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The dc component of the magnetization of noninteracting fine magnetic particles possessing simple

uniaxial anisotropy and subjected to strong ac and dc bias magnetic fields is calculated via the

magnetic Langevin equation. In the presence of an ac driving field, the dc component of the

magnetization of uniaxial particles alters drastically leading to new nonlinear effects; in particular,

it becomes frequency-dependent. In axial symmetry, where the strong ac field is parallel to the easy

axis of a particle, two distinct dispersion regions in the dc magnetization at low and

mid-frequencies emerge, corresponding to longitudinal overbarrier and intrawell relaxation modes.

Such frequency-dependent behavior allows one to estimate the magnetization reversal time via the

half-width of the low-frequency dispersion band. Otherwise, by applying the strong ac field at an

angle to the easy axis of a particle so breaking the axial symmetry, a third high-frequency nonlinear

resonant dispersion in the dc component of the magnetization appears accompanied by parametric

resonance behavior due to excitation of transverse modes with frequencies close to the precession

frequency. VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4900618]

I. INTRODUCTION

A fine ferromagnetic particle is characterized by an inter-

nal magnetocrystalline anisotropy potential with several local

states of equilibrium and potential barriers between them

depending on the size of the particle. If the particles are small

(�10 nm) so that the barriers are relatively low, the magnet-

ization vector M may cross over from one potential well to

another and vice versa due to thermal agitation with a relaxa-

tion time, which exponentially depends on the volume of a

particle. The ensuing thermal instability of the magnetization

of fine particles results in superparamagnetism and in mag-

netic aftereffect. The thermal fluctuations and relaxation of

the magnetization of such particles play a central role in in-

formation storage, rock magnetism, magnetic hyperthermia,

etc.,1,2 while due to the large magnitude of their magnetic

dipole moment (�104–105 lB), the Zeeman energy is rela-

tively large even in moderate external magnetic fields. Hence

we expect that their magnetization dynamics will exhibit a

pronounced field and frequency dependence,3 which is signif-

icant because the nonlinear response of fine particles driven

by a strong ac field occurs in diverse physical applications.

These include nonlinear dynamic susceptibilities and field

induced birefringence,3–6 nonlinear stochastic resonance,7

dynamic hysteresis,8–10 and microwave field effects.11,12

The calculation of the nonlinear magnetic response of

nanomagnets in the presence of thermal agitation originating

in a heat bath usually commences with the magnetic Langevin

equation. This is Gilbert’s (or the Landau-Lifshitz) equation

augmented by a random magnetic field h(t) with Gaussian

white noise properties, accounting for the thermal fluctuations

of the magnetization MðtÞ of an individual particle,13 viz.,

_MðtÞ ¼ c½MðtÞ � ½�@VMðtÞ � g _MðtÞ þ hðtÞ��: (1)

Here, c is the gyromagnetic ratio, g is the damping parame-

ter, and V is the free energy per unit volume comprising the

non-separable Hamiltonian of the magnetic anisotropy and

Zeeman energy densities, and MS is the saturation magnet-

ization, assumed constant so that the only variable is the

orientation of M ¼ MSu, which is specified by the polar and

azimuthal angles # and u of the spherical polar coordinate

system. The stochastic differential Eq. (1) is then used to

derive the accompanying Fokker-Planck equation (FPE)

governing the time evolution of the probability density func-

tion Wðu; tÞ of magnetization orientations on the surface of a

sphere of constant radius MS (u is a unit vector along M),

and the relevant FPE is13

2sN
@W

@t
¼ r2W þ b

a
u � rV �rW½ �ð Þ þ b r �WrVð Þ: (2)

Here, r ¼ @=@u is the gradient operator on the unit sphere,

a ¼ cgMS is the dimensionless damping constant, sN ¼
s0ðaþ a�1Þ is the characteristic free diffusion time of MðtÞ
with s0 ¼ bl0MS=ð2cÞ, b ¼ v=ðkTÞ, v is the volume of a typ-

ical particle, k is Boltzmann’s constant, and T is the absolute

temperature. A general method of solving Eq. (1) and the

Fokker-Planck Eq. (2) for arbitrary magnetocrystalline ani-

sotropy energy density is given in Ref. 14 (see also Ref. 15,

0021-8979/2014/116(17)/173903/9/$30.00 VC 2014 AIP Publishing LLC116, 173903-1

JOURNAL OF APPLIED PHYSICS 116, 173903 (2014)

 [This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to ] IP:

90.57.254.173 On: Wed, 05 Nov 2014 19:02:25

http://dx.doi.org/10.1063/1.4900618
http://dx.doi.org/10.1063/1.4900618
http://dx.doi.org/10.1063/1.4900618
http://dx.doi.org/10.1063/1.4900618
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4900618&domain=pdf&date_stamp=2014-11-03


Chapter 9). We remark that Eq. (2), omitting the second (pre-

cessional) term on the right hand side, is essentially similar

to the Smoluchowski equation describing dielectric and Kerr

effect relaxation in polar liquids.15 However, the preces-

sional term has a profound effect on the magnetization

dynamics especially in the nonlinear case because it may

couple, depending on the direction of the applied field, the

longitudinal and transverse modes in Eq. (1) or (2) as we

shall presently see.

