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I. INTRODUCTION

The interpretation of spin relaxation experiments comprises a fundamental prob-
lem of condensed phase physics and chemistry, yielding a well-defined means of
extracting information concerning the spin dynamics in gases, liquids, and solids,
so providing a bridge between microscopic and macroscopic physics. For example,
since the number of spins in a sample roughly corresponds to the number of atoms,
on an atomic level, nuclear magnetic and related spin resonance experiments,
and so on, examine the time evolution of the individual elementary spins [1, 2]
of nuclei, electrons, muons, and so on, while on mesoscales the time evolution
of magnetic molecular clusters (i.e., spins 15–25 μB) exhibiting relatively large
quantum effects is relevant to the fabrication of molecular magnets [3]. On
nanoscales single domain ferromagnetic particles (giant spins 104–105 μB) with
a given orientation of the particle moment and permanent magnetization exist.
These have spawned very extensive magnetic recording industries, the particles
commonly used being on or near the microsize scale. Also on a nanoscale level,
we have magnetic fluids composed of single domain ferromagnetic particles in a
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colloidal suspension. Here, relaxation experiments detect [4, 5] both the Arrhenius
or solid-state-like (Néel) mechanism [6] of relaxation of the magnetization, which
may be overcome via thermal agitation anisotropy potential barriers inside the
particle and the Debye orientational relaxation [7, 8] due to physical Brownian
rotation of the suspended particles in the presence of thermal agitation. Here,
quantum effects are expected to be much smaller. Finally, on the bulk macroscopic
scale, permanent magnets (1020 μB) exist, that is, multi-domain systems, where
magnetization reversal occurs via the macroscopic processes of nucleation, prop-
agation, and annihilation of domain walls. Thus, a well-defined spin number scale
ranging from the bulk macroscopic down to individual atom and spins naturally
occurs [9] (see Fig. 1).

On an atomic-level, spin relaxation experiments in nuclear magnetic or electron
spin resonance are usually interpreted via the phenomenological Bloch [10]
equations and their later modifications [1, 2] pertaining to the relaxation of
elementary spins subjected to an external magnetic field and interacting with an
environment constituting a heat reservoir at constant temperature T . These simple
linear equations of motion for the nuclear magnetization were originally proposed
on phenomenological grounds. The main assumption is that the effects of the
heat bath can be described two different time constants: the so-called T1 and
T2 relaxation times. They provide a substantially correct quantitative description
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Figure 1. The transition from macroscopic to nanoscopic magnets. The hysteresis loops are
typical examples of magnetization reversal via nucleation, propagation, and annihilation of domain
walls (left), via uniform rotation (middle), and via quantum tunneling (right). Wernsdorfer [9],
Reproduced with permission of John Wiley & Sons, Inc. (Color on line).
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for liquid samples [1]. Microscopic theories of the relaxation in quantum spin
systems have been developed by Bloch [11], Bloembergen, et al. [12], and other
authors (see, e.g., Refs. 13–15). These microscopic theories have provided general
evolution equations for the density matrix operator of the spin system allowing
one, in principle, to evaluate all desired observables such as relaxation times, and
so on.

On meso- and nanoscales, both the behavior of the hysteresis loop and the rever-
sal time of the magnetization of molecular clusters and nanomagnets are essential
for observation of the transition from the macroscopic to the nanoscale level as
quantum effects are likely to occur as the spin number decreases (see Fig. 1).
In this region, the magnetization in molecular nanomagnets may reverse both
due to thermal agitation and quantum tunneling as may be observed in the
corresponding hysteresis loop [9]. In contrast, in single, domain ferromagnetic
nanoparticles (originally encountered in paleomagnetism in the context of past
reversals of the Earth’s magnetic field, where depending on the volume of the
particle, the relaxation time may vary from nanoseconds to millions of years),
the magnetization reversal is treated classically by assuming uniform rotation of
the magnetization vector as conjectured by Néel [16] and Stoner and Wohlfarth
[17]. The relaxation time epochs represent the transition from Langevin paramag-
netic behavior of nanoparticles (superparamagnetism) with no hysteresis involved
via the magnetic after-effect stage, where the magnetization reversal time is of
the order of the time of a measurement, to stable ferromagnetism. There a given
ferromagnetic state that corresponds to one of many possible such metastable
states in which the magnetization vector is held in a preferred orientation. In
the hypothesis of uniform or coherent rotation, the exchange interactions render
all atomic spins collinear and the magnitude of the magnetization vector is
constant in space. This hypothesis should hold for fine (nanometric) magnetic
particles, where domain walls cannot form in the sample because it is energetically
unfavorable.

The static magnetization properties of single, domain particles are usually
treated via the method given by Stoner and Wohlfarth [17]. Their procedure
simply consists in minimizing the free energy of the particle, that is, the sum
of the Zeeman and anisotropy energies with respect to the polar and azimuthal
angles specifying the orientation of the magnetization for each value of the applied
field. The calculation always leads to hysteresis because in certain field ranges,
two or more minima exist and thermally agitated transitions between them are
neglected. The value of the applied field, at which the magnetization reverses, is
called the switching field and the angular dependence of that field with respect
to the easy axis of the magnetization yields the well-known Stoner–Wohlfarth
astroids [17, 18]. These were originally given for uniaxial shape anisotropy only,
which is the anisotropy of the magnetostatic energy of the sample induced by its
nonspherical shape. The astroids represent a parametric plot of the parallel versus
the perpendicular component of the switching field, which in the uniaxial case is
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the field that destroys the bistable structure of the free energy. The astroid concept
was later generalized to arbitrary-effective anisotropy by Thiaville [19], including
any given magnetocrystalline and surface anisotropy. He proposed a geometrical
method for the calculation of the energy of a particle allowing one to determine
the switching field for all values of the applied magnetic field, yielding the critical
switching field surface analogous to the Stoner–Wohlfarth astroids. A knowledge
[9] of the switching field surface permits one to determine the effective anisotropy
of the particle and all other parameters such as the frequencies of oscillations in the
wells of the potential, that is, the ferromagnetic resonance frequency, and so on. We
reiterate that these static calculations all ignore thermal effects on the switching
field, that is, transitions between the minima of the potential are neglected so that
they are strictly only valid at zero temperature.

As far as the magnetization dynamics of fine particles at finite temperatures
are concerned, Néel [16] determined the magnetization relaxation time, that is,
the time of reversal of the magnetization of the particle, due to thermal agitation
over its internal magnetocrystalline anisotropy barrier from the inverse escape rate
over the barriers using transition-state theory (TST) [20] as specialized to magnetic
moments, namely,

τ ∼ f −1
0 eβ�V . (1)

Here, �V is the barrier height, β = (kT)−1, k is Boltzmann’s constant, T is
the absolute temperature, and f0 is the so-called attempt frequency associated
with the frequency of the gyromagnetic precession of the magnetization in the
effective field of the magnetocrystalline anisotropy. It follows that, by varying the
volume or the temperature of the particles, τ can be made to vary from 10−9s to
millions of years (f −1

0 is often taken as small as 10−10–10−11 s in practice). The
presence of the exponential factor in Eq. (1) indicates that, in order to approach
the zero remanence (corresponding to thermal equilibrium), a sufficient number
of particles (magnetic moments) must be reversed by thermal activation over
the energy barrier. Thus, his treatment, given in detail for uniaxial anisotropy
only, is confined to a discrete set of orientations for the magnetic moment of the
particle. Moreover, the equilibrium distribution is all that is ever required since the
disturbance to the Boltzmann distribution in the wells of the magnetocrystalline
anisotropy potential due to the escape of the magnetization over the barrier is
ignored. Besides the overbarrier relaxation process, Bean and Livingston [21] have
suggested that in a single-domain particle, the magnetization may also reverse
by macroscopic quantum tunneling (macroscopic since a giant spin is involved)
through the magnetocrystalline–Zeeman energy potential barrier. In general, the
magnetization may reverse by quantum tunneling at very low temperatures [22],
which may be observed in the behavior of the Stoner–Wohlfarth asteroids and
associated hysteresis loops. Hence, in order to distinguish tunneling reversal from
reversal by thermal agitation, systematic ways of introducing quantum effects into
the magnetization reversal of nano-mesoscale magnets, which in general may be
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restated as quantum effects in parameters characterizing the decay of metastable
states in spin systems, are required.

In the context of thermal effects in the magnetization reversal of classical spins,
we have mentioned that the original dynamical calculations of Néel for single-
domain particles utilize classical TST. In the more recent treatment formulated by
Brown [23, 24] (now known as the Néel–Brown model [6, 9]), which explicitly
treats the system as a gyromagnetic one and which includes nonequilibrium
effects due to the loss of magnetization at the barrier, the time evolution of the
magnetization of the particle M(t) is described by a classical (magnetic) Langevin
equation. This is the phenomenological Landau–Lifshitz [25] or Gilbert equation
[26, 27] augmented by torques due to random white noise magnetic fields h(t)
characterizing the giant spin–bath interaction, namely,

u̇ = γ
[
u × (Hef + h

)]− α [u × u̇] . (2)

Here u = M/MS is a unit vector in the direction of M, MS is the saturation
magnetization, assumed constant, γ is the gyromagnetic-type constant, α is the
dimensionless damping constant, Hef = −μ−1

0 ∂V/∂M is the effective magnetic
field, μ0 = 4π · 10−7JA−2m−1 is the permeability of free space in SI units, and V
is the free energy per unit volume comprising the non-separable Hamiltonian of
the magnetic anisotropy and Zeeman energy densities. Thus, the only variable is
the orientation of M = MSu, which is specified by the polar and azimuthal angles
ϑ and ϕ of the spherical polar coordinate system (see Fig. D.1). The stochastic
differential equation (2) for the isotropic Brownian motion of the classical spin
containing both precessional and alignment terms is then used to derive the
Fokker–Planck equation accompanying Eq. (2), governing the time evolution of
the distribution function W(ϑ , ϕ, t) of magnetization orientations on the surface
of a sphere of constant radius MS. The relevant Fokker–Planck equation is [5, 6]

∂W

∂t
= LFPW, (3)

where the Fokker–Planck operator LFP again comprising both precessional and
alignment terms is defined as follows:

LFPW = 1

2τN

{
βv

α

(
u ·
[
∂V

∂u
× ∂W

∂u

])
+ βv

(
∂

∂u
· W

∂V

∂u

)
+ �W

}
. (4)

Here, � is the Laplacian operator on the surface of the unit sphere, τN =
(α + α−1)vβμ0MS/(2γ ) is the characteristic free-diffusion time of M(t), and
v is the volume of a typical particle. A detailed discussion of the assumptions
made in deriving the Fokker–Planck and Gilbert equations is given elsewhere
(see e.g., Refs. 5 and 6; see also Appendix D). Now Brown’s model [23, 24],
rooted in a magnetic Langevin equation, allows one to treat the relaxation
processes in classical spin systems (single-domain particles, etc.) using powerful
computational techniques that have been developed in the theory of the Brownian
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motion. These include continued fractions, mean first passage times, escape rate
theory, and so on [5, 6]. For example, by using the Kramers’ escape rate method
[28, 29], as ingeniously adapted to magnetic relaxation by Brown [23, 24], we can
evaluate the reversal time of the magnetization over wide ranges of temperature
and damping [6]. Thus, we can compare theoretical predictions with experimental
data on superparamagnetic relaxation, which we saw plays a fundamental role in
information storage, paleomagnetism, biotechnology, and so on.

Many quantum, semiclassical, and classical methods for the description of spin
relaxation and resonance already exist. These include the reduced density matrix
evolution equation [2, 30, 31], the stochastic Liouville equation [32, 33], and the
Langevin equation [5, 6], besides the phase space (generalized coherent-state)
[34–40] treatment. The latter comprises the extension of Wigner’s phase space
representation of the density operator [41–48] (originally developed to obtain
quantum corrections to the classical distributions for point particles in the phase
space of positions and momenta) to the description of spin systems, (see, e.g.,
Refs. [35–40] and [49–51]). Furthermore, phase space representations of quantum
mechanical evolution equations provide a formal means of treating quantum
effects in dynamical systems transparently linking to the classical representations,
facilitating the calculation of quantum corrections to classical distribution func-
tions. These representations generally based on the coherent-state representation
of the density matrix introduced by Glauber and Sudarshan and widely used in
quantum optics [45, 46] when applied to spin systems (see e.g., Refs. 35–40 and
52–69) allow one to analyze quantum spin relaxation using [70] a master equation
for a quasiprobability distribution function WS(ϑ , ϕ, t) of spin orientations in
a phase (here configuration) space (ϑ , ϕ). The mapping of the quantum spin
dynamics onto c-number quasiprobability density evolution equations clearly
shows how these equations reduce to the Fokker–Planck equation in the classical
limit [40, 62]. The phase space distribution function for spins was originally
introduced by Stratonovich [49] for closed systems, and it was further developed
both for closed and open spin systems see Refs. 35–40 and 52–69. It is entirely
analogous to the Wigner distribution W(q, p, t) in the phase space of positions and
momenta (q, p) of a particle [41–47], which is a certain (overlap) Fourier transform
corresponding to a quasiprobability representation of the density matrix operator
ρ̂(t). However, particular differences arise because of the angular momentum
commutation relations. The phase space distribution function WS(ϑ , ϕ, t) of spin
orientations in a configuration space, just as the Wigner function W(q, p, t) for
the translational motion of a particle, enables one to calculate the expected value
of a spin operator Â in Hilbert space via the corresponding c-number (or Weyl)
symbol A(ϑ , ϕ). Hence, quantum mechanical averages may be determined in a
classical-like manner. The Wigner representation contains only such features as
are common to both quantum and classical statistical mechanics, and it formally
represents quantum mechanics as a statistical theory on classical phase space
[42, 47]. Therefore, it is especially suitable for the development of semiclassical
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methods of solution, for example, for the purpose of analysis of two interacting
systems: where one is treated quantum mechanically, while the other is treated
by using classical theory. Here, the Wigner representation allows one to easily
obtain quantum corrections to the classical results, which is naturally suited to the
calculation of quantum corrections to the latter. The formalism is relatively easy to
implement because master equations governing the time evolution of phase space
distributions enable powerful computational techniques originally developed for
the solution of classical Fokker–Planck equations for the rotational Brownian
motion of classical magnetic dipoles (e.g., continued fractions, and mean first
passage times. [5, 71]) to be seamlessly carried over into the quantum domain
[62, 65, 72, 73].

Despite the undoubted merits of the phase space description of spin relaxation
[35–40], it appears that the formulation has been relatively underexploited outside
the realm of quantum optics [45, 46]. Thus, applications to other spin systems
are few including spin relaxation problems, and so on. This may, in part, be
due to the relatively complex mathematical manipulations, which are involved
in comparison with the phase space formulation for particles with separable and
additive Hamiltonians. Therefore, it is now our purpose to provide in the spirit
of the Advances in Chemical Physics: a reasonably comprehensive and didactic
account of the phase space description of spin relaxation and other allied topics.
It is also our purpose to show, by using Wigner’s quasiprobability distribution
function formalism, how the existing methods of analysis of the Brownian motion
of classical spins may be extended to include quantum effects. Thus, a semiclassi-
cal theory of spin relaxation will ensue. Moreover, we shall demonstrate how the
results of calculations of relaxation times, dynamic susceptibilities, and so on, for
various model systems via the phase space formalism are in complete agreement
with those obtained from the solution of quantum master equations for the density
matrix. The results are significant, particularly because they will elucidate the role
played by quantum effects in the various spin relaxation processes in nanomagnets
as well as providing a basis for a theory of macroscopic quantum tunneling for
which the semiclassical approach is ideally suited.

The remaining contents can be summarized as follows. In Section II, we
recall the principal features of both the density matrix in Hilbert space and the
phase space formalisms as applied to spin relaxation phenomena. In particular,
we present a detailed derivation of the evolution equation for the density matrix
and the corresponding differential recurrence equation for the statistical moments
(average polarization operators) in the Markovian approximation. Furthermore,
we introduce the Wigner quasiprobability distribution function for particles and
illustrate its application to both TST and Brownian motion. Then we describe
the basic aspects of the phase space formalism for spins and derive the master
equation for the spin phase space quasiprobability distributions and the differential
recurrence equation for the statistical moments (average spherical harmonics).
Finally, we treat in detail the stationary solutions of phase space master equations
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for various model spin systems with arbitrary spin number S (e.g., spins in a
uniform external field, uniaxial nanomagnets in longitudinal and transverse fields,
and biaxial and cubic systems), and we calculate quantum corrections to both
switching field curves and to the spin TST reversal time. Section III is devoted
to both the derivation of and the solution of phase space master equations for
axially symmetric problems concerning both noninteracting spins in a dc magnetic
field and uniaxial nanomagnets subjected to a dc magnetic field. We evaluate
characteristic relaxation times and dynamic susceptibility for these spin systems
besides treating nonlinear longitudinal relaxation of spins in superimposed ac
and dc magnetic fields and investigating quantum effects in dynamic magnetic
hysteresis and stochastic resonance. In Section IV, we derive and solve the
statistical moment equations for average spherical harmonics for an arbitrary spin
Hamiltonian. As a particular example, we calculate the characteristic relaxation
times and dynamic susceptibility of a uniaxial nanomagnet subjected to a dc bias
field of arbitrary orientation with respect to the easy axis. Throughout, we shall
compare the results obtained via the phase space formalism with the corresponding
classical limit, S → ∞. In order to facilitate a better understanding of the
spin phase space formalism and its connection to the theory of relaxation of
classical spins, the appendixes contain a detailed account of the properties of spin
and polarization operators (Appendix A) and spherical harmonics (Appendix B).
Appendix C describes in detail the intricate calculations involved in transforming
the reduced density matrix evolution equation into a master equation in phase
space for a uniaxial nanomagnet. The principal results of the classical theory
of the Brownian motion of magnetic moments are summarized in Appendix D,
while definitions and derivations of characteristic relaxation times and correlation
functions are given in Appendix E.

