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Magnetization reversal time of magnetic nanoparticles at very low damping
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The magnetization reversal time of magnetic nanoparticles is investigated in the very low damping regime.
The energy-controlled diffusion equation, rooted in a generalization of the Kramers escape rate theory for point
Brownian particles in a potential to the magnetic relaxation of a macrospin, yields the reversal time in closed
integral form. The latter is calculated for a nanomagnet with uniaxial anisotropy with a uniform field applied at
an angle to the easy axis and for a nanomagnet with biaxial anisotropy with the field along the easy axis. The
results completely agree with those yielded by independent numerical and asymptotic methods.
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I. INTRODUCTION

A fine ferromagnetic particle is characterized by an internal
potential, which has several local states of equilibrium with
potential barriers between them. If the particles are small
(�100 Å) so that the potential barriers are relatively low, the
magnetization vector M may cross over the barriers between
one potential well and another due to thermal agitation. The
ensuing thermal instability of magnetization results in the
phenomenon of superparamagnetism and in magnetic after-
effect [1]. The thermal fluctuations and relaxation of the
magnetization of such nanoparticles play a central role in
information storage, rock magnetism, magnetic hyperther-
mia, etc. [1,2]. Furthermore, experimental success [3–6] in
measuring the magnetization reversal time of an individual
particle, and in verifying [3–6] its behavior as a function
of the damping parameter predicted by the Néel-Brown
theory [7–9], has stimulated renewed interest in the Kramers
escape rate theory [10] as applied to classical macrospins. The
Néel-Brown theory is in effect an adaptation of the Kramers
theory [10,11], originally given for point Brownian particles
to macrospin relaxation governed by a gyromagneticlike
equation. Hence the verification of that theory in the magnetic
nanoparticle [3–6] context nicely illustrates the Kramers
conception of a thermal relaxation process over a potential
barrier arising from the shuttling action of the Brownian
motion.

Néel’s original estimate [7] of the magnetization reversal
time in a magnetic nanoparticle was based on transition state
theory (TST) [11], yielding

τTST ∼ f −1
A e�E, (1)

where �E represents a dimensionless internal anisotropy
barrier and fA is the so-called attempt frequency associated
with the frequency of the gyromagnetic precession. Since �E

is proportional to the volume of the particle, the relaxation
time can vary from as little as 10−9 s to geological epochs;
hence there is a fairly well-defined particle radius above which
the magnetization will appear stable because the relaxation
time greatly exceeds our own lifespan. However, Brown [8,9]
criticized Néel’s TST-based approach, since gyromagnetic
effects are not explicitly included and the damping dependence

of the prefactor is ignored. The key to a more precise treatment
of the reversal time lies in the construction of a Langevin
equation for the evolution of the magnetization. Thus Brown
proceeded by taking as a Langevin equation, Gilbert’s equation
for the motion of M augmented by a random field h(t), which
may be written as [8,9]

u̇(t)= − {u(t) × [γ H(t)+γ h(t) − αu̇(t)]} . (2)

Here u = M/MS is the unit vector directed along M, MS is
the saturation magnetization, γ is the gyromagnetic ratio, α is
the dimensionless damping parameter, H = −(μ0MS)−1∇V

is the effective magnetic field comprising the anisotropy and
external fields, the operator ∇ = ∂/∂u indicates the gradient
on the surface of the unit sphere, V (ϑ,ϕ) is the free energy
density, the angles ϑ and ϕ specify the orientation of M in
spherical polar coordinates, and h(t) is a random magnetic
field with Gaussian white noise properties. For some particular
cases, e.g., for uniaxial particles with anisotropy energy
density K and easy axis along the polar axis, V depends
on ϑ only: V (ϑ) = −Kcos2ϑ . Equation (2) is known as the
magnetic Langevin equation. The random field accounts for
the thermal fluctuations of the magnetization of an individual
nanoparticle. Since the random torque counteracts the damping
torque, it can, if the temperature is high enough, cause
magnetization reversal. Brown then derived from Eq. (2)
the appropriate Fokker-Planck equation for the distribution
function W (ϑ,ϕ,t) of the orientations of the magnetization
vector M on the surface of the unit sphere [8,9], viz.,

∂W

∂t
= 1

2τN

(
∇2W + v

kT
{α−1[u · (∇W × ∇V )]

+ [∇ · (W∇V )]}
)

, (3)

where τN = vμ0MS(α−1 + α)/(2γ kT ) is the free diffusion
time of the magnetization, v is the volume of the particle,
k is Boltzmann’s constant, and T is the temperature. Here,
the particle is assumed to be uniformly magnetized. Although
such a coherent rotation or “macrospin” approximation cannot
explain all aspects of the magnetization dynamics in nanomag-
nets, many qualitative features needed to explain experimental
data are satisfactorily reproduced. A detailed discussion of the

1098-0121/2014/89(5)/054408(12) 054408-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.89.054408


COFFEY, KALMYKOV, AND TITOV PHYSICAL REVIEW B 89, 054408 (2014)

assumptions made in deriving the Fokker-Planck and Gilbert
equations is given elsewhere [8,9,12–14].

The reversal time τ , which is the longest relaxation time of
the magnetization, may be defined as the inverse of the smallest
nonvanishing eigenvalue λ1 of the Fokker-Planck operator
in Eq. (3) [8,9]. The reversal time may be estimated using
three different approaches: (i) Brownian or Langevin dynamics
simulations (see, e.g., Refs. [15] and [16]); (ii) numerical
solutions of the Fokker-Planck equation [Eq. (3)] (see, e.g.,
Refs. [13] and [17–20]); and (iii) analytical solutions of
Eqs. (2) and (3) such as those yielded by the mean first passage
time (MFPT), escape rate theory, etc. (see, e.g., Refs. [8,9,14],
and [20–24]). These complementary approaches allow one
to evaluate τ over wide ranges of temperature, damping,
etc. In particular, numerical methods and escape rate theory
are very useful for the determination of τ at low and high
potential barriers, respectively. However, they have consid-
erable limitations: for example, escape rate theory cannot
be used at low barriers, �E � 1, while numerical methods
encounter substantial computational difficulties [15] in the
very low damping (VLD) range, α � 1, where the dynamics
are almost entirely determined by the pure gyromagnetic
Larmor equation. The VLD damping range is in practice the
most important, because both experimental and theoretical
estimates yield small values of α of the order of 0.001–0.1 [see,
e.g., Refs. [3,5,12] and [25]]. For VLD, the TST equation (1)
can considerably underestimate the true value of that time [14].