Now in the most basic model used to study nonlinear

relaxation processes, the free-energy density V of a single-

domain nanoparticle with uniaxial anisotropy in superim-

posed homogeneous external dc bias and ac magnetic fields

H0 þH cos x t of arbitrary strengths and orientations relative

to the easy axis of the particle is given by

bV ¼ r sin2#� n0ðu �H0Þ=H0 � n cos x tðu �HÞ=H; (3)

where r ¼ bK, n0 ¼ bH0MS, and n ¼ bHMS are the dimen-

sionless anisotropy and external field parameters, and K is the

anisotropy constant. Various treatments of the nonlinear ac

stationary response have been effected by means of

numerical solutions of the governing dynamical Eqs. (1) and/

or (2). In particular, efficient numerical algorithms for the

calculation of the nonlinear ac stationary response of the

magnetization of uniaxial magnetic nanoparticles have been

proposed16,17 by assuming that the dc bias and ac driving

fields are directed along the easy axis of the particle.

However, in the axially symmetric configuration, many inter-

esting nonlinear effects are suppressed because no dynamical

coupling between the longitudinal and transverse precessional

modes of motion exists. These mode coupling effects in the

nonlinear ac stationary response can only be modelled for

uniaxial particles driven by a strong ac field applied at an
angle to the easy axis of the particle so that the axial symme-

try is broken by the Zeeman energy.18–21 Now building on

the axially symmetric solutions described in Refs. 16 and 17,

an exact nonperturbative method for the determination of the

Fourier amplitudes and so the nonlinear magnetization of

magnetic nanoparticles with an arbitrary anisotropy potential

and subjected to a strong ac driving field superimposed on a

strong dc bias field has recently been given by Titov et al.22

The method is rooted in posing the solution of the averaged

magnetic Langevin Eq. (1) for the statistical moments (expec-

tation values of the spherical harmonics) in terms of matrix

continued fractions in the frequency domain (for full details

see Ref. 22). So far this method has been used to determine

the dynamic susceptibilities (linear, cubic, etc.) and dynamic

hysteresis loops in uniaxial magnetic nanoparticles in Refs.

20 and 22. Here, we focus for the first time on nonlinear

frequency-dependent effects in the time-independent dc com-

ponent of the magnetization in superimposed external dc bias

and ac magnetic fields, which were overlooked in previous

studies. Thus we shall demonstrate that under such condi-

tions, the dc magnetization of a magnetic nanoparticle drasti-

cally alters leading to pronounced nonlinear effects including

three dispersion bands at low, intermediate, and high frequen-

cies in the dc magnetization spectrum. We shall also evaluate

the dc magnetization of an assembly of noninteracting uniax-

ial nanoparticles with randomly oriented easy axes in space

which display similar nonlinear phenomena.

II. BASIC RELATIONS

Henceforth, we shall assume that the easy axis of the

particles coincides with the Z axis of the laboratory coordi-

nate system and that H0 and H are parallel, lie in the XZ
plane and applied at an oblique angle w with respect to the Z
axis. The method of Titov et al.22 for solving the magnetic

Langevin Eq. (1) subjected to ac and dc magnetic fields

HðtÞ ¼ H0 þH cos xt may be briefly summarized as fol-

lows. First, the magnetic Langevin Eq. (1) is transformed to

an infinite hierarchy of stochastic differential-recurrence

relations for the spherical harmonics Yl;mð#;uÞ,23 which on

averaging over their realizations in the space of polar angles

ð#;uÞ of M using the properties of white noise yield deter-

ministic differential-recurrence relations for the statistical

moments hYl;miðtÞ, viz.,

sN
d

dt
hYl;mi tð Þ þ l lþ 1ð Þ

2
þ im

2a
n0 þ n cosxtð Þcosw� r

l lþ 1ð Þ � 3m2

2l� 1ð Þ 2lþ 3ð Þ

" #
hYl;mi tð Þ

¼ r lþ 1ð Þ
2l� 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 �m2ð Þ l� 1ð Þ2 �m2

