∓ m − 1)

4n2 − 1
σh (γ1 ∓ iγ2) ,

w±±0
n,m = ± i

4

(
σ

α
− 4πcP bP J

3
Y ∗2

1±1(ϑP ,ϕP )

) √
(n ∓ m − 2) (n ∓ m − 1) (1 + n ± m) (n ∓ m)

4n2 − 1
,

zn,m = n

2n + 3

√
[(n + 1)2 − m2][(n + 2)2 − m2]

(2n + 1) (2n + 5)

×
{
σ

(
1

2
+ δ

)
− 2π2cP bP J

3α

[
Y ∗2

10 (ϑP ,ϕP ) + Y ∗
11(ϑP ,ϕP )Y ∗

1−1(ϑP ,ϕP )
]}

,

z±
n,m = −2

√
2πcP bP J

3α
Y ∗

10(ϑP ,ϕP )Y ∗
1±1(ϑP ,ϕP )

n

2n + 3

√
[(n + 1)2 − m2] (n ± m + 2) (n ± m + 3)

(2n + 1) (2n + 5)
,

z±±
n,m = −

(
σ

4
+ πcP bP J

3α
Y ∗2

1±1(ϑP ,ϕP )

)
n

2n + 3

√
(n + 1 ± m) (2 + n ± m) (3 + n ± m)(4 + n ± m)

(2n + 1) (2n + 5)
,

vn,m = n+1

2n−1

√
[(n−1)2−m2](n2−m2)

(2n + 1) (2n − 3)

{
−σ

(
1

2
+ δ

)
+2πcP bP J

3α

[
Y ∗2

10 (ϑP ,ϕP ) + Y ∗
11(ϑP ,ϕP )Y ∗

1−1(ϑP ,ϕP )
]}

,

v±
n,m = −2

√
2πcP bP J

3α
Y ∗

10(ϑP ,ϕP )Y ∗
1±1(ϑP ,ϕP )

n + 1

2n − 1

√
(n ∓ m − 2) (n ∓ m − 1)(n2 − m2)

(2n + 1) (2n − 3)
,

v±±
n,m =

(
σ

4
+ πcP bP J

3α
Y ∗2

1±1(ϑP ,ϕP )

)
n + 1

2n − 1

√
(n ∓ m − 3) (n ∓ m − 2) (n ∓ m − 1) (n ∓ m)

(2n + 1) (2n − 3)
.

Here

bP = 4P 3/2

3(1 + P )3 − 16P 3/2
, cP = (1 + P )3

3(1 + P )3 − 16P 3/2
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are model-dependent coefficients determined by the spin
polarization factor P (0 < P < 1), the dimensionless spin-
polarized current parameter J is defined as

J = vμ0M
2
SJe

kT Jp

, (A4)

where Je is the current density, taken as positive when
the electrons flow from the free into the fixed layer, and
Jp = μ0M

2
S |e|d/� (e is the electronic charge, � is Planck’s

reduced constant, and d is the thickness of the free layer).
A typical value of Jp for a 3–nm-thick layer of cobalt
is Jp ≈ 1.1 × 109 A/cm2, while the largest current density
reported in experiments is Je ≈ 107–108 A cm−2 (cf. Ref. [20],
p. 237). However, for weak damping α � 1, the ratio cP bP J/α

appearing in the coefficients x0
n,m, etc. listed above may be of

the same order of magnitude as the anisotropy parameters σ

and δ so explaining the strong STT effects on the magnetization
dynamics. In contrast, for high damping α � 1, the STT effects
become very small [28].