In his earliest calculations of the reversal time, Brown [8]
confined himself to uniaxial particles subjected to a dc
external magnetic field H0 applied along the easy axis of the
magnetization, where

V (ϑ) = −kT σ

v
(cos2ϑ + 2h cos ϑ). (4)

Here σ = vK/(kT ) is the dimensionless barrier height param-
eter, K is an anisotropy constant, and h = μ0MSH0/(2K) is
the external field parameter. In this axially symmetric situation,
since no dynamical coupling between the longitudinal and the
transverse modes of motion exists, the longitudinal relaxation
is governed by a single state variable, namely, the polar angle ϑ
of M. The second state variable, namely, the azimuthal angle ϕ,
gives rise only to a steady precession of M. By recognizing this
fact, Brown obtained from Eq. (3) a Fokker-Planck equation
in ϑ only, viz. [8],

∂W

∂t
= 1

2τN sin ϑ

∂

∂ϑ

[
sinϑ

(
∂W

∂ϑ
+ vW

kT

∂V

∂ϑ

)]
. (5)

We remark that the exact Fokker-Planck equation (5) has the
same mathematical form as the Debye noninertial rotational
diffusion equation for polar molecules [13]; however, it is
valid for all values of the damping parameter α. This is
so because Eq. (5) arises not from strong damping of the
angular momentum, as in the Debye diffusion equation, rather
it follows from the axial symmetry of V (ϑ). For axially
symmetric potentials, Brown [8], Aharoni [17], and others
(see Refs. [13] and [14] for a review) have developed various
techniques, such as variational methods [8,11], MFPT [11,20],
etc., for the calculation of the reversal time. As an example,
we mention Brown’s well-known asymptotic formula for the

reversal time, which becomes in the VLD limit [8]

τVLD
as = μ0MS

√
π/σeσ (1−h)2

2αγK(1 − h2)[1 − h + (1 + h)e−4hσ ]
. (6)

The reversal time can also be evaluated via the differential
equation for the MFPT τ (ϑ), viz. [11,13,20],

L
†
FPτ (ϑ) = −1, (7)

with the appropriate boundary condition. Here L
†
FP is the

adjoint Fokker-Planck operator associated with Eq. (5). The
MFPT is the average time needed to reach the barrier point
C for the first time from a starting point ϑ inside the initial
potential well (domain of attraction) [11]. In particular, for
the double-well potential with two nonequivalent wells V (ϑ)
[Eq. (4)], the exact equations for the MFPTs, τ+ = τ (ϑ+

A ) and
τ− = τ (ϑ−

A ), from the minima of the deeper and shallow wells
are given by [20]

τ± = σμ0MS

αγK

∫ ϑC

ϑ±
A

eσ (cos2ϑ+2h cos ϑ)

sinϑ

×
∫ ϑ

ϑ±
A

e−σ (cos2ϑ ′+2h cos ϑ ′)sinϑ ′dϑ ′dϑ. (8)

Here ϑ+
A = 0, ϑ−

A = π, and ϑC = arccos(−h) are the angular
coordinates of the minima and maximum of V (ϑ) [Eq. (4)].
Now recalling that τ+ and τ− are related to the corresponding
escape rates from the individual wells via [11] �+ = (2τ+)−1

and �− = (2τ−)−1 so that the overall reversal time is given by
τVLD = (�+ + �−)−1, we have [13,14]

τVLD = 2τ+τ−
τ+ + τ−

. (9)

For high barriers σ (1 − h)2 � 1, τVLD from Eqs. (8)
and (9) is closely approximated by the asymptotic equation,
Eq. (6).

Due to the mathematical difficulties encountered, the vari-
ous methods developed for the axially symmetric case cannot
be directly applied to the VLD reversal time of nanomagnets
if the relaxation is governed by the general Fokker-Planck
equation (3). These difficulties, which arise because more than
one space variable is now involved, were overcome for the
first time by Klik and Gunther [23]. In the high barrier limit,
�E � 1, they derived, via the uniform asymptotic expansion
of the MFPT method of Matkowski et al. [26], the VLD
reversal time from an individual well with a single escape
path for nonaxially symmetric free energy densities V (ϑ,ϕ),
viz. [23],

τVLD
as = τTST

αSEC

, (10)

where τTST is the TST reversal time [Eq. (1)], and SEC
is the

dimensionless action given by [23]

SEC
= v

kT

∮
E=EC

(
1

sinϑ

∂V

∂ϕ
dϑ − sinϑ

∂V

∂ϑ
dϕ

)
. (11)

The contour integral in Eq. (11) is taken along the critical
energy trajectory, or separatrix, on which the magnetization
may reverse by passing through the saddle point(s) of the
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energy EC . The critical energy is the energy required by a
spin to just escape the well and the separatrix delineates the
bounded precessional motion in the well from that outside it.
In the VLD regime, the system is only very lightly coupled
to the bath so that the energy loss per cycle of the almost-
periodic noisy motion of the magnetization on the saddle-point
energy (escape) trajectory is much less than the thermal energy,
αSEC

� 1, so that τVLD
as � τTST for VLD. Everywhere the

tacit assumption is made that the separatrix lies infinitesimally
near to the closed noiseless and undamped trajectory with
energy EC .

Now the asymptotic equation (10) allows one to calculate
the reversal time in nanomagnets with nonaxially symmetric
potentials in the VLD regime, αSEC

� 1. However, Eq. (10)
has the obvious drawback that it cannot be used for low
barriers, �E � 1. Moreover, the relation to the Kramers
escape rate theory for point Brownian particles in the VLD
range [10,11] is not immediately apparent. Nevertheless,
both defects can be remedied via the energy-controlled
diffusion equation for classical spins derived by Apalkov and
Visscher [27] and Dunn et al. [28]. Here we demonstrate
how the VLD reversal time for spins can be evaluated from
this equation via the MFPT [11,20] for all barrier heights
and for arbitrary free energy density V. The MFPT method
has been extensively applied to point particles and rigid
rotators in Ref. [13], where the Hamiltonians are separable
and additive. The generalization to the magnetic relaxation of
macrospins with nonseparable and nonadditive Hamiltonians
can now be accomplished because the energy-controlled
diffusion equation for classical spins in the VLD limit is also a
one-dimensional Fokker-Planck equation [27,28], like that for
point particles. We remark that like point Brownian particles,
in the escape rate problem as it pertains to spins, three regimes
of damping appear. The latter arise as a direct consequence of
the particular asymptotic method involved in the solution of
the Fokker-Planck equation, namely, (i) intermediate-to-high
damping (IHD) αSEC

� 1, VLD αSEC
� 1, and a more

or less critically damped turnover range αSEC
∼ 1, where

neither IHD nor VLD formulas apply [10,11,14]. In each
range, the damping dependence of the escape rates, reversal
time, etc. differ substantially. The interested reader can find a
detailed discussion and appropriate formulas in Refs. [11,13]
and [14].

The present paper is arranged as follows. In Sec. II, we
present the basic equations describing the stochastic spin
dynamics in the VLD regime. In Sec. III, we derive in
quadratures a general equation for the VLD reversal time for
magnetic nanoparticles using the energy-controlled diffusion
equation for spins in substantially the same manner as for
point particles [10,13]. Here we also demonstrate that in the
high barrier approximation, �E � 1, our exact integral result
via the energy-controlled diffusion equation reduces to the
asymptotic solution of Klik and Gunther [23] [Eq. (10)],
thus reconciling their solution with that from the Kramers
theory. By way of illustration of our general results, which are
valid for an arbitrary free energy, we determine in Secs. IV
and V the VLD reversal time of magnetic nanoparticles with
uniaxial and biaxial anisotropies, respectively. In Sec. VI,
we compare our analytical results both with independent
numerical calculations and the asymptotes from escape rate

theory. The Appendixes A, B, and C contain the details of the
calculations.