h i
2l� 3ð Þ 2lþ 1ð Þ

vuut
hYl�2;mi tð Þ � rl

2lþ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lþ 2ð Þ2 �m2

h i
lþ 1ð Þ2 �m2

h i
2lþ 5ð Þ 2lþ 1ð Þ

vuut
hYlþ2;mi tð Þ

þ n0 þ n cos xtð Þ lþ 1

2
cosw� imr

a

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 �m2

4l2 � 1

s
hYl�1;mi tð Þ � n0 þ n cosxtð Þ l

2
coswþ imr

a

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lþ 1ð Þ2 �m2

2lþ 3ð Þ 2lþ 1ð Þ

s
hYlþ1;mi tð Þ

� n0 þ n cos xtð Þsinw
4

i

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l�mþ 1ð Þ lþmð Þ

p
hYl;m�1i tð Þ � i

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lþmþ 1ð Þ l�mð Þ

q
hYl;mþ1i tð Þ

�

þ lþ 1ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lþmð Þ lþm� 1ð Þ

4l2 � 1

r
hYl�1;m�1i tð Þ þ lþ 1ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l�mð Þ l�m� 1ð Þ

4l2 � 1

s
hYl�1;mþ1i tð Þ

þ l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l�mþ 1ð Þ l�mþ 2ð Þ

2lþ 3ð Þ 2lþ 1ð Þ

s
hYlþ1;m�1i tð Þ þ l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lþmþ 1ð Þ lþmþ 2ð Þ

2lþ 3ð Þ 2lþ 1ð Þ

s
hYlþ1;mþ1i tð Þ

#
; (4)
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where the angular brackets h iðtÞ denote the ensemble aver-

aging in the presence of the ac field. Then by confining our-

selves to the stationary solution for the magnetization in the

direction of the ac driving field mðtÞ ¼ MSh cos HiðtÞ, where

H is the angle between the vectors M and H so that cos H ¼
cos w cos#þ sin w sin# cos u and using the known defini-

tions of the spherical harmonics of the first rank, viz.,23

Y1;0 ¼
ffiffiffiffiffiffi
3

4p

r
cos#; Y1;61 ¼ 7

ffiffiffiffiffiffi
3

8p

r
sin#e6iu; (5)

we see that the magnetization mðtÞ can be expressed via the

statistical moments hY1;0iðtÞ and hY1;61iðtÞ as

m tð Þ ¼MS

ffiffiffiffiffiffi
2p
3

r � ffiffiffi
2
p

cos whY1;0i tð Þ

þsin w½hY1;�1i tð Þ � hY1;1i tð Þ�
�
: (6)

Now mðtÞ must be developed in the Fourier series (because

unlike the linear response all harmonics of the driving field

will now be involved)

mðtÞ ¼ MS

X1
k¼�1

mk
1ðxÞ eikxt; (7)

where mk
1ðxÞ is the amplitude of the kth harmonic in the non-

linear response given by22 [cf. Eq. (8) of that paper]

mk
1 xð Þ¼

ffiffiffiffiffiffi
2p
3

r ffiffiffi
2
p

coswck
1;0 xð Þþsinw ck

1;�1 xð Þ�ck
1;1 xð Þ

h in o
:

(8)

The ck
l;mðxÞ are themselves the Fourier coefficients in a

Fourier series development in the time of the average spheri-

cal harmonics governed by the evolution Eq. (4), viz.,

hYl;miðtÞ ¼
X1

k¼�1
ck

l;mðxÞ eikxt: (9)

However, the Fourier coefficients ck
l;mðxÞ of the kth har-

monic component in Eq. (9) with l ¼ 1 and m ¼ 0;61 of the

average spherical harmonics hY1;0iðtÞ and hY1;61iðtÞ under-

pinning the magnetization nonlinear response are connected

to all other Fourier coefficients ck
l;mðxÞ of spherical harmon-

ics of different ranks via the differential-recurrence relation,

Eq. (4). Nevertheless, despite this entanglement, the particu-

lar coefficients ck
1;mðxÞ pertaining to Eq. (8) can be calcu-

lated numerically via matrix continued fractions (details in

Ref. 22, particularly Eq. (3) et seq.).