II. DENSITY MATRIX AND PHASE SPACE FORMULATIONS OF
RELAXATION PHENOMENA IN SPIN SYSTEMS

A. Density Matrix Formulation of Spin Relaxation and Resonance

1. General Equations

In classical mechanics, we consider the behavior of any given mechanical system
of interest as it changes in time from one precisely defined state to another. In
statistical mechanics, we have some knowledge of the system, but that is not
enough for a complete specification of the precise state. For this purpose, we
consider the average behavior of a collection of systems of the same structure as
the one of actual interest, but distributed over a range of different possible states.
We speak of such a collection as an ensemble of systems. Thus, we represent the
instantaneous state of a dynamical system of N degrees of freedom by a phase point
(q, p) in a 2N-dimensional phase space � of all the coordinates q = (q1, . . . , qN)
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and momenta p = (p1, . . . , pN) of the system. The instantaneous state of any
system in an ensemble can then be regarded as being specified by the position of
a representative point in the phase space, and the condition of the ensemble as a
whole can be described by a “cloud” of density f (q, p, t) of such representative
points, one for each system in the ensemble. The behavior of the ensemble over
time can then be associated with the “streaming” motion of the representative
points as they describe trajectories in the phase space, in accordance with the laws
of classical mechanics. The probability density function f (q, p, t) defined such
that f (q, p, t)dqdp is the probability at time t that the phase point will be inside
a volume element dqdp in phase space obeys the classical Liouville equation,
namely [74–76],

∂f

∂t
= −{H, f } = −iLf , (5)

where H = K + U is the Hamiltonian (total energy of the system); K and U are
kinetic and potential energies, respectively; {H, f } defines the classical Poisson
bracket, namely,

{H, f } =
N∑

i=1

(
∂f

∂qi

∂H

∂pi
− ∂f

∂pi

∂H

∂qi

)
;

and L = −i{H, } is the classical Liouville operator. From the principle of the
conservation of density in phase space, it follows [74] that when we consider the
rate of change of density in the neighborhood of any selected moving phase point
instead of in the neighborhood of a fixed point that the hydrodynamical derivative

df

dt
= 0, (6)

that is, the density of the phase points is a constant along a phase space trajectory
at all times, namely,

f (q(0), p(0), t = 0) = f (q(t), p(t), t) . (7)

Now, the evolution equation for a dynamical variable A(q, p) is given by

dA

dt
=

N∑
i=1

(
∂A

∂qi

∂H

∂pi
− ∂A

∂pi

∂H

∂qi

)
= {H, A} = iLA. (8)

The expectation value of A(q, p) at time t is then defined as

〈A〉 (t) =
�

A(q, p)f (q, p, t)dqdp (9)
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with the normalization �
f (q, p, t)dqdp = 1. (10)

In the quantum mechanics, on the other hand, such a probability density function
is replaced by a density matrix ρ̂ in Hilbert space to play a role somewhat similar
to the density f in the classical statistical mechanics [74, 77]. For convenience, we
briefly recall the basic equations of the density matrix formalism [30, 76].

The state of a quantum many-particle system characterized by the Hamiltonian
operator Ĥ is represented by a wave function  and the corresponding state vector
|〉 in Hilbert space. The wave function  satisfies the Schrödinger equation

∂

∂t
= − i

h̄
Ĥ, (11)

where h̄ = h/(2π) and h is Planck’s constant. Now, in the quantum mechanics,
a dynamical variable A always corresponds to a Hermitian operator Â and the
expectation value of Â is formally defined as the scalar (inner) product〈

Â
〉
(t) = 〈(t) | Â |(t)〉 , (12)

where 〈(t)| = |(t)〉† and the symbol † denotes the Hermitian conjugate.
Equation (12) implies that the wave function (t) must be normalized to unity,
that is, 〈(t)|(t)〉 = 1. Furthermore, the wave function may be expanded in the
complete orthonormal basis of eigenstates {φn} of the Hamiltonian operator Ĥ as

(t) =
∑

n

cn(t)φn, (13)

where cn(t) is given by the scalar product cn(t) = 〈φn |(t)〉 with the nor-
malization

∑
n |cn(t)|2 = 1, which follows from normalization of (t). In this

case, one says that the system is in the pure state. Now, the expectation value〈
Â
〉
(t) = 〈(t) | Â |(t)〉 of a dynamical variable A represented by an operator Â

is given by [76] 〈
Â
〉
(t) =

∑
n,n′

cn′(t)c∗
n(t)Ann′ ≡

∑
n,n′

ρn′n(t)Ann′ , (14)

where the coefficients Ann′ = 〈φn | Â |φn′ 〉 and ρn′n(t) = cn′(t)c∗
n(t) are the

matrix elements of the operators Â and the density operator ρ̂, respectively, in the
orthonormal basis of the eigenstates {φn} and the asterisks denote the complex
conjugate. For a pure state, the density operator ρ̂ can be written as the outer
product as follows: [76]

ρ̂(t) = |(t)〉 〈(t) | =
∑
n,n′

cn′(t)c∗
n(t) |φn′ 〉 〈φn |. (15)
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The density matrix operator defined by Eq. (15) is Hermitian, that is, ρ̂†(t) = ρ̂(t),
and idempotent, that is, it satisfies the condition ρ̂2(t) = ρ̂(t).

The density matrix operator defined in Eq. (15) for a quantum system in a pure
state can also be applied with some modifications to a quantum system in a mixed
state, that is, to a system, whose actual state ψ(t) = ∑

n cn(t)φn is not known
completely, and only the probabilities Pn = |cn(t)|2 to be in any of the different
states n can be evaluated [76]. An example is a system in thermal equilibrium,
whose eigenfunctions constitute the orthonormal basis {φn} with probabilities Pn

to be found in the different states n given by the Boltzmann distribution, and all
microscopic states compatible with these probabilities are assumed to be equally
probable; here, ρn′n = Pnδn′n. The most obvious difference between pure and
mixed states is encountered in their diagonal representation, where the pure-state
density matrix must, on the one hand, have only one nonzero element on its
diagonal (equal to 1), while the mixed-state density matrix must, on the other hand,
have at least two nonzero elements (whose sum is 1) [76].

For our purposes, the most relevant properties of the density matrix operator ρ̂,
which are valid both for pure and mixed states are the following: (i) ρ̂ is a positive
definite operator, that is, 〈ψ(t) | ρ̂ |ψ(t)〉 ≥ 0, yielding the average probability to
find the system in the state |ψ(t)〉 ; (ii) ρ̂ is Hermitian and its diagonal elements
ρnn are real, positive, and represent the average probability that a system chosen at
random from the ensemble would be found in the state specified by n. Moreover,
ρ̂ satisfies the normalization condition [74]

Tr
(
ρ̂
) = 1, (16)

where Tr
(
ρ̂
)

denotes its trace. Furthermore, the quantum mechanical analog of
the classical expression (Eq. 9) for the mean value of a dynamical variable A is as
follows: 〈

Â
〉
= Tr

(
ρ̂Â
)

. (17)

Thus, the integrals over all phase space � in the classical equations (9 and 10)
are replaced by the traces in the quantum equations (16 and 17). Now, the time
evolution of the density operator ρ̂ is described by the quantum Liouville equation
[74, 76]

∂ρ̂

∂t
= − i

h̄

[
Ĥ, ρ̂

]
= −iLρ̂, (18)

where Ĥ is the Hamiltonian operator, the brackets denote the commutator, namely,

[
Ĥ, ρ̂

]
= Ĥρ̂ − ρ̂Ĥ,
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and L = h̄−1
[
Ĥ,
]

is the quantum Liouville operator. The formal solution of the

operator equation (18) is as follows: [76, 78]

ρ̂(t) = e− i
h̄ Ĥt

ρ̂(0)e
i
h̄ Ĥt. (19)

Finally, the quantum evolution equation for an operator Â is given by

dÂ

dt
= i

h̄

[
Ĥ, Â

]
= iLÂ. (20)

Equations (18) and (20) are quantum analogs of Eqs. (5) and (8), respectively. We
emphasize [74] that the quantum Liouville equation (18) for the density matrix
ρ̂ has the same mathematical form as the classical Liouville equation (5) for the
distribution function f .

Now the object of our interest is the dynamics of a spin characterized by the spin
number S in contact with a thermal bath or environment, which is only of relevance
to us insofar as it influences the spin dynamics (a detailed account of properties
of relevant spin operators is given in Appendix A). Moreover, it is impossible
to follow every variable of the composite spin environment taken as a whole
[79]. Hence, we desire a closed evolution equation for a reduced density matrix,
where only relevant variables, that is, those belonging to the subspace comprising
the spin, appear explicitly. Then by tracing Eq. (18) over the bath variables, we
shall ultimately have a master or reduced density matrix evolution equation [76].
In other words, we can average out the environment of the spin, so yielding a
statistical description of the spin alone [69]. The ideas being entirely analogous
to those used to derive an evolution equation for the single-particle distribution
function in the classical statistical mechanics.

In order to treat the spin dynamics in a dissipative environment via the density
matrix formalism, we loosely follow arguments advanced by Nitzan [76]. Thus, it
is supposed that the overall Hamiltonian Ĥ may be decomposed into

Ĥ = ĤS + ĤB + ĤSB, (21)

where the operators ĤS, ĤSB, and ĤB are the Hamiltonians of the spin alone, the
spin–bath interactions, and the bath, respectively. The time evolution equation for
the overall system–bath density matrix ρ̂SB(t) of a spin system (S) in contact with
a heat bath (B) may now be written taking account of the Liouville equation (18)
as follows:

∂ρ̂SB

∂t
= − i

h̄

[
ĤS, ρ̂SB

]
− i

h̄

[
ĤB, ρ̂SB

]
− i

h̄

[
ĤSB, ρ̂SB

]
. (22)

Now our ultimate objective is to obtain an evolution equation for a reduced density
matrix, describing the spin relaxation in contact with the thermal bath. Therefore, it
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is natural to first simplify Eq. (22) by considering the time evolution of the overall
density matrix in the interaction representation, which is defined for an arbitrary
operator Â(t) as follows [76]:

ÂI(t) = eiĤ0t/h̄Â(t)e−iĤ0t/h̄. (23)

Here Ĥ0 = ĤS + ĤB. Next taking the time derivative of ρ̂I
SB(t) yields

∂ρ̂I
SB

∂t
= i

h̄

[
Ĥ0, ρ̂I

SB

]
+ eiH0t/h̄ ∂ρ̂SB

∂t
e−iH0t/h̄. (24)

Therefore, substituting Eq. (22) into Eq. (24), we obtain the evolution equation for
ρ̂I

SB(t) in the interaction representation as follows [76]:

∂ρ̂I
SB

∂t
= − i

h̄

[
ĤI

SB, ρ̂I
SB

]
. (25)

Now recall that we desire the effect of the thermal environment on the dynamical
behavior of a given spin and that the dynamics of the spin alone is given by
ĤS. Therefore, a quite natural viewpoint is to consider the spin–bath interaction
Hamiltonian ĤSB as a perturbation of the bare dynamics of the spin. In order
to formulate this idea, projection operators are used [75, 76]. In particular, for
problems involving a system interacting with its equilibrium thermal environment,
a projection operator P̂ is a particular operator projecting the overall system–bath
density operator ρ̂SB onto a product of the reduced density operator of the system
ρ̂S and the equilibrium density operator of the bath ρ̂

eq
B , namely,

P̂ρ̂SB = ρ̂
eq
B TrB

(
ρ̂SB
) = ρ̂

eq
B ρ̂S. (26)

Here, the operator ρ̂S = TrB
(
ρ̂SB
)

resulting from tracing over the bath variables
designates a reduced density operator in contrast to the overall system-bath
density operator ρ̂SB(t), and our task is to then find an evolution equation for ρ̂S.
In order to achieve this because by definition TrB(ρ̂

eq
B ) = 1, we will have P̂2 = P̂,

that is, P̂ is idempotent, while the complementary projector is just Q̂ = 1 − P̂.
Moreover, we have the commutation relations

P̂
[
ĤS, ρ̂SB

]
=
[
ĤS, P̂ρ̂SB

]
= ρ̂

eq
B

[
ĤS, ρ̂S

]
(27)

and

P̂
[
ĤB, ρ̂SB

]
= 0. (28)
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Now Eqs. (26)–(28) are also valid in the interaction representation implying that
we can rewrite Eq. (25) as the two projected equations as follows [76]:

∂

∂t
P̂ρ̂I

SB = − i

h̄
P̂
[
ĤI

SB, (P̂ + Q̂)ρ̂I
SB

]
, (29)

∂

∂t
Q̂ρ̂I

SB = − i

h̄
Q̂
[
ĤI

SB, (P̂ + Q̂)ρ̂I
SB

]
. (30)

Next, we use the projection equation (26) to further rewrite these equations as
follows:

∂

∂t
ρ̂I

S = − i

h̄
TrB

([
ĤI

SB, ρ̂eq
B ρ̂I

S

])
− i

h̄
TrB

([
ĤI

SB, Q̂ρ̂I
SB

])
, (31)

∂

∂t
Q̂ρ̂I

SB = − i

h̄
Q̂
[
ĤI

SB, ρ̂eq
B ρ̂I

S

]
− i

h̄
Q̂
[
ĤI

SB, Q̂ρ̂I
SB

]
. (32)

Formal integration of the complementary projection equation (32) then yields

Q̂ρ̂I
SB(t) = Q̂ρ̂I

SB(0) − i

h̄

t�
0

Q̂
[
ĤI

SB, ρ̂eq
B ρ̂I

S(t
′)
]

dt′ − i

h̄

t�
0

Q̂
[
ĤI

SB, Q̂ρ̂I
SB(t′)

]
dt′.

(33)

This integral equation can be solved in iterative fashion by successively inserting
Q̂ρ̂I

SB(t) into the integrand in the third term on the right-hand side. Thus, we have a
perturbation expansion for that quantity as increasing powers of the system–bath
Hamiltonian in the interaction representation ĤI

SB by continuing this procedure
repeatedly in the usual manner of perturbation theory. Now if we neglect all the
highest orders of ĤI

SB, we can use a simplified version of Eq. (33), namely,

Q̂ρ̂I
SB(t) = − i

h̄

t�
0

Q̂
[
ĤI

SB, ρ̂eq
B ρ̂I

S(t
′)
]

dt′. (34)

In so doing, we have disregarded the initial correlation term Q̂ρ̂I(0) in Eq. (33).
The latter approximation is tantamount to assuming that ρ̂I

SB(0) is in P space,
that is, initially the system and the bath are uncorrelated and also that the bath
is in thermal equilibrium, or at least that the effect of initial correlations decays
rapidly relative to the time scale on which the system is observed [76]. Inserting
the (truncation) Ansatz equation (34) into Eq. (31) then leads to the closed equation
in the interaction representation as follows:

∂ρ̂I
S(t)

∂t
= − i

h̄
TrB

([
ĤI

SB, ρ̂eq
B ρ̂I

S(t)
])

− 1

h̄2

t�
0

TrB

([
ĤI

SB, Q̂
[
ĤI

SB, ρ̂eq
B ρ̂I

S(t
′)
]])

dt′.

(35)
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Now returning to the Schrödinger representation, Eq. (35) can be rewritten in that
representation as the reduced equation

∂ρ̂S

∂t
= − i

h̄

[
ĤS + ˆ̄V , ρ̂S

]
+ St

(
ρ̂S
)

, (36)

where

ˆ̄V = TrB

(
ĤSBρ̂

eq
B

)
, (37)

St
(
ρ̂S
) = − 1

h̄2
e−iĤ0t/h̄TrB

([
ĤI

SB,
t�

0

(
1 − P̂

) [
ĤI

SB, ρ̂eq
B ρ̂I

S(t
′)
]

dt′
])

eiĤ0t/h̄.

(38)

By inspection of Eq. (36), it is apparent that the operator ˆ̄V now has a simple
interpretation. It is just a mean potential that corrects the spin Hamiltonian ĤS for
the average effect of the bath. Such corrections are very important in chemical
physics, for example, in determining solvent shifts of spectral lines. The shifts
occur because the average solvent interaction may influence in a different way
the energies of the ground and excited states of a solvent molecule. However, it
is also clear that such average interactions can only affect the system eigenstates
and energy levels, and therefore cannot cause relaxation [76]. Thus, relaxation
phenomena are solely associated with the collision (relaxation) operator kernel
St
(
ρ̂S
)

in Eq. (36). Hence, in addressing spin relaxation, we shall disregard the

operator ˆ̄V , or else if unconvinced, one could consider a renormalized system
Hamiltonian ĤS, which includes the energy shifts associated with the average
effect of the bath.