II. STOCHASTIC SPIN DYNAMICS IN THE VLD REGIME

By analogy with Kramers’ derivation [10] of the energy-
controlled diffusion equation for point particles in the VLD
limit, one may parameterize [27,28] the instantaneous mag-
netization direction of a macrospin by the slow dimension-
less energy variable E = vV/(kT ) and the fast precessional
variable φ, with period 2π running uniformly along a closed
Stoner-Wohlfarth orbit of energy E [28]. In the VLD case,
the energy varies very slowly compared to φ. For the slightly
damped deterministic precession, i.e., when the random field
h(t) = 0, the state variables E and φ satisfy the equations of
motion

Ė = −vμ0

kT
(H · Ṁ), φ̇ = �E, (12)

where �E = 2πfE , and fE is the frequency of precession in
the potential well at a given energy E. We also denote the
corresponding energy-dependent precession period as PE =
1/fE . This period can be calculated explicitly by taking a
closed line integral along a Stoner-Wohlfarth orbit of constant
energy E, viz. [28],

PE = γ −1
∮

E

([H × M] · dM)

|[H × M]|2 .

Furthermore, in order to treat the stochastic motion of the
magnetization in the VLD limit, the Langevin equations for
the variables E and φ can be written as [28] (in our notation)

Ė = F1 + (g1 · h) , φ̇ = �E + (g2 · h) , (13)

where E and ϕ are now random variables,

F1(E,φ) = − vμ0α

γMSkT
(Ṁ · Ṁ),

g1(E,φ) = vμ0�E

kT

∂M
∂φ

,

g2(E,φ) = −vμ0�E

kT

∂M
∂E

.

Equations (13), which are Langevin equations with multi-
plicative noise, describe the precession of the magnetization
subject to weak frictional forces and weak internal fluctuations,
since α and h(t) are small. It follows that in Eq. (13) and
subsequently, Ṁ must be understood in the conservative or
purely Larmor sense as

Ṁ(t) = γ [H × M] . (14)

Dunn et al. [28] were then able to derive via the Langevin
equations (13), interpreted in the Stratonovich sense [13], the
Fokker-Planck equation for the probability density function
W (E,φ,t). Since in the VLD regime, the energy E diffuses
very slowly over time, i.e., is almost conserved, while in
contrast the phase φ, which would be the only time-dependent
variable in the completely conservative system, varies rapidly,
the dependence on the fast variable φ may be eliminated. This
is accomplished by averaging the probability density function
W (E,φ,t) in energy-phase variables along a closed trajectory
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of the energy, ultimately yielding the energy-controlled diffu-
sion equation for the probability density function W (E,t) in
energy space [27,28], viz.,

∂W

∂t
= α

∂

∂E

[
SE

(
fEW + ∂

∂E
(fEW )

)]
, (15)

where SE is the dimensionless action for spins given by

SE = vμ0

MSkT

∮
E

([H × M] · dM) = vμ0

γMSkT

∫ 1/fE

0

∣∣Ṁ∣∣2
dt.

(16)
We remark that the energy-controlled diffusion equation

for spins [Eq. (15)] is very similar but not identical to that
for point Brownian particles in a potential V (x) [10,11]. The
differences lie in the definitions of the damping coefficient and
of the action. For point particles, they are α = ζ/m and

SE =
∮

E

√
2m [kT E − V (x)]dx = m

∫ 1/fE

0
|ẋ|2 dt.

Here E = [mẋ2/2 + V (x)]/(kT ) is the normalized energy, x

and m define the position and mass of a particle, respectively, ζ
is the drag coefficient, and fE = kT ∂E/∂SE is the librational
frequency. However, the calculation of fE and SE for spins is
very much more involved than that for point particles because
it must be carried out in spherical polar coordinates and
the undamped motion is precession in space. Moreover, in
the magnetization problem, the Stoner-Wohlfarth orbits [28],
namely, the phase space orbits at constant energy inside the
well, have very complicated forms [12].

III. REVERSAL TIME IN THE VLD LIMIT

In order to evaluate the reversal time, we consider an
assembly of spins in a potential well with a minimum at
point A. In the true VLD case, αSE � 1, where the energy
loss per cycle of a precessing spin is very much less than the
thermal energy, the energy trajectories diffuse very slowly
so that they do not differ significantly from those of the
undamped precessional motion in a well. Then as a result
of thermal fluctuations, on a noisy trajectory in the vicinity
of the saddle energy the spin may have enough energy
to escape over the potential barrier at the saddle point C.
The energy-controlled diffusion equation for spins [Eq. (15)]
represents the continuity equation Ẇ + ∂EJ = 0, where J is
the probability current. Now, like the Kramers calculation [10]
for particles (see also Hänggi et al. [11], Sec. II D), we consider
the quasistationary solution of Eq. (15). Here with Ẇ = 0 and
J (E) = J representing a steady injected current of spins to
replenish those continually being lost at a saddle point C, we
then find that the quasistationary distribution W (E) satisfies
the first-order linear differential equation

∂

∂E
(fEW ) + fEW = − J

αSE

. (17)

Next, considering the behavior of W (E) at EC and
following Kramers [10] and Hänggi et al. [11] on assuming
that W (EC) = 0, i.e., all spins that reach the barrier go over,
we have the particular solution of Eq. (17) as

W (E) = J
e−E

αfE

∫ EC

E

eE′
dE′

SE′
. (18)

In order to find the population N in the well A, we integrate
the quasistationary distribution W (E) over the domain of the
well energy so that

N =
∫ EC

EA

W (E) dE = J

α

∫ EC

EA

e−E

fE

∫ EC

E

eE′
dE′

SE′
dE,

which becomes, after integrating by parts,

N = J

α

∫ EC

EA

eE

SE

∫ E

EA

e−E′
dE′

fE′
dE. (19)

We then have, via the flux-overpopulation method [11], the
characteristic MFPT time τVLD = N/J from a potential well
with energy EA over the saddle point C:

τVLD = 1

α

∫ EC

EA

eE

SE

∫ E

EA

e−E′
dE′

fE′
dE. (20)

This is the time to reach a separatrix from the point A,
provided that all spins there are absorbed, which is the
boundary condition that W vanishes at E = EC . The inverse
of τVLD also determines the escape rate from the well [11,26].
Equation (20) can also be derived directly via the differential
equation for the MFPT, viz. [11,13,20] [cf. Eq. (7)],

L
†
FPτ (E) = −1, (21)

with the boundary condition τ (EC) = 0. The MFPT is the
average time needed to reach the separatrix for the first
time from a starting point E0 inside the initial domain of
attraction [11]. In the VLD limit, this time τ (E0) becomes
essentially independent of E0, i.e., τ (E0) ≈ τVLD for all
starting configurations away from the neighborhood of the
separatrix [11]. We emphasize that for the calculation of τVLD

from Eq. (20), only a knowledge of the deterministic dynamics
is required, i.e., SE and fE in Eq. (20) are always calculated via
the deterministic Larmor equation (14), which can invariably
be solved using either analytical or numerical methods.