Here, we focus on the time-independent or dc compo-

nent of the magnetization MnðxÞ defined by the mean value

Mn xð Þ ¼ x
2pMS

ð2p=x

0

m tð Þ dt ¼ m0
1 xð Þ; (10)

which we note is entirely real. The analysis may be simpli-

fied as follows. First, we note that in the limits of vanishing
ac field, n! 0, and/or of very high frequency field, x!1,

Eqs. (8) and (10) yield two limiting values for the dc magnet-

ization, which are

lim
n!0

MnðxÞ ¼ M0 and lim
x!1

MnðxÞ ¼ Mnð1Þ;

respectively. However, both of the foregoing limits are equal,

i.e., Mnð1Þ ¼ M0 ¼ M0ðr; n0;wÞ, and can be expressed sim-

ply in terms of the stationary average h cos Hi0 as

Mnð1Þ ¼ M0 ¼ h cos Hi0; (11)

where the angular brackets h i0 denote stationary ensemble

averaging, namely,

h cos Hi0 ¼
1

Z

ð2p

0

ðp
0

cos H er cos2#þn0 cos H sin#d#du; (12)

Z ¼
ð2p

0

ðp
0

er cos2#þn0 cos H sin#d#du (13)

is the partition function. In the opposite very low frequency
limit, x! 0, the mean value Mnð0Þ can also be evaluated by

using a quasistatic Boltzmann distribution in Eqs. (12) and

(13) as

Mn 0ð Þ ¼ lim
x!0

x
2p

ð2p=x

0

M0 r; n0 þ n cos xt;wð Þdt: (14)

Moreover, the condition n � 1 corresponds to the response

to a weak ac field so that perturbation theory is valid. Here,

the dispersion amplitude Mnð1Þ �Mnð0Þ can be evaluated

again from Eqs. (12) and (14) via the stationary averages

h cos Hi0, h cos2Hi0, and h cos3Hi0 as

Mn 0ð Þ�Mn 1ð Þ¼
n2

4
hcos3Hi0�3hcos2Hi0hcosHi0
�

þ2hcosHi30Þþo n2
� �

: (15)

Furthermore, for axial symmetry, w ¼ 0, i.e., where both the

dc bias and ac fields are applied along the easy axis, we have

w ¼ 0 and H ¼ #, so that Eqs. (11)–(13) become known

integrals, viz.,

M0 r; n0; 0ð Þ ¼ h cos#i0 ¼
1

Z

ð1
�1

xerx2þn0xdx

¼ ersinhn0

rZ
� n0

2r
; (16)

where the partition function Z is given by

Z ¼
ð1
�1

erx2þn0xdx

¼ 1

2

ffiffiffi
p
r

r
e�

n2
0

4r erfi
ffiffiffi
r
p

1þ n0

2r

	 
� �
þerfi

ffiffiffi
r
p

1� n0

2r

	 
� �� �
(17)
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and

erfi zð Þ ¼
2ffiffiffi
p
p
ðz
0

et2 dt

is the error function of imaginary argument. Hence, in all the

foregoing limits, only a knowledge of the equilibrium aver-

ages is required.

Now regarding the behavior of MnðxÞ as a function of

the ac field amplitude, we remark that strong nonlinear effects

in the dc magnetization are expected for n> 1. For example,

for cobalt nanoparticles with mean diameter a �10 nm and

saturation magnetization MS � 1:4 � 106A m�1, the field

parameter n has order unity for H � 6kT=ðpa3l0MSÞ
� 4:5 � 103 A m�1 for T � 30 K. Moreover, an ac field of

this order of magnitude is easily attainable in practical meas-

urements of the nonlinear response of magnetic nanopar-

ticles.4 On the other hand, the condition n � 1 corresponds

to the response to a weak ac field, where we have stated that

perturbation theory is valid. Here, because the nonlinear con-

tribution to the dc magnetization has order n2, MnðxÞ is itself

only weakly dependent upon n nevertheless it strongly

depends on the angle w, dc bias field n0, and anisotropy

parameter r.

III. DC MAGNETIZATION FOR w50

In order to illustrate the nonlinear effects in the time-

independent but frequency-dependent magnetization MnðxÞ
induced by the ac field, which in general exhibits a pro-

nounced frequency dependence due to the ac field acting in

conjunction with the bias field, we plot MnðxÞ as a function

of the dc field, frequency, and inverse temperature for vari-

ous ac field magnitudes n, damping a, and lastly oblique

angle w between the bias field and easy axis.