Next we consider the term containing the projection operator P̂ involved in the
integrand of Eq. (38). Investigation of this term may be simplified if we assume
that the interaction ĤI

SB is merely the product of system and bath operators, that
is, ĤI

SB = V̂I
SV̂I

B. Considering the relevant term in Eq. (38), we then have [76]

TrB

([
ĤI

SB, P̂
[
ĤI

SB, ρ̂eq
B ρ̂I

S(t
′)
]])

= TrB

(
V̂I

Bρ̂
eq
B

)
TrB

(
V̂I

Bρ̂
eq
B

) [
V̂I

S,
[
V̂I

S, ρ̂I
S(t

′)
]]

(39)

=
( ˆ̄VB

)2 [
V̂I

S,
[
V̂I

S, ρ̂I(t′)
]]

,

where ˆ̄VB= TrB

(
V̂I

Bρ̂
eq
B

)
. Now the mean value of the bath operator ˆ̄VB is zero for

isotropic bath operators (however, it gives rise to corrections to bath correlation
functions for anisotropic baths). Therefore, assuming for simplicity that the bath is
isotropic and neglecting this term in Eq. (38), we have the desired reduced density
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matrix evolution equation describing the spin relaxation in contact with a thermal
bath, namely,

∂ρ̂S

∂t
+ i

h̄

[
ĤS, ρ̂S

]
= St

(
ρ̂S
)

, (40)

where St
(
ρ̂S
)

is given by with an obvious change of variable in Eq. (38) [76]

St
(
ρ̂S
) = − 1

h̄2

t�
0

TrB

([
ĤSB, e−iĤ0τ/h̄

[
ĤSB, ρ̂eq

B ρ̂S(t − τ)
]

eiĤ0τ/h̄
])

dτ . (41)

The reduced nature of the evolution equation (40) manifests itself in the appear-
ance of memory meaning that the time evolution of ρ̂S(t) at time t is determined
not only by ρ̂S(t) but also by its past history, namely, ρ̂S(t − τ). The nonlocal
temporal (or non-Markovian) behavior appears because the system evolves at time
t in response to the state of the bath at that time which in turn is determined by
the history of the system–bath interaction. Now we saw that the closed equation
(40) ultimately results from a low-order perturbation expansion of the system–
bath interaction (cf. Eq. (34)), so its validity is expected to be limited to weak
system–bath coupling. Furthermore, the neglect of initial spin–bath correlations,
as expressed by dropping the term Q̂ρ̂I

SB(0) in Eq. (33) constitutes yet another
approximation, or, more precisely, a restriction on the choice of the initial
nonequilibrium state.

2. Collision Kernel in the Markovian Approximation

The collision kernel St(ρ̂) in Eq. (41) can be further considerably simplified in the
limit, where the thermal bath dynamics are much faster than those of the spin [76].
However, in order to implement this condition in the evolution equation (40), we
require an explicit form for the spin–bath interaction Hamiltonian ĤSB. Various
models for spin–bath interactions have been discussed in detail, for example, in
Refs. 12–15, 76 and 80–82. Here, we suppose for simplicity that the spin–bath
interaction Hamiltonian operator ĤSB has the rudimentary Zeeman form (see, e.g.,
Refs. 35–37; in our notation)

ĤSB = −γ h̄
(

Ŝ · ĥ
)

= −γ h̄
1∑

μ=−1

ĥμŜμ, (42)

where the operator ĥ = (ĥX , ĥY , ĥZ) represents the random noise field character-
izing collisional damping due to the bath,

Ŝ0 = ŜZ , Ŝ±1 = ∓ 1√
2

(
ŜX ± iŜY

)
(43)
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and

ĥ0 = ĥZ , ĥ±1 = ∓ 1√
2

(
ĥX ∓ iĥY

)
(44)

are, respectively, the covariant and contravariant spherical components of the spin
operator Ŝ and field operator ĥ (the properties of Ŝ and Ŝμ are explained in detail in
Appendix A). We select the interaction operator ĤSB in the form of Eq. (42) merely
because that particular choice renders Eqs. (40) and (41) as a direct quantum
analog of the Brownian rotation of a magnetic dipole [5] (cf. Eq. (2)). Alternative
forms of the Hamiltonian ĤSB are discussed, for example, in Refs. 76 and 80–82.
Then using the properties of the bath correlation functions, namely,〈

ĥμ(t1)ĥ
−v(t2)

〉
= δμvTrB

(
ĥμ(t1)ĥ

−v(t2)ρ
eq
B

)
(δμv is Kronecker’s delta), the collision kernel equation (41) further simplifies to

St
(
ρ̂S
) = γ 2

1∑
μ=−1

t�
0

{〈
ĥμĥ−μ(τ)

〉 [
e− i

h̄ ĤSτ Ŝ−μρ̂S(t − τ)e
i
h̄ ĤSτ , Ŝμ

]

+
〈
ĥμ(τ)ĥ−μ

〉 [
Ŝ−μ, e− i

h̄ ĤSτ
ρ̂S(t − τ)Ŝμe

i
h̄ ĤSτ

]}
dτ . (45)

Now, in general, the elementary collision kernel equation (45) although now vastly
simplified still describes the non-Markovian behavior of the spin as coupled to the
bath, which is determined by the history of the spin–bath interaction. In order
to avoid these memory effects, we may use the so-called Markovian limit [76],
whereby the bath dynamics are supposed much faster than those of the spin.
A similar Ansatz is essentially made in the classical theory of the Brownian motion
[5]. Moreover, because the correlation functions Cμ,−μ(±τ) characterizing the
properties of the equilibrium bath, namely,

Cμ,−μ(τ) = (−1)μγ 2
〈
ĥμ(0)ĥ−μ(τ)

〉
(46)

and

Cμ,−μ(−τ) = (−1)μγ 2
〈
ĥμ(τ)ĥ−μ(0)

〉
(47)

decay to zero much faster than any characteristic system time scale of the system
[76], we can extend the upper limit of integration in Eq. (45) to infinity, yielding
the collision kernel in the more appealing form

St
(
ρ̂S
) =

1∑
μ=−1

(−1)μ
∞�
0

{
Cμ,−μ(τ)

[
e− i

h̄ ĤSτ Ŝ−μe
i
h̄ ĤSτ

ρ̂S(t − τ), Ŝμ

]

+ Cμ,−μ(−τ)
[
Ŝ−μ, ρ̂S(t − τ)e− i

h̄ ĤSτ Ŝμe
i
h̄ ĤSτ

]}
dτ , (48)
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which is amenable to further simplification. However, tempting as it may seem,
the rapidly decaying noise correlation functions Cμ,−μ(τ) and Cμ,−μ(−τ) in the
collision kernel equation (48) cannot simply be replaced by Dirac delta functions
∼δ(τ ) in order to avoid memory effects, because in the quantum case the bath
dynamics may be slower than the phase oscillations in the system [76]. For
example, in the free or bare system, that is, without coupling to the reservoir, so
that St

(
ρ̂S
) = 0, the solution of the evolution equation (40) is as follows:

ρ̂S(t) = e− i
h̄ ĤSt

ρ̂S(0)e
i
h̄ ĤSt. (49)

Hence, quantities involving fast phase oscillations of ρ̂S(t) due to the phase factors

e± iĤSt/h̄ embodied in Eq. (49), or its remaining signature in the presence of
system–bath coupling (i.e., when St

(
ρ̂S
) = 0), cannot simply be taken outside

the integrals in the collision kernel equation (45). Therefore, to circumvent this
problem, we again use the interaction representation of ρ̂S(t), namely,

ρ̂S(t) = e− i
h̄ ĤSt

ρ̂I
S(t)e

i
h̄ ĤSt.

Thus, the collision operator St
(
ρ̂
)

becomes in that representation

St
(
ρ̂S
) =

1∑
μ=−1

(−1)μ

×
∞�
0

{
Cμ,−μ(τ)

[
e− i

h̄ ĤSτ Ŝ−μe− i
h̄ ĤS(t−τ)

ρ̂I
S(t − τ)e

i
h̄ ĤS(t−τ)e

i
h̄ ĤSτ , Ŝμ

]

+ Cμ,−μ(−τ)
[
Ŝ−μ, e− i

h̄ ĤSτ e− i
h̄ ĤS(t−τ)

ρ̂I
S(t − τ)e

i
h̄ ĤS(t−τ)Ŝμe

i
h̄ ĤSτ

]}
× dτ . (50)

In order to further simplify Eq. (50), we next assume that the relaxation of the noise
correlation functions Cμ,−μ(τ) and Cμ,−μ(−τ) to zero as τ → ∞ is fast relative to
the time scale on which the time shifted density matrix ρ̂I

S(t − τ) in the interaction
representation changes. We then make the approximation ρ̂I

S(t − τ) ≈ ρ̂I
S(t) and

then finally return to ρ̂S(t). Thus, we have our final simplified expression for the
collision kernel

St
(
ρ̂S
) =

1∑
μ=−1

(−1)μ
∞�
0

{
Cμ,−μ(τ)

[
e− i

h̄ ĤSτ Ŝ−μe
i
h̄ ĤSτ

ρ̂S(t), Ŝμ

]

+ Cμ,−μ(−τ)
[
Ŝ−μ, ρ̂S(t)e

− i
h̄ ĤSτ Ŝμe

i
h̄ ĤSτ

]}
dτ , (51)

which we note now involves only ρ̂S(t) and not the shifted expression ρ̂S(t − τ).
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The approximate equation (51) for the collision kernel corresponds to the
traditional Redfield equation derived in Ref. 14. This can be proved as follows.
We first express St

(
ρ̂S
)

in the representation defined by the eigenstates |α〉 of the

system Hamiltonian ĤS and then use the various commutation relations in Eq. (51)
as written in terms of their matrix elements, namely,

[
e− i

h̄ ĤSτ Ŝ−μe
i
h̄ ĤSτ

ρ̂S(t), Ŝμ

]
αα′ =

∑
ε,ε′

[
Ŝ−μ

]
αε

[
Ŝμ

]
ε′α′ρεε′(t)e− i

h̄ (Eα−Eε)τ

−
∑
ε′,ε

[
Ŝμ

]
αε′

[
Ŝ−μ

]
ε′ε

ρεα′(t)e− i
h̄ (Eε′−Eε)τ ,

(52)[
Ŝ−μ, ρ̂S(t)e

− i
h̄ ĤSτ Ŝμe

i
h̄ ĤSτ

]
αα′ =

∑
ε,ε′

[
Ŝ−μ

]
αε

[
Ŝμ

]
ε′α′ρεε′(t)e

i
h̄ (Eα′−Eε′)τ

−
∑
ε′,ε

[
Ŝμ

]
ε′ε

[
Ŝ−μ

]
εα′ραε′(t)e

i
h̄ (Eε−Eε′)τ .

(53)

Next by introducing the matrix elements Rαα′εε′ of the relaxation operator
St
(
ρ̂S
)

via

[
St
(
ρ̂S
)]

αα′ =
∑

εε′ Rαα′εε′ρεε′ ,

then from Eq. (51) we have Rαα′εε′ in the eigenvector representation of the
Hamiltonian ĤS, rendered as the Redfield form

Rαα′εε′ =
1∑

μ=−1

(−1)μ
{(

C̃μ,−μ(ωαε) + C̃∗−μ,μ(ωα′ε′)
) [

Ŝ−μ

]
αε

[
Ŝμ

]
ε′α′

− δε′α′
∑
λ

eβh̄ωελC̃∗
μ,−μ(ωελ)

[
Ŝμ

]
αλ

[
Ŝ−μ

]
λε

− δαε

∑
λ

eβh̄ωε′λC̃−μ,μ(ωε′λ)
[
Ŝμ

]
ε′λ

[
Ŝ−μ

]
λα′

}
. (54)

Here

ωαβ = Eα − Eβ

h̄
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are the transition frequencies; Eα , and Eε are the energy eigenvalues; and the
Fourier transforms C̃ν,μ(ω) of the noise correlation functions (spectral density) are

C̃ν,μ(ω) =
∞�
0

Cν,μ(τ)e− iωτ dτ

with

C−μ,μ(−τ) = C∗
μ,−μ(τ) and C̃∗

μ,−μ(ω) = e−βh̄ωC̃μ,−μ(−ω).

The latter relation between the spectral densities can be proved as follows (with
h̄ω + El = Ek). We have

e−βh̄ωC̃μ,−μ(−ω) = Z−1
B e−βh̄ω

∞�
0

∑
k,l

eiElτ/h̄hμ
lke−iEkτ/h̄h−μ

kl e−βEl eiωτ dτ

= Z−1
B

∞�
0

∑
k,l

eiElτ/h̄
(

h−μ
lk

)∗
e−iEkτ/h̄ (hμ

kl

)∗
e−βEk eiωτ dτ

= C̃∗
μ,−μ(ω). (55)

The Redfield equation (54) describes the time evolution of the reduced density
matrix of a system coupled to an equilibrium bath. The effect of the bath enters
via the matrix elements of the “relaxation operator” Rαα′εε′ . Equation (54) for
this relaxation operator is written on the basis of eigenstates of the Hamiltonian
ĤS. That equation has been obtained using the following three approximations:
(i) the neglect of initial correlations; (ii) the assumption of weak coupling, and
(iii) the assumption of a distinct time scale separation between the (fast) bath
variables and the (slow) system (spin) variables, which have been used to get
the final Markovian form. The dynamics of the bath or environment merely
enters through the bath correlation functions (Eqs. 46 and 47). These functions
are properties of the equilibrium bath only, regardless of whatever system it
may be coupled to. We reiterate that although we have assumed that the bath
dynamics are fast on the time scale of the system dynamics, the details of its
dynamics do indeed matter, that is, we could not have simply assumed that the
correlation functions are Cμ,−μ(τ) = 2Dμδ(τ) as in the classical case in the
white noise approximation for random fields. The reason again is the fact that
the bath dynamics are usually slow relative to the phase oscillations (which are
obviously related to the inverse spacing between energy levels) in the system. We
emphasize that solutions of Redfield-like equations for the density matrix even for
simple systems (i.e., harmonic oscillators) do not necessarily satisfy the positivity
property [76, 83] (for some extreme, nevertheless physically acceptable initial
conditions, this breakdown of positivity arises from the omission of memory effects
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in the early time evolution [76]). However, in regard to relaxation of spin systems
close to thermal equilibrium, the Redfield form is always positively defined;
moreover, it also has a well-defined classical limit (likewise invariably positively
defined). Furthermore, for a wide range of initial distributions (in particular,
for those considered here), the solutions of Redfield-like equations invariably
preserve positivity; hence, under these conditions their use appears justifiable on
physical grounds alone [76, 84].

Now the collision kernel also satisfies the equilibrium condition [14]

∑
α

[
St
(
ρ̂eq
)]

αα
=
∑
α,ε

Rααεερ
eq
εε = 0, (56)

where ρ
eq
εε′ = ρ

eq
εε δεε′ . In order to demonstrate this, we use Eqs. (52) and (53).

We have

∑
α

[
St
(
ρ̂eq
)]

αα
=
∑
α,ε

1∑
μ=−1

(−1)μ

×
∞�
0

{
Cμ,−μ(τ)

([
Ŝ−μ

]
αε

[
Ŝμ

]
εα

ρeq
εε (t)e

−i(Eα−Eε)τ/h̄

−
[
Ŝμ

]
αε

[
Ŝ−μ

]
εα

ρeq
αα(t)e−i(Eε−Eα)τ/h̄

)
+ Cμ,−μ(−τ)

×
([

Ŝ−μ

]
αε

[
Ŝμ

]
εα

ρeq
εε (t)e

i(Eα−Eε)τ/h̄

−
[
Ŝμ

]
αε

[
Ŝ−μ

]
εα

ρeq
αα(t)ei(Eε−Eα)τ/h̄

)}
dτ .

Then by interchanging indices α ↔ ε in the second and fourth sums, we have
Eq. (56). Next, we can formally define diffusion matrix coefficients Dμ as

Dμ = C̃sym
μ (ω) sech

(
βh̄ω

2

)
, (57)

where the symmetrized spectral density

C̃sym
μ (ω) = 1

2

[
C̃μ,−μ(−ω) + C̃∗

μ,−μ(ω)
]

determines the spectrum of the symmetrized bath correlation functions [85]
which are

Csym
μ (τ) = (−1)μ

2
γ 2
(〈

ĥμĥ−μ(τ)
〉
+
〈
ĥ−μ(τ)ĥμ

〉)
. (58)
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Thus, with this definition, we have for the matrix elements Rαα′εε′ in the eigen-
vector representation

Rαα′εε′ ≈
1∑

μ=−1

(−1)μDμ

{
eβh̄ωεα/2

[
Ŝ−μ

]
αε

[
Ŝμ

]
ε′α′

+ eβh̄ωε′α′/2
[
Ŝ−μ

]
αε

[
Ŝμ

]
ε′α′

−
∑
λ

(
δε′α′eβh̄ωελ/2

[
Ŝ−μ

]
αλ

[
Ŝμ

]
λε

−δαεe βh̄ωε′λ/2
[
Ŝ−μ

]
ε′λ

[
Ŝμ

]
λα′

)}
. (59)

In the operator notation, Eq. (59) then yields the collision kernel operator in the
symmetrized form as follows [86]:

St
(
ρ̂S
) =

1∑
μ=−1

(−1)μDμ

([
Ŝμ, ρ̂Se βĤS/2Ŝ−μe−βĤS/2

]

+
[
e−βĤS/2Ŝ−μe βĤS/2ρ̂S, Ŝμ

])
. (60)

The vital difference between Eqs. (59) and Eq. (60) is that the latter is valid for
an arbitrary-state representation, whereas Eq. (59) originates in contrast in the
energy-state representation [76].