The quadrature solution [Eq. (20)] is valid for all barrier
heights, including low barriers, �E = EC − EA � 1. How-
ever, in the high barrier limit, �E � 1, Eq. (20) can be con-
siderably simplified. Indeed, the main contribution to the inner
integral of Eq. (20) comes from near the bottom of the well
because the negative exponential dominates the integral in that
region. Furthermore, the precession frequency now satisfies
fEA

≈ fA, where fA is the well precession frequency, which
is independent of E because of the paraboloid approximation
for the potential near the bottom of the well [fA is defined by
Eq. (A4) below]. Thus∫ EC

EA

e−E

fE

dE 	 1

fA

∫ ∞

EA

e−EdE = 1

fA

e−EA. (22)

In contrast, the main contribution to the outer integral of
Eq. (20) comes from the positive exponential factor domi-
nating the integrand near the saddle point C of the potential.
Therefore, noting Eq. (16) and using the approximation

SE′ ≈ SEC
= v

kT

∮
E=EC

([u × ∇V ] · du), (23)
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we have∫ EC

E

eE′

SE′
dE′ ≈ 1

SEC

∫ EC

−∞
eE′

dE′ = 1

SEC

eEC . (24)

Using Eqs. (22) and (24) in Eq. (20) yields

τVLD
as ∼ eEC−EA

αfASEC

. (25)

In spherical polar coordinates (er ,eϑ ,eϕ) [29], where
u = er , du = eϑdϑ + eϕsinϑdϕ, and ∇V = eϑ∂ϑV +
eϕ csc ϑ ∂ϕV , SEC

from Eq. (23) reduces to that given by
Eq. (11). The contour integral in Eq. (23) is taken along
the critical energy trajectory on which the magnetization
may reverse by passing through the saddle point(s). In fact,
Eq. (25) is just another equivalent representation of the
TST equation (10), because τTST ∼ (1/fA)eEC−EA . Hence, our
result [Eq. (20)] predicts in the low-temperature limit exactly
the same reversal time as Eq. (10) of Klik and Gunther [23]. In
order to evaluate τVLD from Eq. (25), we require only explicit
equations for EA, EC , fA, and SEC

. The calculation of the
precession frequency fA and the well and saddle energies EA

and EC is described in Appendix A, while the action SEC
can

be calculated from Eq. (23) or Eq. (11) [13,14].

IV. VLD REVERSAL TIMES FOR UNIAXIAL ANISOTROPY

As discussed above, Brown [8,9] calculated the reversal
time for a uniaxial superparamagnet when a uniform magnetic
field H0 is applied along the easy axis of the magnetization.
However, by applying H0 at an angle ψ with respect to the
easy axis, the latter will also depend on the azimuthal angle ϕ

[cf. Eq. (4)]:

E(ϑ,ϕ) = −σ (cos2 ϑ + 2hcos ψcos ϑ + 2hsin ψsin ϑcos ϕ).
(26)

E(ϑ,ϕ) from Eq. (26) has a bistable structure with minima
at n+

A and n−
A separated by a potential barrier with a saddle

point at nC (see Fig. 1). The saddle point lies generally in
the equatorial region, while n+

A and n−
A lie in the north and

south polar regions, respectively. In general, E(ϑ,ϕ) from
Eq. (26) retains its bistable form for 0 � h < hc, where
hc = (cos2/3ψ + sin2/3ψ)−3/2 is some critical value of h at
which E(ϑ,ϕ) loses its bistable character [30]. When H0 is
parallel to the easy axis [Eq. (26)], the energy landscape
is a uniform equatorial ridge (zone) separating two polar

Cn

A
+n

A
−n

FIG. 1. (Color online) Three-dimensional plot of E(ϑ,ϕ)/σ
[Eq. (26)] for h = 0.5 and ψ = π/2.

minima and has no saddle point. A detailed treatment of the
oblique-field problem has been given by Coffey et al. [31],
Kennedy [32], Kalmykov et al. [33,34], and Fukushima
et al. [35]. In particular, they showed that escape rate theory
is in agreement with their numerical results, with computer
simulations [36], and with experiments [5], emphasizing the
vital importance of an accurate determination of the damping
dependence of the reversal time. The nonaxially symmetric
double-well potential [Eq. (26)] is very instructive for the pur-
pose of illustration of our principal result [Eq. (20)], because
accurate numerical results for the overall reversal time τVLD

are already available for comparison in the literature [33,34].
Now, to calculate the reversal time from the general

equation (20), we need only the deterministic equations of
motion of the magnetization. For E(ϑ,ϕ) from Eq. (26), the
vector gyromagnetic equation (14) can be rewritten in terms
of the Cartesian components (uX, uY , uZ) of the unit vector u
along the direction of magnetization M as

τ0u̇X(t) = − [uZ(t) + hcosψ] uY (t), (27)

τ0u̇Y (t) = [uZ(t) + hcosψ] uX(t) − hsinψuZ(t), (28)

τ0u̇Z(t) = hsinψuY (t), (29)

where

τ0 = μ0MS

2γK
(30)

is a precession time constant. For γ = 2.2 × 105 mA−1 s−1,
μ0 = 4π × 10−7 Jm−1 A−2,MS ≈ 1.4 × 106 Am−1, and K ≈
2 × 105 Jm−3 (cobalt), we have the estimate τ0 ≈ 2 × 10−11

s. The solutions of Eqs. (27)–(29) are subject to the obvious
constraint

u2
X + u2

Y + u2
Z = 1. (31)

Furthermore, the trajectories of the precessional dynamics
must satisfy the additional constraint of energy conservation,

ε = −u2
Z − 2h cos ψuZ − 2h sin ψuX = const, (32)

where ε = E/σ is the normalized free energy.
If |h| < hc � 1, the potential from Eq. (26) has two

nonequivalent wells with minima ε±
A and one saddle point

at εC (see Fig. 1). Both ε±
A and εC can be presented as Taylor

series [34] up to any desired order of h [see Appendix A,
Eqs. (A8) and (A9)]. Now we must define two individual
MFPTs, namely, τ+ from the deeper well (ε+

A � ε � εC) and
τ− from the shallow well (ε−

A � ε � εC). These times are
unequal in general, i.e., τ+ �= τ−. Thus Eqs. (16) and (20), as
specialized to the nonaxially symmetric double-well potential
equation from (26), yield for τ+ and τ−,

τ± = σ 2

α

∫ εC

ε±
A

eσε

S±
ε

∫ ε

ε±
A

e−σε′
dε′

f ±
ε′

dε, (33)

where

S±
ε = 2τ0σ

∫ 1/f ±
ε

0

[
u̇2

X±(t) + u̇2
Y±(t) + u̇2

Z±(t)
]
dt. (34)

The anisotropy potential given by Eq. (26) has two
nonequivalent wells so that this two-well nature of the potential
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must be accounted for [9,13,14], meaning that unlike in the
isolated well, two escape rates now exist. These comprise
�+ = (2τ+)−1 from the deeper well and �− = (2τ−)−1 from
the shallower well so that the overall reversal time τVLD =
(�+ + �−)−1 is then given by Eq. (9) [13,14]. Finally, by
solving the deterministic gyromagnetic equations (27)–(29)
and then calculating the energy-dependent frequency f ±