We first present results for the dc magnetization of an

assembly of aligned nanoparticles with the angle w ¼ 0 so

that axial symmetry prevails. Then in the small ac field limit,

n� 1, the dc component MnðxÞ can be evaluated analyti-

cally via perturbation theory (see below) while in strong ac

driving fields, n > 1, MnðxÞ can be determined using the

matrix continued fraction method as applied to axially sym-

metric problems.17 To facilitate our discussion, plots of both

MnðxÞ and the real part of the fundamental component, i.e.,

the term prefixed by eixt in Eq. (7), of the nonlinear dynamic

susceptibility vðxÞ ¼ 2m1
1=n (Ref. 15) as a function of the

normalized frequency x sN for various values of the anisot-

ropy (or inverse temperature) parameter r ¼ vK=ðkTÞ are

shown in Fig. 1. By inspection of that figure, two distinct

low- and high-frequency dispersion bands appear in the spec-

trum of MnðxÞ just as with the susceptibility vðxÞ (in the lat-

ter the second dispersion region would be visible on the

logarithmic scale15,17). Moreover, the low-frequency disper-

sion of each of the two functions MnðxÞ and vðxÞ clearly are

governed by barrier crossing relaxation modes with the same
characteristic frequency indicating that the magnetization re-
versal time may be directly determined from measurements
of the dc response MnðxÞ. In addition, for weak ac fields, the

characteristic frequency x1 of this low-frequency band may

be determined explicitly as x1 ¼ k1 via the smallest nonvan-

ishing eigenvalue k1 of the Fokker-Planck operator in Eq. (2)

associated with the overbarrier relaxation processes. We

recall that subject to n � 1, k1 for the potential of Eq. (3)

with w ¼ 0, corresponding to axial symmetry, is given by

Brown’s formula13

k1�
1�h2ð Þ

ffiffiffiffiffi
r3
p

sN
ffiffiffi
p
p 1þhð Þe�r 1þhð Þ2þ 1�hð Þe�r 1�hð Þ2

h i
; (18)

where h ¼ n0=ð2rÞ ¼ l0MSH0=ð2KÞ. Equation (18) because

it relates to an axially symmetric system governed by a

scalar differential-recurrence relation for the observables in

the time domain is valid for all values of the damping a.

Now for cobalt nanoparticles with anisotropy constant

K � 105 J=m3 and a � 0:1, the free diffusion relaxation

time is sN � 4 � 10�10 s (with c ¼ 2:2 � 105 m A�1 s�1).

Furthermore, via the critical value15 of the dimensionless pa-

rameter h ¼ l0MSH0=ð2KÞ ¼ 1 at which the double well

structure of the magnetocrystalline/Zeeman energy

r sin2#� n0 cos H disappears, one may infer that the low-

frequency overbarrier relaxation processes vanish for a dc

bias field H0 � 1:14 � 105 A m�1. Now at the opposite end of

the spectrum, the high-frequency band is due to “intrawell”

relaxation modes. These individual near-degenerate high fre-

quency modes are, however, virtually indistinguishable in

the frequency spectrum of MnðxÞ appearing merely as a

single high-frequency dispersion again as in the dynamic

susceptibility. Thus, like the latter,15 the spectrum of MnðxÞ
may in practice be approximated by a sum of two

Lorentzians, viz.,

Mn xð Þ �Mn 1ð Þ þ Mn 0ð Þ �Mn 1ð Þ

 �

� D

1þ x=x1ð Þ2
þ 1� D

1þ x=x2ð Þ2

 !
: (19)

Here, x1 and x2 are, respectively, the characteristic frequen-

cies of the overbarrier relaxation modes which are related to

the Kramers escape rate C � k1 and the near-degenerate

high frequency “intrawell” relaxation modes (both in the

FIG. 1. Comparison of the dc magnetization Mn (solid lines) and real part of

the fundamental component of the nonlinear dynamic susceptibility

2Reðm1
1Þ=n (dashed lines) vs. normalized frequency x sN for n0 ¼ 1, n ¼ 2,

a ¼ 1, and various anisotropy parameter r ¼ vK=ðkTÞ.
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presence of an ac external field), and D is an adjustable am-

plitude parameter.

The dc magnetization MnðxÞ obtained via the matrix

continued fraction method15 as a function of the normalized

frequency xsN and as a function of the dc field n0 for vari-

ous values of the ac driving field amplitude n is shown in

Figs. 2 and 3, respectively. Furthermore, Mn as a function of

the inverse temperature parameter r for the particular dc

field amplitude n0 ¼ 1 is shown in Fig. 4. As shown in Figs.