Now the collision kernel St
(
ρ̂S
)

in the operator form equation (60) satisfies
certain basic requirements constituting important consistency checks. These are
as follows:

1. St
(
ρ̂S
)

is also Hermitian if ρ̂S(t) and ĤS are Hermitian.

2. The equilibrium density matrix ρ̂eq = e−βĤS/Tr
(

e−βĤS

)
renders

St
(
ρ̂eq
) = 0 ensuring that the spin system reaches a Boltzmann distribution

at equilibrium.

3. While the matrix exponents e ±βĤS/2 in the collision kernel operator
equation (60) ensure detailed balance.

4. St
(
ρ̂S
)

in Eq. (60) is invariant under rotations of the coordinate system.
5. The Hubbard model [86] embodied in Eq. (60) can be generalized to time-

dependent Hamiltonians (see Section II.A.3); finally,
6. Spin density matrix evolution equation (40) with St

(
ρ̂S
)

in the form of Eq.
(60) effectively constitutes the direct analog of the classical Fokker–Planck
equation (3) for rotational diffusion of a classical magnetic dipole.

The relaxation operator in the form of Eq. (60) is a reasonable approximation
in the high-temperature limit [35, 36]. Essentially, it follows from the equation of
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motion of the reduced density matrix in the rotating-wave approximation (familiar
in quantum optics, where counter rotating, rapidly oscillating terms, are averaged
out [27]) provided the spin–bath interactions are taken in the weak coupling limit
and for Ohmic damping. In which case, the correlation time τc characterizing the
bath may be regarded as very short so that the stochastic process originating in
the bath is Markovian (γ Hτc << 1, where H is the averaged amplitude of the
random magnetic field). If the approximation rendered by Eq. (60) is invalid (e.g.,
throughout the very-low-temperature region), alternative models for the spin–bath
interactions should be used [76, 80–82, 85–89]. Nevertheless, we shall persevere
with the model as just described because despite its drawbacks our objective is
merely to understand in a semiclassical fashion how quantum effects alter the
rotational Brownian motion and longitudinal relaxation of a classical giant spin
at finite S. Moreover, that model as well as providing a qualitative description
of the spin relaxation of a variety of systems can also be regarded as the direct
analog of the Fokker–Planck equation formalism used by Brown [23, 24] and
others (e.g., see Refs. 5, 6, 27 and 90–94) to treat relaxation of classical macrospins
(see Appendix D).

We remark that the collision kernel equation (60) can be further simplified in
the high-temperature limit, βh̄ωεα << 1, by supposing that the diffusion matrix
coefficients Dμ are frequency-independent, that is,

Dμ = D−μ ≈ C̃sym
μ (0). (61)

In the time domain, this approximation corresponds to the representation of the
bath correlation functions Csym

μ (τ) equation (58) as the sum of two delta function,
namely,

Csym
μ (τ) ≈ Dμ

[
δ

(
τ + iβh̄

2

)
+ δ

(
τ − iβh̄

2

)]
. (62)

In the classical limit h̄ → 0, Eq. (62) reduces to the familiar result for the classical
bath correlation functions in the white noise approximation for random fields,
namely, Ccl

μ(τ) = 2Dμδ(τ).

3. Time-dependent Hamiltonian

The derivation given before assumes that the spin Hamiltonian does not depend
explicitly on the time [14]. However, Hubbard [86] also considered the more
general case, namely, the time-dependent operator ĤS = ĤS(t) and in so doing
proposed the corresponding form for the collision kernel (in our notation)

St
(
ρ̂S
) =

1∑
μ=−1

∑
r

(−1)μeiω−μ
r tDμ(ω−μ

r )
{

eβh̄ω
−μ
r /2

[
Ŝμ, ρ̂SÛ−1(t)Ŝr−μÛ(t)

]

+ e−βh̄ω
−μ
r /2

[
Û−1(t)Ŝr−μÛ(t)ρ̂S, Ŝμ

]}
, (63)
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where the Ŝr
μ′ are the coefficients in the series expansion of the time-dependent

spin operators Ŝμ′(t) = Û(t)Ŝμ′Û−1(t), namely,

Ŝμ′(t) =
∑

r
Ŝr
μ′eiωμ′

r t, (64)

where ω
μ′
r represents a parameter, the operator Û(t) is defined as

Û(t) = e
i
h̄

t�
0

ĤS(t′)dt′
, (65)

and Dμ(ω) is the correlation function of the bath given by Eq. (57). Then
reconverting the result to operator form (see Eq. (64)), we have for the collision
kernel

St
(
ρ̂S
) =

1∑
μ=−1

∑
r

(−1)μDμeiω−μ
r t

×
(

eβh̄ω
−μ
r /2

[
Ŝμ, ρ̂SÛ−1(t)Ŝr−μU(t)

]
+ e−βh̄ω

−μ
r /2

[
Û−1(t)Ŝr−μÛ(t)ρ̂S, Ŝμ

])

=
1∑

μ=−1

(−1)μDμ

([
Ŝμ, ρ̂SÛ−1(t)Û(t − iβh̄/2)Ŝ−μÛ−1(t − iβh̄/2)Û(t)

]

+
[
Û−1(t)Û(t + iβh̄/2)Ŝ−μÛ−1(t + iβh̄/2)Û(t)ρ̂S, Ŝμ

])
. (66)

Next we consider typical products like Û−1(t)Û(t ± iβh̄/2) given by

Û−1(t)Û

(
t ± iβh̄

2

)
= e

i
h̄

t±iβh̄/2�
t

ĤS(t′)dt′
. (67)

In the high-temperature limit, we have for the integral

i

h̄

t±iβh̄/2�
t

ĤS(t
′)dt′ ≈ ∓β

2
ĤS(t). (68)

Here, we have supposed that the operator ĤS(t) does not alter significantly during
the small time increments �t ∼ βh̄/2 � 1 in Eq. (68). Thus, we can simply
take the value of that operator at time t and, consequently, may place it outside
the integral. By treating, in a like manner, all other such time-dependent functions
in Eq. (66), we have an equation similar to Eq. (60). Thus, the Hubbard form



66 YURI P. KALMYKOV, WILLIAM T. COFFEY, AND SERGUEY V. TITOV

of the collision kernel equation (66) with time-dependent Hamiltonian ĤS(t)
simplifies to

St
(
ρ̂S
) =

1∑
μ=−1

(−1)μDμ

([
Ŝμ, ρ̂Se βĤS(t)/2Ŝ−μe−βĤS(t)/2

]

+
[
e−βĤS(t)/2Ŝ−μe βĤS(t)/2ρ̂S, Ŝμ

])
. (69)

As discussed before, the form of the collision kernel given by Eq. (69) corresponds
to the high-temperature limit and short correlation time of the Markovian approx-
imation.

4. Method of Statistical Moments

One of the most powerful techniques for the solution of the evolution equations
governing the relaxation dynamics of classical and quantum spins ultimately is the
method of statistical moments [5, 30, 71, 95]. In order to summarize the principal
equations of that method for quantum spins (the corresponding classical results are
presented in Appendix D), we first recall that the density matrix ρ̂S of the particles
of spin S is represented by a (2S + 1) × (2S + 1) square matrix [95]. We also
recall that in order to describe spin states of a particle, the so-called polarization
operators T̂(S)

LM are widely used [30, 95] (the main properties of T̂(S)
LM are explained in

Appendix A). Because the polarization operators constitute an orthonormal basis
in the space of (2S + 1) × (2S + 1) square matrices, the density matrix ρ̂S may be
expanded into a finite sum of the polarization operator T̂(S)

LM as [30, 95]

ρ̂S(t) =
2S∑

L=0

L∑
M=−L

aL,M(t)T̂(S)
LM , (70)

where the expansion coefficients aL,M(t) defined as

aL,M(t) =
〈
T̂†(S)

LM

〉
(t) = Tr

(
ρ̂S(t)T̂

†(S)
LM

)
(71)

are simply the statistical moments representing expectation values of the oper-
ators T̂†(S)

LM in a state described by the density matrix ρ̂S. Equation (71) follows

immediately from the orthogonality properties of the operators
{

T̂(S)
LM

}
given by

Eq. (A.34).
Now, the formal solution of the spin density matrix evolution equation (40) with

an arbitrary collision kernel St(ρ̂S) can be written as the operator series equation

(70). Therefore to find the statistical moments
〈
T̂†(S)

LM

〉
(t), we simply substitute

Eq. (70) into Eq. (40). We have
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2S∑
L=0

L∑
M=−L

T̂(S)
LM

d

dt
aL,M(t) =

2S∑
L=0

L∑
M=−L

(
− i

h̄

[
ĤS, T̂(S)

LM

]
+ St

(
T̂(S)

LM

))
aL,M(t),

(72)

where the collision operator is

St
(

T̂(S)
LM

)
=

1∑
μ=−1

(−1)μDμ

([
Ŝμ, T̂(S)

LMe
β
2 ĤS Ŝ−μe− β

2 ĤS
]

+
[
e− β

2 ĤS Ŝ−μe
β
2 ĤS T̂(S)

LM , Ŝμ

])
.

Now the term

− i

h̄

[
ĤS, T̂(S)

LM

]
+ St

(
T̂(S)

LM

)

in Eq. (72) is itself just a matrix operator and can also be formally expanded in
terms of the polarization operator series (see Appendix A), yielding (the expansion
coefficients that are as usual defined by the trace of that operator)

− i

h̄

[
ĤS, T̂(S)

LM

]
+ St

(
T̂(S)

LM

)

=
2S∑

L′=0

L∑
M′=−L

Tr

{(
− i

h̄

[
ĤS, T̂(S)

LM

]
+ St

(
T̂(S)

LM

))
T̂†(S)

L′M′

}
T̂(S)

L′M′ . (73)

Consequently, by substituting the polarization operator expansion equation (73)
into Eq. (72) and equating (by orthogonality) terms with the same T̂(S)

LM , we have
the formal evolution equations for the statistical moments aL,M(t), namely,

d

dt
aL,M(t) =

2S∑
L′=0

L∑
M′=−L

gL′M′;LMaL′,M′(t), (74)

where the gLM;L′M′ are formally defined as follows:

gLM;L′M′ = Tr

{
− i

h̄

[
ĤS, T̂(S)

LM

]
T̂†(S)

L′M′ + St
(

T̂(S)
LM

)
T̂†(S)

L′M′

}
. (75)

The coefficients gL′M′;LM used in Eq. (74) can be obtained from the coefficients
gLM;L′M′ defined in Eq. (75) by the replacements L ↔ L′ and M ↔ M′. Now
Eqs. (74) and (75) are valid for an arbitrary collision kernel operator St

(
ρ̂S
)
.
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In particular cases, for example, for St
(
ρ̂S
)

given by the symmetrized Hubbard
form of equation (60), Eq. (75) becomes

gL,M;L′,M′ = Tr

{(
− i

h̄

[
ĤS, T̂(S)

LM

]
+

1∑
μ=−1

(−1)μDμ

×
([

Ŝμ, T̂(S)
LMe

β
2 ĤS Ŝ−μe− β

2 ĤS
]

+
[
e− β

2 ĤS Ŝ−μe
β
2 ĤS T̂(S)

LM , Ŝμ

]))
T̂†(S)

L′M′
}

.

(76)

Nowadays, the explicit calculation of the coefficients gLM;L′M′ for a particular
collision operator is best accomplished using MATHEMATICA. In general, we
will always have a finite set of differential recurrence equations for the averages〈
T̂†(S)

LM

〉
(t) defined by Eq. (71), namely,

d

dt

〈
T̂†(S)

LM

〉
(t) =

2S∑
L′=0

L∑
M′=−L

gLM;L′M′
〈
T̂†(S)

L′M′
〉
(t), (77)

or because T̂†(S)
LM = (−1)MT̂(S)

L−M we also have

d

dt

〈
T̂(S)

LM

〉
(t) =

∑
L′,M′

(−1)M′−MgL′−M′;L−M

〈
T̂(S)

L′M′
〉
(t). (78)

The differential recurrence equations (77 and 78) constitute the general solution
of the problem in the operator representation for arbitrary spin Hamiltonians.
Explicit forms of the coefficients gLM;L′M′ resulting from the polarization operator
expansion of the Liouville and collision terms in the density matrix evolution
equation, for example, Eq. (76), for specific cases of the Hamiltonian ĤS and
particular examples of solutions of the differential recurrence equations (Eqs. 77
and 78) will be given later. Moreover, Eqs. (77) and (78) are very useful for the
purpose of obtaining differential recurrence relations for phase space observables
as we demonstrate in Sections II.C and III.A.

Equation (77) may be formally solved using standard matrix-inversion tech-
niques. This is accomplished by first noting that according to Eq. (77), the behavior

of any selected average of the polarization operators aL′,M′(t) =
〈
T̂†(S)

L′M′
〉
(t) say

is coupled to that of all the others so forming a finite hierarchy of differential
recurrence equations because the index L ranges only between 0 and 2S. Now the
solution of such a multi-term recurrence relation may always be obtained [5] by
rewriting it as a first-order linear matrix differential equation with constant coeffi-
cients. This is accomplished by first defining a supercolumn vector C(t) such that
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C(t) =

⎛
⎜⎜⎜⎝

c1(t)
c2(t)

...
c2S(t)

⎞
⎟⎟⎟⎠ , cL(t) =

⎛
⎜⎜⎜⎝

aL,−L(t)
aL,−L+1(t)

...
aL,L(t)

⎞
⎟⎟⎟⎠ , (79)

whereupon the evolution equation (77) of the average polarization operators
becomes the linear homogeneous matrix differential equation

d

dt
C(t) + XC(t) = 0, (80)

where X is the 4S(S+1)×4S(S+1) transition supermatrix with matrix elements

(X)L,L′ = GS
L,L′ , (81)

and [
GS

L,L′
]

M,M′ = −gL′M′;LM . (82)

Here, we have utilized the evolution equation for a0,0(t), namely, ∂ta0,0(t) = 0
with the trivial solution a0,0(t) = const. The formal solution of Eq. (80) for the
desired column vector is [96]

C(t) = e−XtC(0) = Ue−�tU−1C(0), (83)

where � = U−1XU is a diagonal matrix with elements composed of all the
eigenvalues λk of the transition matrix X and U is a right eigenvector matrix
composed of all the eigenvectors of X. Now having calculated C(t) from the
matrix Eq. (83), we have all the statistical moments

aL,M(t) =
〈
T̂†(S)

LM

〉
(t) = (−1)M

〈
T̂(S)

L−M

〉
(t).

Next, recalling that the spin operators ŜX , ŜY , and ŜZ may always be expressed in
terms of the T̂(S)

10 and T̂(S)
1±1 via Eq. (A.21), we can evaluate the average components

of the spin operators in terms of the average polarization operators, namely,〈
ŜX

〉
(t) = a

[〈
T̂(S)

1−1

〉
(t) −

〈
T̂(S)

11

〉
(t)
]

, (84)〈
ŜY

〉
(t) = ia

[〈
T̂(S)

1−1

〉
(t) +

〈
T̂(S)

11

〉
(t)
]

, (85)〈
ŜZ

〉
(t) = √

2a
〈
T̂(S)

10

〉
(t), (86)

where

a =
√

S(S + 1)(2S + 1)

6
.
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We remark that the differential recurrence equation (77) can also be solved by the
matrix continued fraction method [5, 71] (see also Appendix D).

The density matrix method that we have illustrated via the evolution equation
for the polarization operators has hitherto constituted the usual approach to
the treatment of spin relaxation and resonance phenomena. However, relaxation
and resonance of spins interacting with a bath can also be treated in classical-
like fashion via the relevant quasiprobability distribution function WS(ϑ , ϕ, t)
of spin orientations in a phase space (here configuration space) (ϑ , ϕ); ϑ and
ϕ are the polar and azimuthal angles (see, e.g., Refs. 35–40 and 52–70). The
quasiprobability distribution function WS(ϑ , ϕ, t) is considered in the following
sections.