ε and
dimensionless action S±

ε as described in Appendix B, τVLD

can be determined from Eqs. (33) and (9). In the high barrier
limit, σ (εC − ε−

A ) � 1, we have from Eqs. (9), (25), and (33),

τVLD
as = 2eσ (εC−ε−

A )

α[f −
A S−

εC
+ f +

A S+
εC

e−σ (ε−
A−ε+

A )]
. (35)

Here the energy-independent precession frequencies f ±
A in the

vicinity of the bottoms of the wells and the dimensionless
actions S±

εC
pertaining to the saddle region are given by

Eqs. (A10) and (B11) below, respectively.
For ψ = 0, i.e., if the external field H0 is applied along the

easy axis of the magnetization so that the problem becomes
axially symmetric, the above equations can be considerably
simplified. By calculating f ±

ε and S±
ε for ψ = 0 as described

in Appendix B [Eqs. (B12) and (B13)], we then have from
Eq. (33),

τ± = τ0σ

2α

∫ h2

−1∓2h

eσε
∫ ε

−1∓2h
e−σε′dε′√

h2−ε′√
h2 − ε(ε + 1 − 2h2 ± 2h

√
h2 − ε)

dε.

(36)
Notice that Eq. (36) reduces to Eq. (8) given above, as it must.
Furthermore, τVLD

as from Eq. (35) coincides with Eq. (6). In
addition, for h = 0 via the transformation σε → −z2, Eqs. (9)
and (36) yield τVLD for uniaxial nanomagnets in the absence
of an external field, viz.,

τVLD = τ0
σ
√

π

α

∫ √
σ

0

erfi(
√

σ ) − erfi(z)

σ − z2
e−z2

dz, (37)

where erfi(x) is the error function of an imaginary argument
defined as [37]

erfi(x) = 1√
π

∫ x

0
et2

dt.

V. VLD REVERSAL TIMES FOR BIAXIAL ANISOTROPY

By way of yet another practical illustration of Eq. (20),
we consider a biaxial anisotropy potential augmented by the
Zeeman term due to an external magnetic field H0 applied
along the easy axis of magnetization, viz. [21,22,38,39],

E(ϑ,ϕ) = −σ (cos2ϑ − δsin2ϑcos2ϕ + 2hcosϑ). (38)

In general, E(ϑ,ϕ) from Eq. (38) has two nonequivalent wells
and two equivalent saddle points (see Fig. 2). We remark
that biaxial anisotropy may yield an appreciable contribution
to the free energy density of magnetic nanoparticles [6]. In
particular, Eq. (38) describes the free energy density of a
spheroidal nanoparticle, with the axis of symmetry inclined
at a certain angle to the easy anisotropy axis of the particle
as well that of elongated particles, where easy- and hard-axis
anisotropy terms are present [22]. Furthermore, the bistable
potential in the form of Eq. (38) is commonly used in spintronic

FIG. 2. (Color online) Three-dimensional plot of E(ϑ,ϕ)/σ
[Eq. (38)] for δ = 0.5 and h = 0.2.

applications [12,27,40] in order to represent the free energy
density of a nanopillar in the standard form of superimposed
easy-plane and in-plane easy axis anisotropies. Finally, this
example is very instructive for the purpose of illustration of
our principal result [Eq. (20)], because accurate numerical
results for the reversal time for the biaxial potential are also
available for comparison in the literature [39].

For the biaxial anisotropy potential [Eq. (38)], the gyro-
magnetic equation (14) can be written in terms of the Cartesian
components (uX, uY , uZ) of the unit vector u as

τ0u̇X(t) = − [uZ(t) + h] uY (t), (39)

τ0u̇Y (t) = [(1 + δ)uZ(t) + h] uX(t), (40)

τ0u̇Z(t) = −δuX(t)uY (t). (41)

The solutions of Eqs. (39)–(41) are again subject to the
constraints of Eq. (31) and energy conservation,

ε = −u2
Z − 2huZ + δu2

X = const, (42)

where ε = E/σ is the normalized free energy, the possible
value of which is limited by the conditions −1 − 2h � ε �
δ + h2/(1 + δ).

If |h| < 1, the potential from Eq. (38) has two nonequivalent
wells with minima εA = −1 ± 2h at uZ = ±1 and two equiv-
alent saddle points at εC = h2 (see Fig. 2 and Appendix A).
Thus we must again define two individual MFPTs, namely, τ+
from the deeper well around the energy minimum at uZ = 1
(−1 − 2h � ε � h2), and τ− from the shallow well around
the energy minimum at uZ = −1 (−1 + 2h � ε � h2). These
times are again unequal in general, i.e., τ+ �= τ−. Thus Eq. (20),
as specialized to biaxial anisotropy, becomes

τ± = σ 2

α

∫ h2

−1∓2h

eσε

S±
ε

∫ ε

−1∓2h

e−σε′
dε′

f ±
ε′

dε, (43)

where S±
ε is defined by Eq. (34).

Now having solved Eqs. (39)–(41) and next having calcu-
lated f ±

ε and S±
ε as described in Appendix C [see Eqs. (C7)

and (C9)], the overall reversal time τVLD can be determined
from Eqs. (9) and (43). Furthermore, in the high barrier
limit, Eqs. (9) and (43) can once more be considerably
simplified, yielding Eq. (35), where f ±

A and actions S±
εC

are
given by Eqs. (A13) and (C10), respectively. As described in
Appendix C, Eq. (43) in the limit δ → 0 reduces to Eq. (36).

For h = 0, the biaxial free energy is a double-well potential
with two equivalent wells, where only the region −1 � ε � 0
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FIG. 3. (Color online) Reversal time vs the barrier height or
inverse temperature parameter σ = vK/(kT ) for uniaxial anisotropy
superimposed on the Zeeman term [Eq. (26)] for various values
of the field parameter h with ψ = π/4. Solid line: τVLD from
Eqs. (9), (33), and (B7)–(B10). Asterisks: Numerical solution for
the inverse of the smallest nonvanishing eigenvalue 1/(τ0λ1) of
the Fokker-Planck operator in Eq. (3) [13,33]. Dashed line: The
VLD asymptotic equation (6) (for h = 0 only) and general cases
Eqs. (35), (A8)–(A10), (B11).

is appropriate because the energy of a separatrix trajectory
is now εC = 0. Therefore τ+ = τ− = τ , so that the overall
reversal time is then τVLD = τ . Having calculated fε and Sε as
described in Appendix C [Eqs. (C11) and (C12)], τVLD from
Eq. (9) can be written as the analytic equation

τVLD = τ0σ

2α

∫ 0

−1

eσε
∫ ε

−1
K(mε′ )e−σε′

√
δ−ε′ dε′

√
δ − ε [E (mε) + εK (mε)]

dε. (44)

Here mε = δ(1 + ε)/(δ − ε), and K(m) and E(m) are the
complete elliptic integrals of the first and second kind,
respectively [37]. For high barriers, σ � 1, τVLD from Eq. (44)
is closely approximated by [39]

τVLD
as ∼ τ0πeσ

4ασ
√

δ(1 + δ)
. (45)

Equation (45) follows from Eqs. (25), (A13), and (C10) for
h = 0.