2–4, the approximate Eq. (19) above accurately fits the nu-

merical matrix continued fraction results. The corresponding

fitting parameters x1, x2, and D as functions of ac field am-

plitude n are exhibited in Fig. 5. In Figs. 1 and 2, the limiting

values of MnðxÞ as x!1 and as x! 0 are, respectively,

Mnð1Þ ¼ M0ðr; n0; 0Þ from Eq. (16) and Mnð0Þ from

Eq. (14) with w ¼ 0. We remark that for weak ac fields

n� 1 and rð1� hÞ2 	 1, x1 can be evaluated explicitly

from Brown’s asymptotic lowest nonvanishing eigenvalue

expression Eq. (18) as then x1 ¼ k1. Furthermore, for both

n; n0 � 1 with r ¼ 0, i.e., zero anisotropy, the approximate

Eq. (19) concurs with the known perturbation solution of the

Fokker-Planck Eq. (2) for axial symmetry,24 namely,

Mn xð Þ ¼ n0

3
� n3

0

45
� n0n

2

180

5

1þ x2s2
N

þ 1

1þ x2s2
N=9

	 

þ ::: :

(20)

Here, the first two terms on the right hand side constitute the

expansion of the Langevin function in the dc field alone

while the last term refers to the combined effect of the strong

dc and ac fields. Moreover, now x1 ¼ s�1
N , where the free

diffusion time sN is a characteristic time of the first rank

relaxation function hY1;0iðtÞ while the frequency x2 ¼
ð3sNÞ�1

characterizes the contribution of the second rank

relaxation function hY2;0iðtÞ to the dc magnetization.

IV. DC MAGNETIZATION FOR w 6¼ 0

The results so far pertain to both dc bias and ac fields

applied parallel to the easy axis of a uniaxial particle. Thus

the inherent coupling between the longitudinal relaxational

and transverse precessional modes implied by the magnetic

Langevin Eq. (1) is automatically suppressed due to axial

symmetry, where the orders m 6¼ 0 of the spherical harmonics

are not involved. Hence the important precessional and mode

coupling effects which are present in nonaxially symmetric

potentials cannot be detected if one is so restricted. If, in con-

trast, the external fields are applied at an oblique angle w to

the easy axis so breaking the axial symmetry (meaning that

the differential-recurrence relation Eq. (4) involves averages

of spherical harmonics of different orders m besides those of

different rank l) pronounced precessional and longitudinal

mode coupling effects will occur in the frequency-dependent

dc magnetization. These nonlinear frequency-dependent

FIG. 2. Dc magnetization Mn vs. normalized frequency x sN for r ¼ 10,

n0 ¼ 1, and various values of the ac field amplitude n showing pronounced

frequency-dependence including two distinct dispersion regions caused by

entanglement of the dc and ac responses. Solid lines: exact matrix continued

fraction solution. Symbols: the approximate fitting Eq. (19).

FIG. 3. Dc magnetization Mn vs. dc field n0 ¼ vMSH0=ðkTÞ for

xsN ¼ 0:0016, r ¼ 10, and various values of the ac field n (n ¼ 0:01 repre-

sents linear response conditions where the ac and dc field responses do not

entangle). Solid lines: exact matrix continued fraction solution. Asterisks:

the weak field solution rendered by Eq. (16). Symbols: the approximate Eq.

(19). All curves display more or less monotonic increase to the asymptotic

value.

FIG. 4. Dc magnetization Mn vs. inverse temperature parameter r ¼
vK=ðkTÞ for dc parameter n0 ¼ 1, and for various values of the ac parameter

n at xsN ¼ 0:0016 (a) and for various x at n ¼ 1 (b). Solid lines: exact ma-

trix continued fraction solution. Symbols: the approximate fitting Eq. (19).

Notice the pronounced field and frequency dependence.
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effects due to the loss of axial symmetry principally comprise

a new high-frequency dispersion of resonant character in the

vicinity of the frequency xpr of the ferromagnetic resonance

(FMR), which also exhibits parametric resonance (see Fig. 6)

and angular dependence of the dc magnetization curves (see

Fig. 7). Both effects arise from the coupling inherent in Eq.

(4) of the slow thermally activated magnetization reversal

mode with the fast precessional modes via the driving ac field

acting in conjunction with the dc bias field.

The high-frequency resonance dispersion in the spec-

trum of MnðxÞ originating in excitation of transverse modes

having frequencies close to the precession frequency xpr of

the magnetization appears only at low damping and w 6¼ 0,

i.e., when the axial symmetry is broken. In contrast for axial

symmetry w ¼ 0, the high-frequency dispersion disappears

FIG. 5. Characteristic fitting parameters x1; x2; and D vs. (a) the ac field parameter n, (b) the dc field parameter n0, and (c) the inverse temperature parameter

r. These parameter values were used in Figs. 2–4.