B. Quasiprobability Distribution Functions for Particles

In order to introduce the concept of a quasiprobability distribution function, we
recall that, in general, a classical dynamical system of one degree of freedom
may be described by a phase space probability distribution function W(q, p, t)
yielding the probability W(q, p, t)dpdq that the system is in a volume element dqdp
centered around the phase space point (q, p) of coordinate q and momentum p.
However, in the quantum mechanical description of a dynamical system (because
of the uncertainty principle) the phase space coordinates (q, p) cannot take definite
values simultaneously. Therefore, the concept of such a function does not exist
for a quantum system because the idea of a sharp phase point, and a collection
or ensemble of such sharp points has of itself no meaning. Nevertheless, it is
still possible to utilize certain mathematical constructs called quasiprobability
distributions, closely resembling the classical phase space distribution functions.
Such quasiprobability distributions have proven [41–47] to be very useful in
various physical applications as they provide fruitful insights into the connection
between classical and quantum mechanics allowing one to express quantum
mechanical averages in a form very similar to that of classical averages. Thus,
they are ideally suited to the study of the quantum classical correspondence.
Furthermore, they provide a useful tool for introducing quantum corrections to
classical models of dissipation such as many-body collisions, Brownian motion,
escape-rate theory, and so on. (see, e.g., Refs. 47, 87 and 97–100) as well as
the connection between decoherence and the quantum to classical transition
[101]. The first of these quasiprobability distributions was introduced by Wigner
[41] in 1932 in order to study in a semiclassical fashion quantum corrections
to the Maxwell–Boltzmann distribution of classical statistical mechanics, which
inter alia elucidated the role played by tunneling effects at high temperatures in
reaction-rate theory [97–100]. In principle, the Wigner distribution function was
meant to be a reformulation, using the concept of a quasiprobability distribution in
phase space, of Schrödinger’s wave mechanics, which describes quantum states
in configuration space.
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Before proceeding, we recall the properties of the coordinate and momentum
operators q̂ and p̂ = −ih̄∂/∂q, which are used to describe a quantum mechanical
system in Hilbert space with one degree of freedom [78] as follows:

1. The operators q̂ and p̂ are non-commutative, that is,

[q̂, p̂] = q̂p̂ − p̂q̂ = ih̄. (87)

2. The eigenvectors |q〉 and |p〉 of the operators q̂ and p̂ obey the following
conditions:

q̂ |q 〉 = q |q 〉 , (88)

p̂ |p 〉 = p |p 〉 , (89)〈
q′ ∣∣q′′ 〉 = δ(q′ − q′′〉 , (90)〈
p′ ∣∣p′′ 〉 = δ(p′ − p′′), (91)

〈q |p 〉 = 1√
2π h̄

eiqp/h̄, (92)

〈p |q 〉 = 1√
2π h̄

e−iqp/h̄, (93)
�

|q〉 〈q| dq = Î, (94)�
|p〉 〈p| dp = Î, (95)

where Î is the unity operator and δ is the Dirac delta function.
3. The wave functions in the coordinate and momentum representations are

defined via a state vector |ψ(t)〉 in Hilbert space as follows:

ψ(q, t) = 〈q| ψ(t)〉 , (96)

ψ(p, t) = 〈p| ψ(t)〉 . (97)

4. And, finally, the probability densities of the coordinate and momentum are
given by

W(q, t) = |〈q| ψ(t)〉|2 , (98)

W(p, t) = |〈p| ψ(t)〉|2 . (99)

Now for purposes of exposition, we consider following Puri [51], a one-
dimensional dynamical system described classically by a phase space dis-
tribution function W(q, p, t). Then the classical statistical average of any
function A(q, p) is by definition

〈A(q, p)〉cl =
�

W(q, p, t)A(q, p)dqdp. (100)
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By analogy, the quantum mechanical description of a system is contained
in its Hilbert space density operator ρ̂(t), which determines the quantum
statistical average of any function A(q̂, p̂) of the coordinate and momentum
operators q̂ and p̂ by the following relation:〈

A(q̂, p̂)
〉 = Tr [ρ̂(t)A(q̂, p̂)] . (101)

Now the classical distribution function W(q, p, t) may always be expressed
in terms of the averages of a complete set of functions of q and p. This fact
suggests that we may be able to construct a quantum analog of the classical
distribution function by expressing the latter distribution in terms of the
average of a suitably chosen complete set of functions and then relabeling
those classical averages as quantum mechanical ones. In order to explore
this possibility, we rewrite a typical classical distribution in integral form as
follows [51]:

W(q, p, t) =
∞�

−∞

∞�
−∞

δ(p − p′)δ(q − q′)W(q′, p′, t)dq′dp′

= 1

4π2

∞�
−∞

∞�
−∞

∞�
−∞

∞�
−∞

eik(q−q′)eil(p−p′)W(q′, p′, t)dq′dp′dkdl,

(102)

which by definition is

W(q, p, t) = 1

4π2

∞�
−∞

∞�
−∞

eikqeilp
〈
e−ikqe−ilp

〉
cl

dkdl. (103)

Thus, we have expressed the classical distribution function W(q, p, t) in terms of
the average of a complete set of functions of e−ikq and e−ilp or in statistical termi-
nology as the inverse Fourier transform of the characteristic function

〈
e−ikqe−ilp

〉
cl.

To construct the quantum analog of W(q, p, t), we must first replace the classical
dynamical variables (q, p) by the Hilbert space quantum operators

(
q̂, p̂
)

and
then replace the classical average

〈
e−ikqe−ilp

〉
cl or characteristic function in the

integrand of Eq. (103) by the quantum average as defined by Eq. (101). Thus, we
have a quantum analog of the classical phase space distribution function

WT(q, p, t) = 1

4π2

∞�
−∞

∞�
−∞

eikqeilp
〈
T(e−ikq̂, e−ilp̂)

〉
qm

dkdl (104)

called a quasiprobability distribution. In writing Eq. (104), we formally wrote
the product e−ikqe−ilp as an ordering operator T(e−ikq̂, e−ilp̂) because owing to the
non-commutativity of the Hilbert space operators q̂ and p̂ several different quantum
operator forms exist, which all may be considered as quantum analogs of the
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unique classical product e−ikqe−ilp. The different operator forms must then be for-
mally described by an ordering operator T(e−ikq̂, e−ilp̂). Hence, different choices
of T(e−ikq̂, e−ilp̂) ultimately lead to different quantum phase space distribution
functions WT(q, p, t) [47].

The name quasiprobability is used to emphasize that such a distribution
represents a merely mathematical construct and is not in itself a true phase space
distribution function as no such joint distribution function can exist for a quantum
system [47]. Now in order to systematically investigate various operator orderings
T(e−ikq̂, e−ilp̂), it is convenient to express the quantum operators q̂, p̂ in terms of
the creation and annihilation operators â and â† defined as [40]

â = 1√
2h̄

(q̂ + ip̂), â† = 1√
2h̄

(q̂ − ip̂) (105)

so that

q̂ =
√

h̄

2
(â + â†), p̂ = i

√
h̄

2
(â† − â) (106)

and then consider the operator T(eiξ â, eiξ∗â†
) which may be rewritten as [51]

T(eiξ â, eiξ∗â†
) = es|ξ |2/2eiξ â+iξ∗â†

. (107)

Here, s is a complex number.The ordering for s = 0, usually called the Weyl
ordering or the symmetric ordering corresponds to the Wigner function. The
quasiprobability distribution function for s = 1 is known as the P-function
WP(q, p, t), while that for s = −1 is known as the Q-function WQ(q, p, t) [40,
51, 54]. The Q- and P-representations, and the Wigner function representation,
arise from three different aims. On the one hand, in the Q-representation, it is
desired to create a quasiprobability density for the quantum system by using the
diagonal matrix elements of the density operator for this purpose. On the other
hand, the P-representation arises from the desire to represent the density operator
as an ensemble of coherent states [78]. Finally, the Wigner function yields a joint
quasi-distribution for canonically conjugate variables p and q, which in many
respects resembles a classical probability distribution. All of these phase space
representations have their particular advantages and disadvantages [102]. At first,
we restrict ourselves to the Wigner function for particles. For spins, the Q- and
P-representations as well as the Wigner function representation will be considered
in detail in Section II.B.1.

1. The Wigner Distribution Function for Particles

By directly proceeding from a statistical viewpoint, Moyal [103] has shown how
the Wigner function follows naturally from the inversion of a characteristic func-
tion M(μ, v) for canonically conjugate variables such as position and momentum
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in a state described by a state vector |ψ(t)〉 in the Hilbert space. Moyal [103],
in view of his strong background in statistics, starts by defining a characteristic
function operator (cf. Eq. (103) et seq; coordinates and momenta are once more
used instead of the creation and annihilation operators), namely,

Mq̂,p̂(μ, v) = eiμq̂+ivp̂. (108)

The characteristic function M(μ, v) in a state |ψ(t)〉 in Hilbert space is then given
by definition as the scalar product

M(μ, v) =
〈
eiμq̂+ivp̂

〉
= Tr

(
ρ̂eiμq̂+ivp̂

)

= 〈ψ(t)| eiμq̂+ivp̂ |ψ(t)〉 =
∞�

−∞
ψ∗(q, t)eiμq̂+ivp̂ψ(q, t)dq, (109)

where ψ(q, t) = 〈q| ψ(t)〉 is the wave function in the coordinate representation
and q̂ and p̂ = −ih̄∂/∂q are the canonically conjugate coordinate and momentum
operators. Because the non-commuting operators p̂ and q̂ satisfy the Baker–
Campbell–Hausdorff identity [43]

eÂ+B̂ = eÂeB̂e−[Â,B̂]/2, (110)

the characteristic function operator Mq̂,p̂ (μ, v) then becomes

Mq̂,p̂(μ, v) = eih̄μν/2eiμq̂eivp̂ = e−ih̄μν/2eivp̂eiμq̂ (111)

since we have Eq. (87) for the commutator of the operators q̂ and p̂. Next, since
we may eliminate p̂ via [78]

eivp̂ψ(q) = ψ(q) + h̄ν
∂

∂q
ψ(q) + · · · = ψ(q + νh̄), (112)

we have the simplified expression

M(μ, v) =
∞�

−∞
ψ∗(q, t)eiμ(q+vh̄/2)ψ(q + νh̄, t)dq, (113)

which with the replacement q → q−vh̄/2 yields the characteristic function as the
overlap integral

M(μ, v) =
∞�

−∞
ψ∗(q − u, t)eiμqψ(q + u, t)dq, (114)
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where u = vh̄/2. The phase space quasi-distribution W(q, p, t) is thus by Fourier
inversion

W(q, p, t) = 1

4π2

∞�
−∞

∞�
−∞

M(μ, v)e−iμq−ivpdμdv

= 1

2h̄π2

∞�
−∞

∞�
−∞

∞�
−∞

e−iμ(q−x)ψ∗(x − u, t)e−2iup/h̄ψ(x + u, t)dudxdμ

(115)

= 1

π h̄

∞�
−∞

ψ∗(q − u, t)e−2iup/h̄ψ(q + u, t)du,

which is real but not everywhere positive so that it is indeed a quasiprobability
distribution. Here, we have used the definition

1

2π

∞�
−∞

e−iμ(q−x)dμ = δ(q − x). (116)

Equation (115) defining the Wigner function W(q, p, t) (which represents the
Fourier transform of the overlap function, namely, a type of spatial autocorrelation
function of the wave function ψ in coordinate space [77]) holds if ψ evolves
according to the Schrödinger equation

ih̄
∂ψ

∂t
= − h̄2

2m

∂2ψ

∂q2 + V(q)ψ (117)

for a particle of mass m moving in a potential V(q). Now integration of W(q, p, t)
with respect to the momentum p yields

∞�
−∞

W(q, p, t)dp = |ψ(q, t)|2 , (118)

that is, the correct quantum mechanical probability for the coordinate q. Con-
versely, integration of W with respect to q, yields the correct quantum mechanical
probability for the momentum p, viz.,

∞�
−∞

W(q, p, t)dq = |�(p)|2 , (119)
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where �(p) is the wave function of the momentum given by

�(p) =
∞�

−∞
ψ(q, t)e−ipqdq.

It follows from Eq. (118) that if the wave function ψ(q, t) is normalized to
unity then

∞�
−∞

∞�
−∞

W(q, p, t)dqdp = 1. (120)

Now by recalling Ref. 77, the definition of the density matrix operator ρ̂ for a pure
state, namely,

ρ̂(q1, q2, t) = 〈q1 |ψ(t)〉 〈ψ(t)| q2〉 = ψ(q1, t)ψ∗(q2, t),

and introducing the replacements q = (q1 + q2)/2 and y/2 = u = (q1 − q2)/2,
one can finally write Eq. (115) as follows [77]:

W(q, p, t) = 1

2π h̄

∞�
−∞

ρ̂ (q + y/2, q − y/2, t)e−ipy/h̄dy

= 1

2π h̄

∞�
−∞

ρ̂ (q − y/2, q + y/2, t) eipy/h̄dy. (121)

Moreover, the inverse transformation is given by the Weyl transform yielding the
mapping from the phase space back to operators in Hilbert space [47], namely,

ρ̂(t) = h̄

2π

∞�
−∞

∞�
−∞

∞�
−∞

∞�
−∞

W(q, p, t) eix(q̂−q)+iy(p̂−p)dqdpdxdy. (122)

We remark in passing that in contrast to Eq. (115), the definition of the Wigner
function W(q, p, t) via the density operator ρ̂(t), Eq. (121), is valid both for pure
and mixed states. The only difference is in the definition of ρ̂(t). For a pure state
|ψ(t)〉 , the density operator is given by ρ̂(t) = |ψ(t)〉 〈ψ(t)| , while for a mixed
state, the density operator is defined as follows [76]:

ρ̂(t) =
∑

n

Pn |ψn(t)〉 〈ψn(t)| , (123)

where Pn is the probability of each state |ψn(t)〉. The Wigner function of a mixed
state W(q, p, t) is then given by the following relation [76]:

W(q, p, t) =
∑

n

PnWn(q, p, t). (124)
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Here Wn(q, p, t) is the Wigner function for the state |ψn(t)〉. In particular, the
definition, Eq. (124), applies to a canonical ensemble of particles at temperature
T , where Pn = e−βEn/Z is the probability to find the particle in an energy state
En, and Z is the partition function.

The Wigner function W(q, p, t) exhibits most of the properties of a classical

phase space distribution, including the fact that the expectation value
〈
Â
〉
(t) =

Tr
(
ρ̂Â
)

of a quantum operator Â may be calculated in classical fashion via the

corresponding Weyl symbol A(q, p) as [47]

〈
Â
〉
(t) =

∞�
−∞

∞�
−∞

W(q, p, t)A(q, p)dq dp , (125)

where

A(q, p) =
∞�

−∞
e−ipy/h̄ 〈q + y/2| Â |q − y/2〉 dy (126)

is the Weyl transform of the operator Â expressed in the position q basis.
Equivalently, the Weyl transform can be expressed in terms of matrix elements
of the operator Â in the momentum p basis as

A(q, p) =
∞�

−∞
e−iqy/h̄ 〈p + y/2| Â |p − y/2〉 dy. (127)

The Weyl transform implies that the trace of the product of two operators Â and
B̂ is given by the integral over the phase space (q, p) of the product of their Weyl
transforms A(q, p) and B(q, p), namely, [47]

Tr
〈
B̂Â
〉
= 1

2π h̄

∞�
−∞

∞�
−∞

B(q, p)A(q, p)dq dp . (128)

Equations (121) and (128) (for B̂ ≡ ρ̂) yield immediately Eq. (125).
We may now determine from the overlap Fourier transform equation (115) the

partial differential equation governing the time evolution of the Wigner function.
Taking the derivative of Eq. (115), we obtain the following equation:

∂W

∂t
= 1

π h̄

∞�
−∞

[
ψ∗ (q + u, t)

∂ψ (q − u, t)

∂t
+ ∂ψ∗ (q + u, t)

∂t
ψ (q − u, t)

]

× e2ipu/h̄du. (129)
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Now since the wave function ψ in coordinate space evolves according to the
Schrödinger equation (117), substitution of that equation into Eq. (129) gives

∂W

∂t
= − i

2mπ

∞�
−∞

{
ψ (q − u)

∂2ψ∗(q + u)

∂u2 − ψ∗ (q + u)
∂2ψ(q − u)

∂u2

− 2m

h̄2 ψ (q − u) ψ∗ (q + u) [V(q + u) − V(q − u)]
}

e2ipu/h̄du (130)

= − p

m

∂W

∂q
+ i

π h̄2

∞�
−∞

ψ (q − u) ψ∗ (q + u) [V(q + u) − V(q − u)]

× e2ipu/h̄du.

Here, we have utilized the derivative property

∂2ψ(q ± u)

∂q2 = ∂2ψ(q ± u)

∂u2

and have performed one partial integration with respect to u in the terms that do
not involve the potential functions V(q ± u). Equation (130) is identical to the
classical Liouville equation in the force-free case V(q) = 0 and concurs with that
given by Hillery et al. [44]. We now expand V(q + u) − V(q − u) in Eq. (130) in
a Taylor series about the point q yielding

V(q + u) − V(q − u) = 2
∞∑

n=1

u2n−1

(2n − 1)!
∂2n−1V

∂q2n−1
. (131)

Substituting Eq. (131) into Eq. (130), we have

∂W

∂t
+ p

m

∂W

∂q
= 2i

π h̄

∞�
−∞

∞∑
n=1

u2n−1

(2n − 1)!
∂2n−1V

∂q2n−1 ψ∗ (q + u) ψ (q − u) e2ipu/h̄du.

(132)

Next, because of the relation

u2n−1e2ipu/h̄ =
(

h̄

2i

)2n−1
∂2n−1

∂p2n−1 e2ipu/h̄, (133)
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we have

2i

π h̄

∞∑
n=1

1

(2n − 1)!
(

h̄

2i

)2n−1
∂2n−1V

∂q2n−1

∂2n−1

∂p2n−1

∞�
−∞

ψ∗ (q + u) ψ (q − u) e2ipu/h̄du

=
∞∑

n=1

1

(2n − 1)!
(

h̄

2i

)2n−2
∂2n−1V

∂q2n−1

∂2n−1W

∂p2n−1

= −∂V

∂q

∂W

∂p
−

∞∑
r=1

(ih̄/2)2r

(2r + 1)!
∂2r+1V

∂q2r+1

∂2r+1W

∂p2r+1 . (134)

Thus, we have the time evolution equation for the Wigner distribution function
W(q, p, t), namely,

∂W

∂t
+ M̂WW = 0, (135)

where the operator M̂W is defined as follows:

M̂WW = p

m

∂W

∂q
− ∂V

∂q

∂W

∂p
−

∞∑
r=1

(ih̄/2)2r

(2r + 1)!
∂2r+1V

∂q2r+1

∂2r+1W

∂p2r+1 . (136)

Equation (135) often known as the Wigner–Moyal equation [77] is a quantum
analog of the classical Liouville equation. Equations (135) and (136) also hold if
the system is in a mixed state represented by a density matrix ρ̂.