APPENDIX B: CALCULATION OF THE STATISTICAL
MOMENTS VIA MATRIX CONTINUED FRACTIONS

The differential-recurrence relations Eq. (A1) can be solved
by matrix continued fraction methods just as in the case of
zero STT term [41] with some modifications of the algorithm.
By introducing vectors ck

n(ω) (n = 0,1,2, . . .) with elements
composed of the Fourier amplitudes ck

n,m(ω) in Eq. (10), viz.,

c0 (ω) = (
c0

0,0

)
, ck

n(ω) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ck
2n,−2n (ω)

...
ck

2n,2n (ω)
ck

2n−1,−2n+1 (ω)
...

ck
2n−1,2n−1 (ω)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

we have from Eq. (A1) a matrix differential-recurrence relation
for the ck

n(ω), viz.,

q−
n ck

n−1(ω) + (qn − ikτNωI) ck
n(ω) + q+

n ck
n+1(ω)

+ p−
n

[
ck−1
n−1(ω) + ck+1

n−1(ω)
] + pn

[
ck−1
n (ω) + ck+1

n (ω)
]

+ p+
n

[
ck−1
n+1(ω) + ck+1

n+1(ω)
] = 0, (B1)

where the supermatrices q−
n ,qn, q+

n , p−
n ,pn, p+

n , r−
n ,rn, r+

n are
(cf. Eq. (C3) of [28])

qn =
(

X0
2n W0

2n

Y0
2n−1 X0

2n−1

)
, q+

n =
(

Z2n Y0
2n

0 Z2n−1

)
,

q−
n =

(
V2n 0

W0
2n−1 V2n−1

)
,

pn =
(

X1
2n W1

2n

Y1
2n−1 X1

2n−1

)
, p+

n =
(

0 Y1
2n

0 0

)
,

p−
n =

(
0 0

W1
2n−1 0

)
.

Here the submatrices Vn, Zn, Wi
n, Xi

n, and Yi
n (i = 0, 1) have

virtually the same form and the same nonzero elements as the

submatrices Vn, Wn, Xn, Yn, and Zn from Ref. [28] defined
in terms of the time-independent elements vn,m, wn,m, etc. The
only differences which occur are highlighted by the superscript
i(i = 0,1) in the submatrices Wi

n, Xi
n, and Yi

n, indicating
that the elements wn,m, xn,m, yn,m, etc. appearing in these
submatrices must now be replaced by wi

n,m, xi
n,m, yi

n,m, etc.,
respectively.

Next, we introduce super column vectors via

C0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

...
0
0
c0

0
0
0
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, Cn =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

...

c−2
n (ω)

c−1
n (ω)

c0
n(ω)

c1
n(ω)

c2
n(ω)

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

n = 1,2,3, . . . , (B2)

then we have from Eq. (B1) the tridiagonal matrix recurrence
relations

Q1C1 + Q+
1 C2 = −Q−

1 C0, (B3)

QnCn + Q+
n Cn+1 + Q−

n Cn−1 = 0. (B4)

Here n = 1, 2, 3, . . . and the tridiagonal supermatrices Qn

and Q±
n , and column vectors Q−

1 C0 and Cn are defined as[
Q±

n

]
l,m

= δl−1,mp±
n + δl,mq±

n + δl+1,mp±
n ,

[Qn]l,m = δl−1,mpn + δl,m (qn − imτNωI) + δl+1,mpn,

Q−
1 C0 = 1√

4π

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

...
0
0

p−
1

q−
1

p−
1

0
0
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, p−
1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
0

w+1
1,−1

w1
1,0

w−1
1,1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, q−
1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

v++0
2,−2

v+0
2,−1

v0
2,0

v−0
2,1

v−−0
2,2

w+0
1,−1

w0
1,0

w−0
1,1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The exact solution of Eqs. (B3) and (B4) is then rendered
by the matrix continued fraction

C1 = S1 Q−
1 C0, (B5)

where S1 is defined by the recurrence equation

Sn = −[Qn + Q+
n Sn+1Q−

n+1 ]−1.

The vector C1 in Eq. (B5) contains all the Fourier ampli-
tudes needed for both the linear and nonlinear ac stationary
responses. These results are valid for arbitrary field strength
meaning that calculating the ck

n,m(ω) and thus the forced
response may be reduced to computing matrix continued
fractions. When the spin-polarized current parameter J = 0,
the above solution agrees in all respects with that given in
Ref. [41] for the ac response of a nanomagnet with biaxial
anisotropy subjected to superimposed external ac and dc fields
of arbitrary strength and orientation omitting STT.
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