FIG. 6. Dc magnetization Mn vs. normalized frequency x sN for r ¼ 10,

n0 ¼ 1, n ¼ 5, and various values of the oblique angle w between the bias

field and easy axis showing pronounced frequency dependence now com-

prising three distinct dispersion regions. Solid lines (1–4): exact matrix con-

tinued fraction solution. Dashed line 5: the average dc magnetization �Mn

from Eq. (22) below. Notice the much weaker effect for a purely transverse

applied field w ¼ p=2.

FIG. 7. Mn vs. normalized dc field n0 ¼ vMSH0=ðkTÞ for various ac field

amplitudes n (a), oblique angles w (b), and frequency x (c).
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altogether because the transverse modes no longer take part

in the relaxation process [see Fig. 6 and Eq. (4) above].

Furthermore, just as with the nonlinear dynamic susceptibil-

ity for low damping,22 a subharmonic weak resonance dis-

persion owing to parametric resonance of the nonlinear

oscillatory (precessional) motion of the magnetization MðtÞ
appears at frequencies �xpr=2 (Fig. 6). In Fig. 6, the limit-

ing values of MnðxÞ as x! 0 and as x!1 are given by

Eqs. (12) and (14), respectively. Notice that the appearance

of a high-frequency dispersion region of resonant character

is entirely consistent with the concept15 of the role of cou-

pling between transverse and longitudinal modes in the mag-

netization problem as being in certain ways analogous to that

played by inertia in mechanical problems with separable and

additive Hamiltonians.25 For example, in the escape rate

problem for both mechanical and magnetic systems, the role

of inertia and mode-coupling respectively is to give rise to

the limiting cases of spatially and energy-controlled diffu-

sion identified by Kramers26 with a turnover region between

them.27 This is true regardless of the fact that the physical or-

igin of the various diffusion regimes is in each case entirely

different. In the magnetic situation, the diffusion regimes

spring from the lack of axial symmetry and so are geometric

in origin while in the mechanical one they stem from includ-

ing the inertia of the particles. However, the common feature

that unites the two systems is that very similar differential-

recurrence relations in the time domain are involved in both.

For example, in the magnetic case, the recurrence relation is

in the recurring numbers l and m of the spherical harmonics;

while in the mechanical case, the recurrence relation is in the

order n of the orthogonal Hermite polynomials describing

the variation of the phase space density function with mo-

mentum while the second recurring number m is that associ-

ated with the variation of the phase space density function

with position.

For the oblique field configuration again, just as with

w ¼ 0, the low-frequency dispersion of MnðxÞ is governed

by slow barrier crossing relaxation modes with the character-

istic frequency x1. Therefore, for relatively weak ac driving

fields, n� 1, x1 may again be associated with the smallest

nonvanishing eigenvalue k1 for the potential given by Eq. (3)

with n ¼ 0 as x1 ¼ k1. Now the high barrier (or low temper-

ature) asymptote for k1 for nonaxially symmetric potentials

valid for all damping regimes has been obtained by Coffey

et al.25 This was accomplished by extending the Kramers

theory,26 as generalized by Mel’nikov and Meshkov,27 of

thermally activated escape of point particles over a potential

barrier to the magnetization reversal so as to include the

turnover region between the transition state theory and the

very low damping or energy-controlled diffusion regime (see

Ref. 28 for a review of application of the Kramers theory to

magnetic nanoparticles). Therefore, since in the weak ac

field case, we are effectively treating a nonaxially symmetric
double-well potential with nonequivalent wells as is evident

from Eq. (3), k1 is formally given by29

k1 r; a; n0;wð Þ � CIHD
1 þ CIHD

2

� �A aS1ð ÞA aS2ð Þ
A aS1 þ aS2ð Þ : (21)

A result which despite being formally similar to that for point

particles is rooted in the lack of axial symmetry rather than

in inertial effects. Here, AðdÞ and Si are, respectively, the

depopulation factor and the actions calculated at the saddle

point of the ith well, CIHD
i ¼ X0xie

�DVi=ð2px0Þ are the

Kramers escape rates in the so-called intermediate-to-high

damping (IHD) limit, where DVi is the dimensionless barrier

height, xi and x0 are the well and saddle angular frequencies

respectively, and X0 is the damped saddle angular frequency.

Explicit equations for all quantities appearing in the asymp-

totic smallest nonvanishing eigenvalue Eq. (21) are given in

Refs. 28 and 29. The simple analytic Eq. (21) then allows

one to accurately estimate15 the damping dependence of

the relaxation time of the magnetization for values of the

angle w and the field parameter h ¼ n0=ð2rÞ such that

h sin w > 0:03 and h< hcðwÞ ¼ ð cos2=3wþ sin2=3wÞ�3=2
.