Now Wigner [41] originally calculated quantum correction terms to the clas-
sical stationary distribution functions for a system with n degrees of freedom.
However, for illustrative purposes, we only consider a system with n = 1. As
an example, we determine the stationary (equilibrium) solution of Eq. (135) for
an assembly of noninteracting particles each of mass m moving in a potential V(q)

at temperature T . Each particle is characterized by the energy

ε(q, p) = p2

2m
+ V(q). (137)

Following Wigner [41], we develop the stationary distribution function Weq(q, p)

in a power series

Weq(q, p) = W0(q, p) + h̄2W2(q, p) + h̄4W4(q, p) + · · · , (138)

where W0(q, p) = e−βε(q,p) is the (unnormalized) Maxwell–Boltzmann distribu-
tion. By substituting Eq. (138) into Eq. (135), the function W2(q, p) and W4(q, p)

are easily evaluated. Thus, we have [48]
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Weq(q, p) = e−βε(q,p)

{
1 + �

(
βp2

m
V(2) − 3V(2) + β

(
V(1)

)2
)

+ 3�2
[
β2

6

(
V(1)

)4 + 5

2

(
V(2)

)2 − 9β

5
V(2)

(
V(1)

)2

+ 2V(3)V(1) − 3

2β
V(4) + p2

m

(
V(4) − 2β

5
V(3) V(1) (139)

+ 1

3
V(2)

(
βV(1)

)2 − 9β

5

(
V(2)

)2
)

+ p4

m2

(
1

6

(
βV(2)

)2 − βV(4)

10

)]}
+ · · · ,

where � = h̄2β2/(24m) is a characteristic quantum parameter and V(m) ≡
dmV/dqm. These equations are written explicitly to o(h̄4). In a like manner, higher
order quantum correction terms to the Wigner stationary distribution Weq(q, p)

may be calculated. Thus, Weq(q, p) can be given, in principle, to any desired
degree r of h̄2r. In general, quantum effects give rise to non-Gaussian behavior
of the equilibrium phase space distribution function Weq(q, p), and it is no longer
separable in the position and momentum variables.

Obviously, the calculation of the equilibrium Wigner distribution Weq(q, p) is a
tedious task for an arbitrary potential V(q). However, in some cases, Weq(q, p) can
be found in closed form (various methods for the calculation of Wigner functions
are described, for example, in Refs. 43, 44, 46, and 47). A famous example is the
quantum harmonic oscillator, where the potential is

V(q) = 1

2
mω2

0q2 (140)

(ω0 is the angular frequency of the oscillator). Here, perturbation theory may be
avoided because the evolution equation for the Wigner function equation (135)
for the potential (140) now coincides with the corresponding classical Liouville
equation and the unnormalized equilibrium Wigner function Weq(q, p) can be
written in the exact Gaussian form [43, 44, 48, 104]

Weq(q, p) = sech (βh̄ω0/2)

2π h̄
e
− q2

2〈q2〉eq
− p2

2〈p2〉eq , (141)

where

〈
q2
〉
eq

= h̄

2mω0
coth

βh̄ω0

2
(142)



SPIN RELAXATION IN PHASE SPACE 81

and 〈
p2
〉
eq

= mh̄ω0

2
coth

βh̄ω0

2
. (143)

The Wigner function Weq(q, p) from Eq. (141) is in fact a superposition of the
Wigner functions Wn(q, p) for the pure states of a harmonic oscillator, namely,
[43, 44, 48]

Weq(q, p) =
∞∑

n=0

Wn(q, p)e−βh̄ω0(n+1/2). (144)

Here, Wn(q, p) and the corresponding eigenfunctions of the harmonic oscillator
ψn(q) are given by the well-known analytic equations [46]

Wn(q, p) = 1

π h̄

∞�
−∞

ψn(q + u)ψ∗
n (q − u)e−2ipu/h̄du

= (−1)n

π h̄
e
− p2+m2ω2

0q2

mh̄ω0 Ln

[
2(p2 + m2ω2

0q2)

mh̄ω0

]
, (145)

ψn(q) = 1√
2nn!

(
mω0

π h̄

)1/4

e− mω0q2

2h̄ Hn

(
q

√
mω0

h̄

)
, (146)

where Hn(z) and Ln(z) are the Hermite and Laguerre polynomials, respectively
[105]. For illustration, the Wigner functions Wn of a harmonic oscillator for the
pure states n = 1, 2, 3, and 4, Eq. (145), are shown in Fig. 2. In contrast to the
behavior of the equilibrium Wigner function Weq(q, p), Eq. (141), the Wigner
functions Wn(q, p) of the pure states can take on negative values so that it is
impossible to interpret the Wigner function Wn as a true probability distribution.

Equilibrium Wigner functions have also been calculated for various simple
quantum systems such as a particle in an infinite square well [104], the Morse
oscillator [106, 107], the anharmonic quartic oscillator [108, 109], and the inverted
harmonic oscillator [110].

2. Application to Transition-State Theory

The simplest description of thermally activated escape of a particle with the total
energy ε(q, p) given by Eq. (137) over a potential barrier may be given in terms
of TST. In the simplest form of TST, two assumptions are made [5, 20]. First,
thermal equilibrium prevails in the well (e.g., through the action of Maxwell’s
demon who keeps replenishing the particles at the source) so that the metastable
state is represented by a canonical equilibrium distribution (unlike in the Kramers
[28] treatment of the escape rate, where nonequilibrium effects due to the loss of
particles from the well are accounted for using the theory of Brownian motion,
automatically leading to friction dependence of the transmission coefficient).
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Figure 2. 3D plots of the Wigner functions Wn of a harmonic oscillator versus. the normalized
coordinate Q = q

√
mω0/h̄ and momentum P = p/

√
mh̄ω0 for the pure states n = 1, 2, 3, and 4.

(Color on line).

Second, a particle is never supposed to return to the well once it has crossed the
potential barrier. The first assumption means that friction, that is, dissipation to
the bath does not affect the escape rate. Thus, the system in effect is a closed
classical one. Nevertheless, according to Mel’nikov [111], the results of classical
TST should also be applicable in a wide range of dissipation for which thermal
noise is sufficiently strong to thermalize the escaping particles yet not so strong as
to affect particle motion across the top of the potential barrier, that is, a Maxwell–
Boltzmann distribution still holds there. In the context of the Kramers model,
this is the so-called intermediate damping case (cf. Fig. 1.13.2 of Ref. 5). In the
treatment of Kramers, however, which explicitly involves an open classical system
with fluctuation-dissipation due to the bath described by the Brownian motion
Stosszahlansatz, he shows that for sufficiently weak friction the escape rate is
suppressed because of the depletion of the well population while for strong friction
the escape rate is also suppressed due to the slowing down of the particle motion
at the barrier top.

The suggestion that quantum mechanical tunneling might play a signifi-
cant role in some chemical reactions was first made in 1927 by Hund [99],
almost at the inception of quantum mechanics. The first guess at a quantum
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transition-state theory appears to have been made by Wigner who proposed a
quantum generalization of the classical TST [97–99], where the reaction rate �

is given via the flux-over-population method [20]

� ∼ IC

ZA
, (147)

where

ZA =
�
well

Weq(q, p) dpdq (148)

and

IC =
�

barrier

JC(q, p) dpdq (149)

are, respectively, the well partition function and the total current of the particles
at the top of the barrier point C (see Fig. 3). Here the current density at the barrier
point JC is given by

JC(q, p) = θ(p)δ(q − qC)q̇Weq(q, p), (150)

where θ(x) and δ(x) are the unit step and Dirac delta functions, respectively,
and q̇ = ∂ε/∂p = p/m is the particle velocity. Now we assume that near the

V(q)

B

qA

C

∆V

Figure 3. Single-well potential function as the simplest example of escape over a barrier.
Particles are initially trapped in the well near point A by a high potential barrier at point C. They
very rapidly thermalize in the well. Due to thermal agitation, however, very few may attain enough
energy to escape over the barrier into region B whence they never return. The height of the barrier
�V = V(qC) − V(qA) is supposed to be large compared with the thermal energy kT .
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summit point C and near the bottom point A of the well, the potential V(q) may
be described by inverted harmonic oscillator and harmonic oscillator potentials,
respectively, namely,

V(q) ≈
{

V(qC) − mω2
C

2 (q − qC)2

V(qA) + mω2
A

2 (q − qA)2,
(151)

where

ωC = √|V ′′(qC)| /m and ωA = √V ′′(qA)/m.

Thus, near the bottom of the well, Weq(q, p) is approximated by that of a harmonic
oscillator with ω0 = ωA (see Eq. (141)), meaning that the well partition function
ZA can be evaluated as follows [48]:

ZA ≈ e−βV(qA)

2π h̄ cosh (βh̄ωA/2)

∞�
−∞

∞�
−∞

e
− 2

h̄ωA

(
m
2 ω2

Aq2+ 1
2m p2

)
tanh

(
βh̄ωA

2

)
dqdp

= e−βV(qA)

2 sinh (h̄ωAβ/2)
. (152)

Here, the limits of integration with respect to q may be formally extended to ±
infinity without significant error since the particles are almost all at A. Near the
top of the barrier, the Wigner function Weq(q, p) is approximated by that of an
inverted harmonic oscillator with ω0 = iωC in Eq. (141) so that at C, it is given
by [48]

WC
eq(qC, p) ≈ e

−βV(qC)− p2 tan(βh̄ωC/2)
mh̄ωC

2π h̄ cos (βh̄ωC/2)
. (153)

Thus, we have from Eqs. (149) and (153)

IC ≈ e−βV(qC)

2π h̄m cos (βh̄ωC/2)

∞�
0

pe
− p2 tan(βh̄ωC/2)

mh̄ωC dp

= ωCe−βV(qC)

4π sin (βh̄ωC/2)
. (154)

Finally, substituting Eqs. (152) and (154) into Eq. (147), we obtain [48]

� ≈ ωA

2π
�e−β�V , (155)
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where �V = V(qC) − V(qA) is the barrier height and

� = ωC

ωA

sinh(h̄βωA/2)

sin(h̄βωC/2)
= 1 + β2h̄2

24

(
ω2

C + ω2
A

)
+ · · · (156)

is the quantum correction to the classical TST result. The lowest order quantum
correction to this pre-exponential factor was first obtained by Wigner [97] (see
also Ref. 98). He emphasized that the quantum factor � represents an effective
lowering of the potential barrier, so enhancing the escape rate. According to
Wigner [97], Eq. (155) constitutes the quantum correction to classical TST at high
temperatures. In the context of quantum dissipation, one may infer that Eq. (155)
also represents the extension of the intermediate damping Kramers escape rate
(for which classical TST provides a reasonably accurate approximation) to include
quantum effects. An important feature of Eq. (155) not appearing in the first order
in h2 approximation is that the prefactor � diverges at a crossover temperature Tc

given by

Tc = h̄ωC

2πk
.

The divergence occurs because the parabolic (or inverted oscillator) approximation
for the potential is only valid near the top of the barrier. However, at very low
temperatures T << Tc, where the particle is near the bottom of the well, the
parabolic approximation to the barrier shape is no longer sufficient [111]. In
contrast for T > Tc, transitions near the barrier top dominate so that the parabolic
approximation is accurate [111]. Moreover, the simple approximation appearing
on the right-hand side of Eq. (156) should hold with a reasonable degree of
accuracy. This approximation also appears to be in substantial agreement with
the experimental results of Bouchaud et al. [112].

We have demonstrated how the quantum escape rate in the absence of dis-
sipation, namely Eq. (155), may be obtained by Wigner’s perturbation method.
However, that result may be obtained in a more succinct fashion without using
perturbation theory by recalling that the rate constant may be written as [99, 113]

� = 1

ZA

∞�
−∞

w(ε)e−βεdε, (157)

where the quantity

w(ε) = 1

1 + e−2π(ε−VC)/(h̄ωC)
(158)

is the quantum transmission coefficient (ignoring dissipation) of a parabolic barrier
[78]. We again approximate the potential near the top of the barrier by that of an
inverted harmonic oscillator, which holds good at the barrier as well as at a small
distance below it. Hence, one can regard the integral in Eq. (157) as having infinite
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limits. Thus, one finds on evaluating that integral with these limits that the escape
rate is given by

� = h̄ωC

2ZA sin(βh̄ωC/2)
e−βVC . (159)

Then using Eq. (152), we have the quantum TST escape rate Eq. (155) from
Eq. (159).

Quantum TST as formulated for particles with separable and additive Hamil-
tonians in the manner just described has also been applied [114] in the context
of magnetization reversal to the escape rate of the giant spin model of single-
domain ferromagnetic particles. This model describes a ferromagnetic particle
with uniaxial anisotropy with external fields applied parallel and perpendicular
to the anisotropy axis. Tunneling in such a model will be caused by the transverse
field [114]. Now, the Hamiltonian of the model (which is not separable and
additive as the canonical variables are now the polar angles ϑ and ϕ specifying
the orientation of the magnetization vector) may be mapped [114] onto that of
a mechanical particle moving in a double-well potential. Hence, the quantum
TST rate described earlier which is a close approximation to the exact escape
rate in the intermediate damping region may also be used to study thermally
assisted tunneling of the magnetization of a single-domain ferromagnetic particle.
Nevertheless, the complete solution of the foregoing problem [64] will involve the
extension of Wigner’s phase space formalism to spin systems, and will be given
in Section II.D.6.

3. Application to Quantum Brownian Motion

The classical theory of the Brownian motion in a potential is ubiquitous in many
areas of physics and chemistry, particularly those dealing with the nature of
metastable states and the rates at which these states decay. Typical examples are
current–voltage characteristics of Josephson junctions, the rate of condensation
of a supersaturated vapor, dielectric and Kerr effect relaxation in liquids and
nematic liquid crystals, dynamic light scattering, chemical reaction-rate theory
in condensed phases, superparamagnetic relaxation, polymer dynamics, nuclear
fission etc. [5, 20, 115, 116]. All these phenomena in one way or the other
depend on the nucleation and growth of some characteristic disturbance within
a metastable system, for example, condensation of a saturated vapor is initiated
by the formation of a sufficiently large droplet of the liquid. If this droplet
is big enough, it will be more likely to grow than to dissipate and will bring
about condensation of the entire sample [115]. In many cases, particularly at
low temperatures, a theory of dissipation based on the classical Brownian motion
may be inadequate because it ignores quantum effects. Quantum noise arising
from quantum fluctuations is also important in nanoscale and biological systems.
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We mention [116] the noise-assisted tunneling and transfer of electrons and
quasiparticles. The characteristics of such quantum noise vary strongly with
temperature, and at high temperatures a crossover to Johnson-Nyquist noise
that is essentially governed by the classical Brownian motion takes place. Yet
another aspect of the subject, which has come to the fore in recent years, is the
quantum mechanics of macroscopic quantum variables such as the decay of a
zero-voltage state in a biased Josephson junction, flux quantum transitions in a
SQUID [116], and the possible reversal by quantum tunneling of the magnetization
of a single-domain ferromagnetic particle. It has been conjectured by Bean and
Livingston [21] that the magnetization may reverse by quantum tunneling through
the internal magnetocrystalline anisotropy barrier of the particle instead of by the
conventional mechanism of thermally agitated jumping over the barrier, namely,
Néel relaxation [16].