VI. COMPARISON OF ANALYTICAL AND
NUMERICAL RESULTS

We can now compare the reversal time τVLD for uniaxial
and biaxial anisotropy from the exact integral solutions of
Eqs. (9), (33), and (43), both with the asymptotic VLD
escape rate τVLD

as and with the inverse of the smallest
nonvanishing eigenvalue λ1 of the Fokker-Planck operator
[Eq. (3)]. The asymptotic escape rate is given in general by
Eq. (35) and its particular cases embodied in Eqs. (A8)–
(A10), (A11)–(A13), (B11), and (C10) below, while the
eigenvalue is calculated numerically by the matrix continued
fraction method [13,33,39]. All the calculations have been
done for α = 0.001, corresponding to the true VLD limit,
α�EC

� 1, for all values of the barriers which are used.
For uniaxial and biaxial anisotropies, the reversal times are
shown in Figs. 3 and 4, respectively, as functions of the

4

3

21: h
2: h
3: h
: h

V
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V
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1

FIG. 4. (Color online) Reversal time vs the barrier height pa-
rameter σ = vK/(kT ) for biaxial anisotropy [Eq. (38)] for various
values of the field parameter h with δ = 1. Solid line: τVLD

from Eqs. (9), (43), (C7), and (C9). Asterisks: Numerical solution
for 1/(τ0λ1) [13,39]. Dashed line: The VLD asymptotic equa-
tions (35), (A11)–(A13), and (C10).

inverse temperature parameter σ for various values of the
field parameter h and typical values of the other model
parameters. Clearly, for σ > 5, the temperature dependence
of the reversal time has the customary Arrhenius behavior,
i.e., τVLD ∼ eσ (εC−ε−

A ). This expression represents exponential
increase with decreasing temperature, the slope of τ (T −1)
being markedly dependent on h, because the barrier height
of the shallow well is strongly influenced by this parameter as
it significantly decreases with increasing h. In contrast for σ <

3, the behavior of τVLD(T −1) may deviate considerably from
the Arrhenius behavior. Apparently, τVLD and λ−1

1 lie very
close to each other for virtually all σ . Furthermore, in the high
barrier limit, τVLD

as from the asymptotic equation (35) and its
particular cases [Eqs. (A10), (B11), (A13), and (C10)] provide
an accurate approximation to both λ−1

1 and τVLD. However, for
σ < 3, τVLD

as deviates considerably from both of these so that
it cannot be used to calculate the reversal time.

= 0.001
h = 0.2

= 15

V
LD

V
LD

as

FIG. 5. (Color online) Reversal time vs oblique-field angle ψ for
uniaxial anisotropy superimposed on the Zeeman term [Eq. (26)]
and for σ = 15 and h = 0.2. Solid line: τVLD from Eqs. (9), (33),
and (B7)–(B10). Asterisks: Numerical solution for 1/(τ0λ1) [13,33].
Dashed line: The VLD asymptotic equations (35), (A8)–(A10),
and (B11). Dashed-dotted line: Brown’s equation (6).
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To illustrate the problem of uniaxial crossovers encoun-
tered in calculating the reversal time τVLD via escape rate
theory [14,24], i.e., in the parameter range where departures
from axial symmetry are small, we plot in Fig. 5 τVLD

for uniaxial anisotropy superimposed on the Zeeman term
[Eq. (26)] as a function of the oblique angle ψ for σ = 15
and h = 0.2. In the interval 0 � ψ � π/2 [note that τ (ψ) =
τ (π − ψ)], τVLD strongly depends on ψ , having a minimum
at ψ ≈ π/4 and deviating considerably from the uniaxial
asymptotic equation (6). However, in the limit of uniaxial
crossover ψ → 0, τVLD

as from the asymptotic equation (35)
diverges because the dimensionless action �±

εC
→ 0. Hence

that equation cannot be used for the calculation of the reversal
time. In contrast, the MFPT equations (9) and (33) yield values
very close both to the numerical results and Brown’s asymptote
[Eq. (6)].

VII. CONCLUSION

We have derived analytic formulas for the magnetization
reversal time of nanomagnets in the VLD range. Our principal
result is the general equation (20), yielding the reversal time
via quadratures which can, in principle, be evaluated for any
anisotropy. Yet another merit of Eq. (20) is that it is valid
in parameter ranges where escape rate equations such as
Eqs. (6), (10), (35), and (45) do not apply at all, i.e., both for
low barriers and uniaxial crossovers [14,24]. Furthermore, for
certain anisotropies such as uniaxial and biaxial anisotropies,
etc., the VLD reversal time can be given in terms of integrals of
known functions, e.g., Eqs. (36), (37), and (44). Equation (20)
is also valuable as a benchmark solution with which numerical
calculations of the reversal time from the magnetic Langevin
and/or Fokker-Planck equation in the VLD limit must agree.
Finally, the method we have given can also be applied,
with some modifications, to thermal agitation in magneti-
zation dynamics in nanomagnets driven by spin-polarized
currents [12,28]. Here a current of spin-polarized electrons
is capable of applying nonconservative torques to the mag-
netization M. In the spin-transfer-torque case, the stochastic
dynamics of the magnetization M under VLD conditions are
governed by an energy-controlled diffusion equation similar
to Eq. (15), save for the spin-torque terms [27,28]. However,
due to these terms, the Gilbert damping may be overcome
so that reversal of the magnetization becomes possible in the
absence of thermal fluctuations. As far as spin-transfer torque
and thermal fluctuations are concerned, the overall situation,
albeit more complicated, is in some way reminiscent of that
occurring in the resistively shunted junction (RSJ) model [13]
of a Josephson junction, which is an electric analog of the
motion of a Brownian particle in a tilted periodic potential.
Now just as the bias current in the junction, which constitutes
a nonconservative electrical source giving rise to the motion
in a tilted cosine periodic potential, ensures that the stationary
distribution is no longer the Boltzmann distribution, in like
manner the stationary distribution in a ferromagnet subjected
to spin-polarized current is no longer Boltzmann. Rather
it depends both on the spin-polarized current and damping
analogous to the dependence of the stationary distribution in
the RSJ model on the bias current or tilt parameter. Some of the
consequences include the switching time being systematically

smaller than Brown’s intrinsic thermally activated time in
the low damping regime, and the damping and external
current parameters now govern the effective barrier heights
so that the effect of the spin-polarized current may be as
much as orders of magnitude [41]. The corresponding energy-
controlled diffusion equations [12,28] can be analyzed by the
methods outlined here.
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APPENDIX A: CALCULATION OF EA, EC , AND fA

In order to calculate the precession frequency in the well
precession frequency fA and the well and saddle energies EA

and EC , it is supposed [8,13,14] that the free energy E(M) of a
nanoparticle has a multistable structure with minima at n+

A and
n−

A separated by a potential barrier with a saddle point at nC

(see, e.g., Fig. 1). If M is close to the stationary points n+
A , n−

A ,
and nC , and (u(p)

1 ,u
(p)
2 ,u

(p)
3 ), p = A±, C, denote the direction

cosines of M, then E(M) can be approximated to second order
in u

(p)
1 and u

(p)
2 via the Taylor series

E = Ep + 1

2

[
c

(p)
1

(
u

(p)
1

)2 + c
(p)
2

(
u

(p)
2

)2] + · · ·. (A1)