V. DC MAGNETIZATION FOR ASSEMBLIES

All the previous frequency-dependent nonlinear dc

response results concern either a single particle or an assem-

bly of noninteracting particles with aligned easy axes.

However, we can also calculate the dc magnetization Mn of

an assembly of noninteracting uniaxial particles with ran-
domly oriented easy axes, where the overbar denotes averag-

ing over the angle w. Averaging over particle easy axis

orientations can be accomplished numerically. In the calcu-

lation of Mn for randomly oriented easy axes using Gaussian

quadratures,23 we only require23

Mn ¼
ðp=2

0

m0
1 x;wð Þsin wdw ¼ p

4

Xn

i¼1

wim
0
1 x;wið Þsin wi; (22)

where

wi ¼
2 1� x2

i

� �
nþ 1ð ÞPnþ1 xið Þ


 �
2
; wi ¼

p
4

xi þ 1ð Þ;

and xi is the ith root of the Legendre polynomial PnðxÞ [here,

we have noted that m0
1ðwÞ ¼ m0

1ðp� wÞ] and the usual recur-

sion relations for the Legendre polynomials23 have been

used.

First of all referring to Fig. 6 alone, Mn as a function

of the normalized frequency xsN for an assembly of non-

interacting uniaxial particles with randomly oriented easy

axes is compared with Mn for an individual particle for the

particular values w ¼ 0, p=6, p=4, and p=2. Here, three

distinct dispersion bands again appear in the spectrum of

Mn just as with the average dynamic susceptibility.15,17

Next, plots of Mn as a function of x sN for various values

of the ac driving field amplitude n as parameter are shown

in Fig. 8. As seen in Fig. 8, with increasing n, the magni-

tude of the dispersion in the vicinity of the precession fre-

quency xpr increases showing pronounced nonlinear

effects including parametric resonance. Furthermore, for a

given value of n, the nonlinear response strongly depends

on the angle w, dc bias field n0, barrier height r, and damp-

ing a.
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VI. CONCLUSIONS

We have treated the time-independent but frequency-

dependent magnetization for an ensemble of fully aligned

noninteracting particles, as well as that of an ensemble of

particles with randomly oriented easy axes, driven by strong

dc and ac fields using a nonperturbative approach. We have

shown owing to the coupling between the fast precession of

the magnetization and its slow thermally activated reversal

that the average magnetization (with a strong ac field applied

in conjunction with a strong dc bias field at an angle to the

easy axis of the particle so that the axial symmetry is broken)

is very sensitive to both ac field orientation, amplitude, and

frequency. The influence of field orientation and magnitude

seems particularly obvious in retrospect by inspection of the

equation of motion of an average spherical harmonic explic-

itly in the time domain, Eq. (4). All our calculations, since

they are valid for ac fields of arbitrary strengths and orienta-

tions, allow one to predict and interpret quantitatively

nonlinear phenomena in magnetic nanoparticles, where per-

turbation theory and the assumption that axial symmetry is

preserved are no longer valid. In general, from a theoretical

point of view, the nonlinear behavior of the frequency-de-
pendent dc component of the magnetization of nanomagnets

driven by an ac external magnetic field closely resembles

both that of the frequency-dependent dc component of the

dynamic Kerr effect in both polar liquids and liquid crys-

tals30,31 insofar as it has a frequency-dependent dc response.

The results we have obtained suggest that the existing exper-

imental measurements of nonlinear susceptibilities of fine

particles, e.g., Refs. 4–6, should be repeated for the

frequency-dependent dc component of the magnetization in

a strong bias-field configuration showing pronounced nonlin-

ear effects which were overlooked in previous measure-

ments. We also remark that similar nonlinear effects can be

measured in the dc polarization of polar liquids in superim-

posed external dc bias and ac electric fields because from a

physical point of view, the stochastic magnetization dynam-

ics of single-domain ferromagnetic particles (magnetic

dipoles) in magnetic fields is analogous to the rotational

Brownian motion of polar molecules (electric dipoles) in

electric fields.15

For simplicity, only uniaxial particles have been treated.

Particles with non-axially symmetric anisotropies (cubic,

biaxial, etc.) can be considered in like manner. We have

assumed throughout that all the particles are identical and

that interparticle interactions are negligible. In order to

account for polydispersity, it is necessary to average over the

appropriate distribution function, e.g., over the particle vol-

umes, cf. Ref. 3. The neglect of interparticle interactions in

the present model suggests that the results apply only to sys-

tems, where interparticle interactions are ignored, such as

individual nanoparticles and dilute solid suspensions of

nanoparticles.
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