All these considerations necessitate the development of a theory of quantum
Brownian motion particularly a theory, which directly addresses the issue of
the quantum classical correspondence [117] in terms of a quantum analog of
the classical Fokker–Planck equation. Such an evolution equation will allow
dynamical parameters such as escape rates, correlation times, and susceptibilities
to be calculated in terms of the eigensolutions of that equation in a manner
analogous to those of the Fokker–Planck equation. Moreover, it would be possible
to compare asymptotic solutions for parameters such as escape rates yielded
by reaction rate theory with the corresponding quantities calculated from the
quantum master equation. The description of quantum mechanics in terms of
phase space distributions as advanced by Wigner is also an ideal starting point
for the formulation of semiclassical quantum master equations of open quantum
systems [102]. In particular, for quantum Brownian motion, the evolution equation
for W(q, p, t), which we shall call the Wigner–Fokker–Planck equation for the
translational Brownian motion of a particle in a potential V(q), can be derived by
proceeding to the high-temperature limit. This procedure is equivalent to treating
the system as a quantum mechanical particle embedded in a classical bath [118]
and is effected by regarding the Brownian particle as bilinearly coupled to a
bath of harmonic oscillators in thermal equilibrium at temperature T [119]. The
most convenient way of characterizing the influence of the bath is by means
of the spectral density characterizing the coupling to the bath of oscillators.
The oscillators constituting the string or transmission line then represent the
normal modes of the bath. We remark that the effect of friction is regarded as
entirely equivalent to the bilinear coupling to these normal modes. Quantization
of the bath of oscillators [119] then yields the following semiclassical master
equation for the Wigner distribution function W(q, p, t), which has intuitive appeal
[120–128]:

∂W

∂t
+ M̂WW = St(W). (160)
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In this equation, the operator M̂W is given by Eq. (136) and the collision kernel
operator St(W) is

St(W) = ∂

∂p

(
DppW + Dpp

∂W

∂p
+ Dqp

∂W

∂q

)
+ ∂

∂q

(
Dqq

∂W

∂q

)
. (161)

Here, Dp, Dpp, Dqp, Dqq are coordinate, momentum, and time-dependent param-
eters (diffusion coefficients). The left-hand side of Eq. (160) again comprising
the Wigner–Moyal operator is of course the quantum analog of the Liouville
equation, while St(W) characterizes the interaction of the Brownian particle with
the thermal bath at temperature T , the collision kernel St(W) being the analog of
the collision kernel (Stosszahlansatz) in the classical kinetic theory. Conditions
for the validity of the master equation (160) are discussed elsewhere (see e.g.,
Refs. 104 and 129). In the classical limit, h̄ → 0, Eq. (160) reduces to the Klein–
Kramers (Fokker–Planck) equation for the translational Brownian motion of a
particle in a potential V(q), namely,

∂W

∂t
+ p

m

∂W

∂q
− ∂V

∂q

∂W

∂p
= ζ

m

∂

∂p

(
pW + m

β

∂W

∂p

)
(162)

and the coefficients Dp, Dpp, Dqp, Dqq become

Dp = ζ

m
, Dpp = ζ

β
, Dqp = Dqq = 0, (163)

where ζ is the drag coefficient of a Brownian particle.
Now being in possession of the functional form of the master equation (160)

for a Brownian particle, the next crucial step is to determine Dp, Dpp, Dqp, Dqq.
With this end in mind, we shall select the extension to the semiclassical case of
a simple heuristic idea originally used by Einstein, Smoluchowski, Langevin, and
Kramers to determine diffusion coefficients in the classical theory of the Brownian
motion [5, 71]. Thus in order to obtain the explicit form of Dp, Dpp, Dqp, Dqq

in Eq. (161), we first recall Wigner’s results for the unnormalized equilibrium
distribution Weq(q, p) developed in a power series in h̄2 Eq. (139). This equilibrium
distribution, being a stationary solution of the Wigner–Moyal equation (135),
must be the equilibrium solution of the generic master equation (160), that is,
it must also satisfy St(Weq) = 0. Hence, if Weq(q, p) from Eq. (139) is to satisfy
St(Weq) = 0, the coefficients Dp, Dqp, and Dqq should remain as in Eq. (163)
and only Dpp must be altered to read [48, 130] (for simplicity, we retain only the
leading quantum correction terms)

Dpp = ζ

β
+ ζβh̄2

12m

∂2V

∂q2 + · · · . (164)
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Thus, the explicit form of the Wigner–Fokker–Planck equation up to o
(
h̄2
)

is
[48, 130]

∂W

∂t
+ p

m

∂W

∂q
− ∂V

∂q

∂W

∂p
+ h̄2

24

∂3V

∂q3

∂3W

∂p3 + . . .

= ζ

m

∂

∂p

[
pW +

(
m

β
+ βh̄2

12

∂2V

∂q2
+ . . .

)
∂W

∂p

]
. (165)

The phase space master equation (165) has been derived in Refs. 48 and 130
assuming that Dp, Dpp, Dqp, Dqq in Eq. (161) are time-independent. We observe
that in the high-temperature limit, β → 0, Eq. (165) obviously reduces to the
Caldeira–Leggett master equation [119], where the collision kernel St(W) has
the same form as in the classical Fokker–Planck equation (162). The evolution
equation for the density matrix ρ̂ in Hilbert space corresponding to Eq. (165) is
again to order h̄2 [131]

∂ρ̂

∂t
+ i

h̄

[
Ĥ, ρ̂

]
= − ζ

m

(
i

2h̄
[q̂, p̂ρ̂ + ρ̂p̂] + m

βh̄2 [q̂, [q̂, ρ̂]] + β

6

[
q̂,
[
∂qV̂ , ρ̂

]])
.

(166)

We also observe that the imposition of the Wigner phase space distribution
Weq(q, p) as the equilibrium solution of Eq. (160) so yielding a diffusion coef-
ficient Dpp, which depends on the derivatives of the potential, appears to be the
quantum analog of the Ansatz of a Maxwell–Boltzmann stationary distribution
for the classical Klein–Kramers equation, Eq. (162). Furthermore, the condition
St
(
Weq

) = 0 is equivalent to the property of the collision kernel St(W) in
the classical kinetic theory, whereby the reduced or single-particle phase space
distribution function W(q, p, t) obeys the kinetic equation,

∂W

∂t
+ p

m

∂W

∂q
− ∂V

∂q

∂W

∂p
= St(W). (167)

Here, the equilibrium Maxwell–Boltzmann distribution function Weq(q, p) ∼
e−βε(q,p) always satisfies the condition St

(
Weq

) = 0. In particular, this is so
for the Fokker–Planck equation (162). In the quantum case, this idea has been
used before, for example, by Gross and Lebowitz [132] in formulating quantum
kinetic models of impulsive collisions. According to Ref. 132, for a system with a
Hamiltonian Ĥ, the equation governing the time behavior of the density matrix ρ̂

is given by the (reduced) equation (40), where the collision kernel operator St
(
ρ̂
)

satisfies the condition St
(
ρ̂eq
) = 0, where ρ̂eq is the equilibrium density matrix.

The condition St
(
ρ̂eq
) = 0 has also been used by Redfield [14] (see Eq. 56) in

calculating the matrix elements of the relaxation operator St
(
ρ̂
)
. Now we have

evaluated Dp, Dpp, Dqp, Dqq for frequency-independent damping, meaning that in
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Eq. (160) they are independent of the time [123, 126]. In the high-temperature
limit, this approximation may be used in a wide range of the model parameters both
in the limits of weak and strong damping (a detailed discussion of the validity of
this approximation is given by Grabert [133]). However, for the parameter range,
where it is invalid, for example, throughout the very-low-temperature region, other
methods should be used.

The evolution equation (165) obtained for an arbitrary potential V(q) simplifies
substantially for the harmonic potential, Eq. (140), that is, the quantum Brownian
oscillator model, namely, [48]

∂W

∂t
+ p

m

∂W

∂q
− mω2

0q
∂W

∂p
= ζ

m

∂

∂p

(
pW + Dpp

∂W

∂p

)
, (168)

where our heuristic generalization of the Einstein procedure yields Dpp in closed
form as follows:

Dpp =
〈
p2
〉
eq

= mh̄ω0

2
coth

βh̄ω0

2
.

The master equation (168) coincides in all respects with that of Agarwal [120],
who first developed a detailed theory of the Brownian motion of a quantum
oscillator for the weak-coupling case (see his equation (2.11) with λ = 0).
Furthermore, Eq. (168) is the same as the Fokker–Planck equation (here the Klein–
Kramers equation) for a classical Brownian oscillator [48] except that the diffusion
coefficient Dpp is altered to include the quantum effects. It is known, however,
that according to the theory of quantum dissipation for a quantum Brownian
oscillator, both the stationary distribution and the corresponding averages

〈
q2
〉

and
〈
p2
〉

depend on damping (appropriate equations are given in chapter 6 of Ref.
134). In the approximation of Ohmic damping with Drude’s regularization, these
equations read as [134]

〈
q2
〉
= 1

mβ

∞∑
n=−∞

1

ω2
0 + v2

n + ωDζ/m
1+ωD/vn

(169)

and

〈
p2
〉
= m

β

∞∑
n=−∞

ω2
0 + ωDζ/m

1+ωD/vn

ω2
0 + v2

n + ωDζ/m
1+ωD/vn

, (170)

where vn = 2π |n| /(h̄β) and ωD is a cutoff frequency (a Drude regularization
is necessary as in pure Ohmic damping

〈
p2
〉

diverges [134]). However, both of
these equations reduce to Eqs. (142) and (143) either for vanishing damping
(ζ/m → 0) or in the high-temperature limit (βh̄ω0 → 0). Moreover, the difference
between the damping-dependent and damping-independent equations is negligible
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for ζ/(mω0) < 0.1 (which is simply the condition for the existence of damped
oscillations and/or narrow spectral lines). Furthermore, for βh̄ζ/m ≤ 1, Eq. (168)
(i.e., the Agarwal model) may be used as an approximate description of the kinetics
of a quantum oscillator.

To summarize the merit of the phase space formalism for the quantum Brow-
nian motion in a potential is that it originates in the master equation (160). This
equation is a partial differential equation in phase space akin to the Fokker–Planck
equation, and so operators are not involved. Moreover, the main advantage of the
phase space approach now becomes apparent, namely it provides a master equation
that may be solved using the methods [6, 71] associated with the classical theory
of the Brownian motion in a potential, allowing one to study the quantum classical
correspondence for dissipative systems (see, e.g., Refs. 73, 130, 131, 135–140).
Many other examples of the use of the Wigner function representation of the
density matrix in various applications in physics and chemistry may be found in
Refs. 42, 46, 47, and 77 and references cited therein.

We now turn our attention to phase space representations for spins demon-
strating how the Wigner–Moyal formulation of quantum mechanics as a statistical
theory on classical phase space can be applied successfully to spinning particles.

C. Quasiprobability Distribution Functions for Spins

By way of background to the discussion which follows, we recall that in pro-
viding a phase space description of spin systems, Stratonovich in 1956 [49]
introduced the quasiprobability (Wigner) distribution function WS(ϑ , ϕ, t) for the
spin orientations in the configuration space of the polar and the azimuthal angles
(ϑ , ϕ). This idea formed part of a general discussion of c-number quasiprobability
distributions for quantum systems in a representation space based on the symmetry
properties of the underlying group. Examples are the Heisenberg–Weyl group
for particles and the SU(2) group for rotations. The c-number representation for
spins is especially important in treating spin relaxation phenomena. There the spin
orientation distribution is defined as the linear invertible bijective map onto the
representation space comprising the trace of the product of the system density
matrix and the irreducible tensor operators with matrix elements in the spheri-
cal basis representation given via the Clebsch–Gordan coefficients. Alternative
quasiprobability distribution functions for spins have also been proposed using
the spin coherent-state representation of the density matrix [40, 50–54, 57–60]
introduced by Glauber and Sudarshan and commonly used in quantum optics
(see, e.g., Refs. 45, 46, and 51). Moreover, Várilly and Gracia-Bondía [50] have
shown that the spin coherent-state representation approach is equivalent to the
Stratonovich formalism.

In view of the importance of and the generality of Stratonovich’s study of
representation distributions for quantum systems, we shall summarize the general
principles underlying such representations as given by him. Then, we shall apply
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them to derive the Wigner and other representation distributions for systems with
symmetries described by the SU(2) rotation group.

Stratonovich [49] defines the “representation distribution” in the representation
space M by the following requirements:

1. The space, in which the “representation distribution” is defined, has a clas-
sical meaning, for example, phase space (q, p) or the space of orientations
(ϑ , ϕ).

2. The representation distribution can be expressed linearly in terms of the
density matrix ρ̂. This requirement is directly related to the linearity of the
whole apparatus of quantum theory, that is, it is connected with the statistical
interpretation of the theory. The density matrix ρ̂ like any other quantum
operator Â, has associated with it a (c-number) function in the representation
space, namely,

ρ(M, t) = Tr
{
ρ̂(t)ŵ(M)

}
, (171)

and, in general,

A(M) = Tr
{

Âŵ(M)
}

, (172)

comprising the direct mapping of the quantum operator Â onto the represen-
tation space via the kernel ŵ, which is an operator depending on the point
M as a parameter. For example, the point of the representation space could
be a point on the unit sphere (ϑ , ϕ).

3. The representation distribution must be real, that is, in general, to a Her-
mitian operator Â there must correspond a real c-number (Weyl symbol)
A(ϑ , ϕ). This requirement amounts to the condition that the bijective oper-
ator ŵ(M) must be Hermitian for all points M.

4. Statistical averaging of the c-number A(M) over the representation distri-
bution must give the same results as the rule for averaging of Hilbert space
operators, namely,〈

Â
〉
(t) = Tr

(
ρ̂(t)Â

)
=

�
A(M)ρ(M, t)dM. (173)

Moreover, we have as a representation of a Hilbert space operator Â the
inverse map

Â =
�

A(M)ŵ(M)dM (174)

as can be easily verified by forming Tr
(
ρ̂Â
)

via Eq. (174) and then using

Eq. (171), thereby yielding Eq. (173).
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These transformation rules tell one how to get the operator relation from the
c-number representation and vice versa. Thus condition 4 is equivalent to the
requirement that the direct Eq. (172), and inverse maps, Eq. (174), are accom-
plished via the same kernel ŵ(M), that is, the mapping given by Eq. (172) is
bijective (one-to-one onto).

By regarding the given operators say Â, B̂, . . . as elements of a complex
Euclidean space with a scalar product given by the trace(

Â, B̂
)

= Tr
(

ÂB̂†
)

,

we can then introduce an orthonormal basis of operators {Â1, Â2, . . .} with orthog-
onality relation

Tr
(

ÂiÂ
†
j

)
= δij. (175)

Thus, the kernel operator ŵ(M) may be represented by its expansion in the
orthonormal basis of operators as

ŵ(M) =
∑

i

Â†
i Ai(M), (176)

where by definition the c-number expansion coefficients Ai (M) are given by the
direct map (cf. Eq. 172)

Ai (M) = Tr
{

Âiŵ(M)
}

. (177)

The requirement given by Eq. (175) is entirely equivalent to the c-number
orthogonality relation �

Ai (M) A∗
j (M) dM = δij. (178)

According to Eq. (173), the normalization condition for the density matrix ρ̂, viz.
Tr(ρ̂) = 1, must become �

ρ(M, t)Tr
{
ŵ(M)

}
dM = 1. (179)

Thus, as the normalized distribution we must take a c-number function W(M, t)
given by

W(M, t) = Tr
{
ŵ(M)

}
ρ(M, t) (180)

and the averaging rule, Eq. (173), becomes〈
Â
〉
(t) =

�
W(M, t)A(M)

[
Tr
{
ŵ(M)

}]−1
dM. (181)
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Stratonovich’s abstract treatment presented before may be used to derive specific
distributions. The Wigner distribution function W(q, p, t) defined by Eq. (121) is
an important explicit example. In this instance, Eq. (121) can also be rewritten
in terms of a bijective map ŵ using the density matrix ρ̂ (q1, q2, t) in the (q1, q2)

notation [77] as

W(q, p, t) =
∞�

−∞

∞�
−∞

ρ̂ (q1, q2, t) ŵ(q, p, q1, q2)dq1dq2, (182)

where the kernel ŵ(q, p, q1, q2) is now given by the following equation [49]:

ŵ(q, p, q1, q2) = 1

π h̄
ei(q1−q2)p/h̄δ

(
q − q1 + q2

2

)
. (183)

Thus, the Wigner distribution function W(q, p, t) is derived merely by applying
the principles of homogeneity and equivalence of directions embodied in the
symmetries of the Heisenberg–Weyl group combined with the notion of a classical
phase space. This group theoretic argument should be compared with the intuitive
method of Wigner who appears to have arrived at his distribution by ad hoc
reasoning insofar as that distribution yields the correct marginal probabilities for
either the positions or the momentum.