To determine the expansion coefficients c
(p)
1 , c

(p)
2 , and

Ep, we recall that the transformation matrix R(p) relating
the reference polar coordinate system P and a new polar
coordinate system P ′ with the origin at the stationary point
np is defined as [13,14]

R(p) =
⎛
⎝cosϕpcosϑp sinϕpcosϑp −sinϑp

−sinϕp cosϕp 0
cosϕpsinϑp sinϕpsinϑp cosϑp

⎞
⎠ ,

so that the relationship between the direction cosines u
(p)
n and

u
′(p)
m in the systems P and P ′ is given by

u(p)
n = R

(p)
1n u

′(p)
1 + R

(p)
2n u

′(p)
2 + R

(p)
3n u

′(p)
3 (A2)

(n = 1,2,3). Because u
′(p)
3 ≈ 1 − (u′(p)2

1 + u
′(p)2
2 )/2, Ep and

c
(p)
n (n = 1, 2) can be evaluated from Eqs. (A1) and (A2) as

Ep = Ep

(
u

(p)
1 ,u

(p)
2

)∣∣∣
u

′(p)
1 ,u

′(p)
2 =0

, c(p)
n = ∂2E

∂u
′(p)2
n

∣∣∣∣
u

′(p)
1 ,u

′(p)
2 =0

.

(A3)
The well precession frequencies f ±

A are then defined via
the Taylor expansion coefficients in Eq. (A1) as

f ±
A = γ kT

2πvμ0MS

√
c

(A±)
1 c

(A±)
2 . (A4)

For uniaxial anisotropy in the presence of a uniform
magnetic field H0 applied at an angle ψ with respect to the
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easy axis [Eq. (26)], the calculation yields [13,14]

Ep = −σ [cos2ϑp + 2hcos(ϑp − ψ)], (A5)

c
(p)
1 = 2σ [cos2ϑp + hcos(ϑp − ψ)], (A6)

c
(p)
2 = 2σ [cos2ϑp + hcos(ϑp − ψ)], (A7)

where ϑp are the solutions of the trigonometric equation
sin2ϑ = 2hsin(ψ − ϑ). The latter equation may be rewritten
as the quartic equation [13,14,31]

(x + h cos ψ)2(1 − x2) = (xh sin ψ)2,

with x = cosϑ . The roots of this quartic equation, viz.,

−1 � x1 = cos ϑ−
A < x2 = cos ϑC < x3 < x4 = cos ϑ+

A �1,

have a complicated algebraic form (see Ref. [30] for details).
However, they can be written [34] as converging Taylor series
to any desired order of h, allowing one to calculate fA, ε±

A =
E±

A/σ , and εC = EC/σ as

ε±
A = −1 ∓ 2h cos ψ − h2 sin2ψ

× (1 ∓ h cos ψ + h2 cos2ψ − · · ·), (A8)

εC = −2h sin ψ+h2 cos2ψ(1 + h sin ψ − 3h2 sin2ψ + · · ·),
(A9)

f ±
A = 1

2πτ0

{
1 ± h cos ψ − h2

2
sin2ψ

×
[

1 ∓ 3h cos ψ + h2

8
(21 + 19 cos 2ψ) + · · ·

]}
,

(A10)

with h < hc(ψ) � 1.
For biaxial anisotropy [Eq. (38)], the calculation of Ep and

c
(p)
n yields [13,14,39]

Ep = σ (sin2ϑp − 2hcosϑp), c
(p)
1 = 2σ (cos2ϑp + hcosϑp),

c
(p)
2 = 2σ (δ + cos2ϑp + hcosϑp),

where ϑp are the solutions of the equation ∂ϑV |ϕ=π/2 = 0.

These are ϑ+
A = 0, ϑ−

A = π, and cosϑC = −h. Thus

ε±
A = E±

A/σ = −1 ∓ 2h, (A11)

εC = EC/σ = h2, (A12)

f ±
A = 1

2πτ0

√
(1 ± h + δ)(1 ± h). (A13)

APPENDIX B: CALCULATION OF f ±
ε AND S±

ε FOR
UNIAXIAL ANISOTROPY

In order to evaluate the energy-dependent precession
frequency f +

ε and the action S+
ε in the deeper well, we first

introduce the parameter pε, defined as

(uZ + h cos ψ)2 + 2h sin ψuX = (h cos ψ)2 − ε = p2
ε .

Next we introduce a new function u(t) related to uX(t), uY (t),
and uZ(t) via

uX = p2
ε

2hsinψ
(1 − u2), (B1)

uY =
√

1 − (pεu − hcosψ)2 − p4
ε

4h2sin2ψ
(1 − u2)2, (B2)

uZ = −hcosψ + pεu. (B3)

Then Eq. (29) becomes

du

dt
= pε

2τ0

√
(e1 − u)(u − e2)(u − e3)(u − e4), (B4)

where e1, e2, e3, and e4 are the roots of the fourth-order
polynomial �(u) given by

�(u) = 4h2p−4
ε sin2 ψ[1 − (pεu − h cos ψ)2] − (1 − u2)2.

We do not give here the rather complicated explicit
equations for e1, e2, e3, and e4, because using MATHEMATICA,
these roots can be easily calculated both analytically and
numerically. Noting that in the deeper well u varies in the
interval e1 � u � e2 and [43]∫ e1

u

dx√
(e1 − x)(x − e2)(x − e3)(x − e4)

= 2F (ϕ |mε )√
(e1 − e3)(e2 − e4)

, (B5)

where F (ϕ |mε ) is the incomplete elliptic integral [37]

sinϕ =
√

(e2 − e4)(e1 − u)

(e1 − e2)(u − e4)
, mε = (e1 − e2)(e3 − e4)

(e1 − e3)(e2 − e4)
,

we have the explicit expression

u(t) = e4
bε + sn2 (ωεt + w| mε)

aε + sn2 (ωεt + w| mε)
, (B6)

where sn(u|m) is Jacobi’s elliptic function [37] with real period
4K(m), K(m) is the complete elliptic integral of the first
kind [37], w is an initial phase, and

aε = e2 − e4

e1 − e2
, bε = e1

e4
aε, ωε = pε

4τ0

√
(e1 − e3)(e2 − e4).

Now, the energy-dependent precession frequency f +
ε of the

magnetization is

f +
ε = pε

√
(e1 − e3)(e2 − e4)

16τ0K(mε)
, (B7)

while S+
ε from Eq. (34) is given by [noting Eqs. (27)–(29)

and (B1)–(B3)]

S+
ε = τ0σ (4h2sin2ψ − p4)

2f +
ε

+ τ0σp2

2

×
∫ 1/f +

ε

0
{4ph cos ψ[u(t) + u3(t)]

+ [4 − 4h2cos2ψ − 2p2]u2(t) − p2u4(t)}dt. (B8)
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The calculation of S+
ε from Eq. (B8) thus reduces to the

evaluation of integrals of the form

f +
ε

∫ 1/f +
ε

0

[
bε + sn2 (ωεt + w |mε )

aε + sn2 (ωεt + w |mε )

]N

dt

=
N∑

n=0

N ! (bε − aε)n

n!(N − n)!
I (n) (B9)

for N = 1, 2, 3, and 4, where the integrals I (n) are defined by

I (n) = f +
ε

∫ 1/f +
ε

0

dt

[aε + sn2 (ωεt + w |mε )]n
. (B10)

For n = 1, 2, 3, and 4, the integrals I (n) can be expressed
in terms of the complete elliptic integrals as (using the table
of integrals from Ref. [43])

I (1) = �
(−a−1

ε |mε

)
aεK (mε)

,

I (2) = 1

2aε(1 + aε)

[
−1 + E(mε)

(1 + aεmε)K (mε)
+ 1 + 2aε + aεmε(3aε + 2)

(aε + mε)
I (1)

]
,

I (3) = 3 + 9a2
εm + 6a(1 + m)

4aε(1 + aε)(1 + aεmε)
I (2) − 1 + m + 3am

2aε(1 + aε)(1 + aεmε)
I (1) + m

4aε(1 + aε)(1 + aεmε)
,

I (4) = 6 + 16a2
εm + 11a(1 + m)

6aε(1 + aε)(1 + aεmε)
I (3) + 3 + 57a2

εm + 22a(1 + m)

24a2
ε (1 + aε)(1 + aεmε)

I (2) + 2 (1 + m + 9am) I (1) − m

24a2
ε (1 + aε)(1 + aεmε)

,

where E(m) and �(n|m) are the complete elliptic integrals of
the second and third kind, respectively [37].

In order to calculate the reversal time τVLD, we actually
need only f +

ε and S+
ε , i.e., Eqs. (B7) and (B8), corresponding

to the deeper well, because S−
ε and f −

ε for the shallow well
can be formally obtained by replacing in all the equations h by
−h. Hence in Eq. (9) we have τ+ = τ+(h) and τ− = τ+(−h).
We remark that at the saddle point εC , S±

εC
can be evaluated

from Eq. (23) via converging Taylor series to any desired order
of h [34]:

S±
εC

= σ
√

|h| sinψ

×
[

16 − 104

3
|h| sinψ + h2 (1 − 21cos2ψ) + · · ·

]

± 2πσh2sin2ψ (4 − 3 |h| sinψ + · · ·) . (B11)

The above results can be simplified for axial symmetry
ψ → 0, where the frequency f +

ε

∣∣
ψ→0 from Eq. (B7) and the

actions S±
ε |ψ→0 from Eqs. (B8) reduce to

f +
ε

∣∣
ψ→0 = 1

2πτ0

√
h2 − ε, (B12)

S±
ε

∣∣
ψ→0 = 4πσ

√
h2 − ε(ε − 2h2 + 1 ± 2h

√
h2 − ε). (B13)

APPENDIX C: CALCULATION OF f ±
ε AND S±

ε FOR
BIAXIAL ANISOTROPY

Noting that Eqs. (42) and (31) lead to the equality

(
uZ + h

δ + 1

)2

+ δ

δ + 1
u2

Y = δ − ε

δ + 1
+ h2

(δ + 1)2
= p2

ε ,

we can again introduce a new function u(t) related to
uX(t), uY (t), and uZ(t) via

uZ(t) = pεu(t) − h(δ + 1)−1, (C1)

uY (t) = pε

√
(1 + δ−1)[1 − u2(t)], (C2)

uX(t) = pε

√
δ−1[u(t) − e+][u(t) − e−], (C3)

where

e± = − hδ

pε(δ + 1)
±

√
h2 − ε

pε

. (C4)

In the deeper well, u varies in the interval e+ � u � 1,
while in the shallow well it varies in the interval −1 � u � e−.
By substituting Eqs. (C1)–(C3) into Eq. (41), we have

du

dt
= −pε

√
δ + 1

τ0

√
(1 − u2)(u − e+)(u − e−). (C5)

The solution of Eq. (C5) is given in terms of Jacobi’s elliptic
function sn(u|m) [37], viz.,

u(t) = aε − sn2 (ωεt + w |mε )

aε + sn2 (ωεt + w |mε )
, (C6)

where

aε = 1 + e+
1 − e+

, mε = (1 + e−) (1 − e+)

(1 + e+) (1 − e−)
,

ωε = pε

2τ0

√
(δ + 1)(1 + e+) (1 − e−).

Note that 0 � mε � 1 for −1 + 2h < ε < h2 and −1 < mε �
0 for −1 − 2h < ε < −1 + 2h.

Now the precession frequency f +
ε is

f +
ε = ωε

4K (mε)
= pε

√
(δ + 1)(1 + e+) (1 − e−)

8τ0K (mε)
, (C7)

while S+
ε is given by [noting Eqs. (39)–(41) and (C1)–(C3)]

S+
ε = 2σp2

ε

τ0

∫ 1/f +
ε

0
{(1 + δ)ε − h2 + 2hpε(1 + δ)u(t)

+ (1 + δ − h2)u2(t)}dt. (C8)
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Next, with Eq. (B9) we have

S+
ε = 16σpεK (mε)

√
1 + δ√

(1 + e+) (1 − e−)

{
ε − h2

1 + δ
− 2hpε

[
1 − 2

�
(−a−1

ε |mε

)
K (mε)

]

+ 1 + δ − h2

1 + δ

[
1 − aε

1 + aε

+ 2
aεE(mε) − (

1 − a2
εmε

)
�(−a−1

ε |mε)

(1 + aε)(1 + aεmε)K(mε)

]}
. (C9)

Again, for the shallow well, S−
ε and f −

ε can be formally
obtained simply by replacing in all the equations h by −h.
Thus we have τ+(h) and τ− = τ+(−h). At the saddle point εC ,
S±

εC
can be evaluated as

S±
εC

= 8δσ

(
1 − h2

1 + δ

) {√
1 − h2

δ
+ h√

1 + δ

× arctan

[
h√

(1 − h2)(1 + δ−1)

]
± hπ

2

}
. (C10)

The above results can be simplified for two particular
cases of interest, namely, for axial symmetry, δ → 0, and
for zero external field, h → 0. For δ → 0, f +

ε |δ→0 from
Eq. (C7) and S+

ε |δ→0 from Eq. (C8) are given by Eqs. (B12)
and (B13), respectively. For h → 0, we have from Eqs. (C7)
and (C9),

f +
ε

∣∣
h→0 =

√
δ(1 + ε)

8τ0K(a−2
ε )

=
√

δ − ε

4τ0K
(

δ+δε
δ−ε

) , (C11)

S+
ε

∣∣
h→0 = S−

ε

∣∣
h→0 = Sε = 16σ

√
δ − ε

1 + e+

×
{(

ε − aε − 1

aε + 1

)
K(a−2

ε ) + 2a2
εE(a−2

ε )

(1 + aε)2

}

= 8σ
√

δ − ε

[
E

(
δ + δε

δ − ε

)
+ εK

(
δ + δε

δ − ε

)]
.

(C12)

Here we have used known equations from the theory of elliptic
functions, namely [42],

K(a−2
ε ) = 1

2
(1 +

√
m′)K(1 − m′)

and

E(a−2
ε ) = 1

1 + √
m′ [

√
m′K(1 − m′) + E(1 − m′)],

where
√

m′ = (aε − 1)/(aε + 1).
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