1. Spin Phase-Space Distribution Functions

Now Stratonovich [49] originally introduced the spin phase space distribution
function for zero dissipation, that is, for closed systems. This function was further
developed both for closed and open spin systems (see e.g., Refs. 35–39 and 50–
60) and is entirely analogous to the translational Wigner distribution W(q, p, t)
in phase space (q, p), which is the quasiprobability representation of the density
operator except that certain differences arise because of the angular momentum
commutation relations. The basic ideas may be summarized as follows [51]. First,
we recall that the classical distribution function W(ϑ , ϕ, t) of magnetic moment
orientations on the surface of a unit sphere can be expanded in an infinite series of
the spherical harmonics YLM(ϑ , ϕ) (see Ref. 5; cf. Eq. B.12) as follows:

W(ϑ , ϕ, t) =
∞∑

L=0

L∑
M=−L

YLM(ϑ , ϕ)
〈
Y∗

LM

〉
(t). (184)

Here the expansion coefficients (statistical moments)
〈
Y∗

LM

〉
(t) are defined by

〈
Y∗

LM

〉
(t) =

π�
0

2π�
0

Y∗
LM(ϑ , ϕ)W(ϑ , ϕ, t) sin ϑdϑdϕ (185)
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(the asterisk denotes the complex conjugate) because YLM(ϑ , ϕ) are orthogonal
and constitute a complete set in configuration space (ϑ , ϕ). Various definitions
and properties of the spherical harmonics YLM(ϑ , ϕ) are discussed in detail
in Appendix B. In particular, the spherical harmonics YLM(ϑ , ϕ), which are
components of some irreducible tensor of rank L, may formally be defined by
the commutation relations [95][

L̂μ, YLM(ϑ , ϕ)
]

= √l(l + 1)CLM+μ
LM1μ YLM+μ(ϑ , ϕ), (186)

yielding three relations (μ = 0, ±1), namely, [95]

L̂0YLM(ϑ , ϕ) = MYLM(ϑ , ϕ), (187)

L̂±1YLM(ϑ , ϕ) = ∓
√

L(L + 1) − M(M ± 1)

2
YLM±1(ϑ , ϕ), (188)

where L̂μ are the components of the orbital angular momentum operator L̂ in the
spherical basis given by the differential operators [95]

L̂0 = −i
∂

∂ϕ
, (189)

L̂±1 = −e±iϕ

√
2

(
∂

∂ϑ
± i cot ϑ

∂

∂ϕ

)
. (190)

The angular momentum operators L̂μ satisfy the same commutation relations
as the spherical components Ŝμ of the spin operator Ŝ given by Eq. (A.8). Now
the quantum quasiprobability distribution function for spins WS(ϑ , ϕ, t) may be
obtained in the manner of Eqs. (100) et seq. merely by replacing the classical
average

〈
Y∗

LM

〉
(t) in Eq. (184) by the quantum mechanical expectation values

of appropriate operators, which must transform under rotation of the coordinate
system in exactly the same way as the spherical harmonics YLM(ϑ , ϕ). Therefore,
we must seek specific operators in Hilbert space corresponding to the spherical
harmonics YLM(ϑ , ϕ) such that they have commutation relations with the spin
spherical component operators Ŝμ which are the same as those, Eq. (186), between
the spherical harmonics YLM(ϑ , ϕ) and the spherical component operators L̂μ of
the angular momentum operator L̂ [51]. The particular operators with these com-
mutation properties are the polarization operators T̂(S)

LM [51, 95]; see Eq. (A.30).
This correspondence becomes obvious by comparing Eqs. (187) and (188) for the
spherical harmonics with the commutation equation (A.30) for the polarization
and spin operators yielding [95]

[Ŝ0, T̂(S)
LM] = MT̂(S)

LM (191)
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and

[Ŝ±1, T̂(S)
LM] = ∓

√
L(L + 1) − M(M ± 1)

2
T̂(S)

LM±1. (192)

We may go into more details in the following manner. We have seen earlier that the
density matrix ρ̂S of the spin characterized by the spin number S may be expanded
as a finite series of the polarization operators T̂(S)

LM , Eq. (70), namely,

ρ̂S(t) =
2S∑

L=0

L∑
M=−L

T̂(S)
LM

〈
T̂†(S)

LM

〉
(t). (193)

Therefore, in order to construct the quasiprobability distribution function
WS(ϑ , ϕ, t) of the polar and the azimuthal angles (ϑ , ϕ) corresponding to the
density matrix ρ̂S from Eq. (193), we first, in light of the previous paragraph,
formally express WS(ϑ , ϕ, t) as a finite series of spherical harmonics YLM(ϑ , ϕ)

in the representation space, namely,

2S + 1

4π
WS(ϑ , ϕ, t) =

2S∑
L=0

L∑
M=−L

YLM(ϑ , ϕ)
〈
Y∗

LM

〉
(t), (194)

where the expansion coefficients
〈
Y∗

LM

〉
(t) are given by

〈
Y∗

LM

〉
(t) = 2S + 1

4π

π�
0

2π�
0

Y∗
LM(ϑ , ϕ)WS(ϑ , ϕ, t) sin ϑdϑdϕ (195)

due to the orthogonality property of the YLM(ϑ , ϕ) given by Eq. (B.11). Equation
(194) represents a quantum analog of the expansion, Eq. (184), of the classical
distribution function W(ϑ , ϕ, t) of spin orientations in configuration space in terms
of spherical harmonics. Thus, following this argument, it appears that both the
quasiprobability (Wigner) distribution function on the sphere WS(ϑ , ϕ, t) and the
corresponding kernel operator ŵ(ϑ , ϕ) of the Wigner–Stratonovich bijective map
onto phase space defined by Eq. (171), namely,

WS(ϑ , ϕ, t) = Tr
{
ρ̂S(t)ŵ(ϑ , ϕ)

}
, (196)

can be obtained by merely replacing the averages of spherical harmonics
〈
Y∗

LM

〉
(t)

over the representation space (ϑ , ϕ) in Eq. (194) by the quantum mechanical ex-

pectation values of the polarization operators
〈
T̂†(S)

LM

〉
(t). However, the replacement
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must be achieved in order to preserve commutation relations according to the
prescription indicated by Eq. (195), that is, we must have

〈
Y∗

LM(ϑ , ϕ)
〉
(t) = 2S + 1

4π
�S

L,M

〈
T̂†(S)

LM

〉
(t), (197)

where �S
L,M is a constant to be determined. Substitution of Eq. (197) into Eq. (194)

immediately yields the desired equation (194) in representation space in the finite
series form as follows:

WS(ϑ , ϕ, t) = Tr
{
ρ̂Sŵ(ϑ , ϕ)

} =
2S∑

L=0

L∑
M=−L

�S
L,MYLM(ϑ , ϕ)

〈
T̂†(S)

LM

〉
(t). (198)

Equation (198) implies that different forms of the quasiprobability distribution
function WS(ϑ , ϕ, t) exist corresponding to different choices of the constant �S

L,M
in Eq. (197) analogous to Eq. (107) for the translational case. Thus, we have
obtained quasiprobability distribution functions of spins by identifying the average
of the spherical harmonic YLM(ϑ , ϕ) over (ϑ , ϕ) as an average of the polarization
operator T̂(S)

LM via the spin density matrix ρ̂S [51].
Now in order to find explicit equations for the prefactor �S

L,M with the ultimate
aim of introducing three different quasiprobability distribution functions analo-
gous to those already described for particles (cf. Eq. 107), we first consider the
SU(2) coherent (or minimum uncertainty) states. Many spin relaxation problems
can be dealt with in terms of the interaction of an assembly of spins with
electromagnetic fields or with those arising from internal anisotropy potentials.
In these problems, a particular set of spin states has to be selected. The choice of
a particular representation is motivated rather by convenience than by necessity.
In this section, we define the coherent spin states and discuss their properties
following Ref. 52. The coherent-state representation of the density matrix when
applied to spin systems allows one to analyze spin relaxation phenomena using a
quasiprobability distribution function WS(ϑ , ϕ, t) of spin orientations in a phase
(here configuration) space of the polar and the azimuthal angles (ϑ , ϕ).

In quantum mechanics, the spin operator Ŝ is usually represented by a set of
three square (2S + 1) × (2S + 1) matrices ŜX , ŜY , and ŜZ with S being the spin
number, while the basis spin functions χSm = |S, m〉, which describe the states
with definite spin S and spin projection m onto the Z-axis, are eigenfunctions of
the spin operators Ŝ2 and ŜZ [95] (the properties of the spin operators Ŝ, ŜZ , etc.,
and the spin functions χSm are described in Appendix A). Now, the spin coherent
states |ψκ 〉 for a single particle of spin S can be defined as [52] (in our notation)

|ψκ 〉 = 1√
N

eκ Ŝ−1χSS. (199)
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Here, κ is complex valued, Nis a normalization factor, Ŝ−1 = (ŜX − iŜY)/
√

2 is
the spin spherical component operator, and χSS is the spin ground state such that

ŜZχSS = SχSS.

Expanding the exponential operator eκ Ŝ−1 in Eq. (199) yields in turn the expansion
of the state |ψκ 〉 in the orthonormal basis of the spin eigenstates χSm, namely [52],

|ψκ 〉 = 1√
N

∞∑
p=0

(
κ Ŝ−1

)p
χSS = 1√

N

2S∑
p=0

κp

√
p!(2S)!

2p(2S − p)!χSS−p. (200)

Here, we have utilized the fact that the operator Ŝ−1 acting on the ground state χSS

creates spin deviations of the following form: [52]

(
Ŝ−1

)p
χSS =

√
p!(2S)!

2p(2S − p)! χSS−p, 0 ≤ p ≤ 2S. (201)

Now the normalization factor N is determined by the equality

〈ψκ |ψκ 〉 = N−1
2S∑

p=0

(2S)! |κ|2p

2pp!(2S − p)!

= N−1
(

1 + |κ|2 /2
)2S = 1, (202)

so that the normalized state |ψκ 〉 is then given by

|ψκ 〉 =
(

1 + |κ|2 /2
)−S 2S∑

p=0

κp

√
p!(2S)!

2p(2S − p)!χSS−p. (203)

However, the coherent spin states are not orthogonal so that the scalar product of
two states |ψκ 〉 and |ψλ〉 is

〈ψλ |ψκ 〉 =
(

1 + |λ|2 /2
)−S (

1 + |κ|2 /2
)−S 2S∑

p=0

(2S)!λ∗pκp

2pp!(2S − p)!

= (2 + λ∗κ)2S(
2 + |λ|2)S (2 + |κ|2)S (204)

and so

|〈ψλ |ψκ 〉|2 =
(

1 − 2 |λ − κ|2(
2 + |λ|2) (2 + |κ|2)

)2S

. (205)
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Now, if we write in Eq. (203) that

κ = √
2eiϕ tan

(
ϑ

2

)
, 0 ≤ ϑ < π , 0 ≤ ϕ < 2π , (206)

then the normalized states |ψκ 〉 = |S, ϑ , ϕ〉 can be written as (with m = S − p)

follows:

|S, ϑ , ϕ〉 = cos2S ϑ

2
e
√

2eiϕ tan(ϑ/2)Ŝ−1χSS

= cos2S ϑ

2

S∑
m=−S

√
(2S)!

(S + m)!(S − m)!
(

eiϕ tan
ϑ

2

)S−m

χSm. (207)

Now the spin coherent-state vector |S, ϑ , ϕ〉 defined by Eq. (207) can also be
written in the equivalent form

|S, ϑ , ϕ〉 = χ̃SS(ϑ , ϕ)eiSϕ ,

where the χ̃Sλ(ϑ , ϕ) constitute the helicity basis functions defined as [95]

χ̃Sλ(ϑ , ϕ) =
S∑

m=−S

DS
mλ(ϕ, ϑ , 0)χSm,

and DS
mλ(ϕ, ϑ , ψ) are the Wigner D functions [95]. Both forms of the state vector

|S, ϑ , ϕ〉 are equivalent due to the trigonometric identity [95]

DS
m±S(ϕ, ϑ , 0)e±iSϕ =

√
(2S)!

(S + m)!(S − m)! cos2S ϑ

2

[
±e±iϕ tan

ϑ

2

]S∓m

.

The states |S, ϑ , ϕ〉 so defined form a complete set with the completeness relation
given by

2S + 1

4π

π�
0

2π�
0

|S, ϑ , ϕ〉 〈S, ϑ , ϕ| sin ϑdϑdϕ

= 2S + 1

2

S∑
m=−S

(2S)!χSmχ
†
Sm

(S + m)!(S − m)!
π�
0

cos4S ϑ

2
tan2(S−m) ϑ

2
sin ϑdϑ (208)

=
S∑

m=−S

χSmχ
†
Sm = Î,
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where Î is the (2S+1)× (2S+1) identity matrix. Furthermore, the overlap of two
states |S, ϑ , ϕ〉 and

∣∣S, ϑ ′, ϕ′〉 is [52]

〈
S, ϑ ′, ϕ′ |S, ϑ , ϕ〉 =

[
cos

ϑ

2
cos

ϑ ′

2
+ ei(ϕ−ϕ′) sin

ϑ

2
sin

ϑ ′

2

]2S

, (209)

and so ∣∣〈S, ϑ ′, ϕ′ |S, ϑ , ϕ〉∣∣ = 2−S [1 + (u · u′)]S , (210)

where u and u′ are unit vectors in the directions specified by spherical polar
coordinates (ϑ , ϕ) and

(
ϑ ′, ϕ′), respectively.

Now, the matrix elements 〈S, ϑ , ϕ| T̂(S)
LM |S, ϑ , ϕ〉 of the polarization operator

T̂(S)
LM in the coherent-state representation may be expressed via the spherical

harmonics YLM(ϑ , ϕ) by using the trigonometric expansion of the latter equation
(B.18) and Eq. (A.17) yielding the matrix elements in the following compact
closed form:

〈S, ϑ , ϕ| T̂(S)
LM |S, ϑ , ϕ〉

= (2S)! cos4S ϑ

2

S∑
m,m′=−S

e−i(m−m′)ϕ (tan ϑ
2

)2S−m−m′ (
χ

†
Sm′ T̂

(S)
LMχSm

)
√

(S + m′)!(S − m′)!(S + m)!(S − m)! (211)

=
√

4π

2S + 1
CS S

S S L 0YLM(ϑ , ϕ).

Here CS S
S S L 0 is the Clebsch–Gordan coefficient [95] given by

CS S
S S L 0 = (2S)!√2S + 1√

(2S − L)!(2S + L + 1)! . (212)

Thus, taking into account Eqs. (211) and (212), the definitions of the operators of
the Cartesian components of the spin ŜX , ŜY , and ŜZ via the polarization operators
T̂(S)

10 and T̂(S)
1±1, Eq. (A.21), and the definitions of the spherical harmonics Y10(ϑ , ϕ)

and Y1±1(ϑ , ϕ), Eq. (B.5), we have the matrix elements of ŜX , ŜY , and ŜZ in the
coherent-state representation as

〈S, ϑ , ϕ| ŜZ |S, ϑ , ϕ〉 = S cos ϑ , (213)

〈S, ϑ , ϕ| ŜX |S, ϑ , ϕ〉 = S sin ϑ cos ϕ, (214)

〈S, ϑ , ϕ| ŜY |S, ϑ , ϕ〉 = S sin ϑ sin ϕ, (215)

in turn, yielding the matrix elements of the spin operator Ŝ as follows:

〈S, ϑ , ϕ| Ŝ |S, ϑ , ϕ〉 = Su. (216)
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Hence, the spin operator Ŝ in the coherent-state representation is the direct
quantum analogue of the classical magnetic dipole vector μ = μu.

Now, we shall use the coherent spin-state representation of the spin density
matrix to derive transformation kernels for the spin Q-, P-, and Wigner
quasiprobability distributions. Proceeding, we first consider the so-called
Q-function representation. The Q-function representation distribution correspond-
ing to a spin density matrix ρ̂S in Hilbert space may be defined in a manner
analogous to that for particles (cf. Eq. (107) with s = −1) via the diagonal matrix
elements of the density matrix in the spin coherent-state representation [51]. Thus,
we may then form the matrix elements 〈S, ϑ , ϕ| ρ̂S |S, ϑ , ϕ〉 of the density matrix
ρ̂S as defined by the polarization operator expansion equation (70) in the spin
coherent-state representation |S, ϑ , ϕ〉 as the linear combination (mindful that in

Eq. (70) aL,M(t) =
〈
T̂†(S)

LM

〉
(t))

〈S, ϑ , ϕ| ρ̂S |S, ϑ , ϕ〉 =
2S∑

L=0

L∑
M=−L

〈S, ϑ , ϕ| T̂(S)
LM |S, ϑ , ϕ〉

〈
T̂†(S)

LM

〉
(t), (217)

where the 〈S, ϑ , ϕ| T̂(S)
LM |S, ϑ , ϕ〉 are given by Eq. (211). Then taking account of

the replacement prescription for averages of polarization operators of the density
matrix ρ̂S embodied in Eq. (197) and using (211), we have from Eq. (217) the
matrix elements 〈S, ϑ , ϕ| ρ̂S |S, ϑ , ϕ〉 of ρ̂S rendered as the finite sum of spherical
harmonics

〈S, ϑ , ϕ| ρ̂S |S, ϑ , ϕ〉 =
√

4π

2S + 1

2S∑
L=0

L∑
M=−L

(
�S

L,M

)−1
CS S

S S L 0YLM(ϑ , ϕ)
〈
Y∗

LM

〉
(t).

(218)

Now, if we let the prefactor

�S
L,M =

√
4π

2S + 1
CS S

S S L 0, (219)

then in accordance with the representation distribution equation (194), we have the
final form of the matrix elements of the density operator in the spin coherent-state
representation

〈S, ϑ , ϕ| ρ̂S |S, ϑ , ϕ〉 =
2S∑

L=0

L∑
M=−L

YLM(ϑ , ϕ)
〈
Y∗

LM

〉
(t), (220)

that is, we have with the formal Eq. (194) the phase space representation distribu-
tion WQ

S (ϑ , ϕ, t) defined as follows:

WQ
S (ϑ , ϕ, t) = 4π

2S + 1
〈S, ϑ , ϕ| ρ̂S |S, ϑ , ϕ〉 .
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This quasiprobability distribution function WQ
S (ϑ , ϕ, t) (called the Q-function)

thus comprises the diagonal matrix elements of the density operator ρ̂S in the spin
coherent-state representation and is finally given explicitly (returning to averages
of the polarization operators) by

WQ
S (ϑ , ϕ, t) =

√
4π

2S + 1

2S∑
L=0

L∑
M=−L

CS S
S S L 0YLM(ϑ , ϕ)

〈
T̂†(S)

LM

〉
(t). (221)

The normalization of WQ
S (ϑ , ϕ, t) in Eq. (221) can be found because by orthogo-

nality, we have

π�
0

2π�
0

WQ
S (ϑ , ϕ, t) sin ϑdϑdϕ = 4π

2S + 1
. (222)

Next, we consider the P-function WP
S (ϑ , ϕ, t), which is defined in terms of the

density matrix ρ̂S in the coherent state representation via the inverse Wigner–
Stratonovich map [51]

ρ̂S(t) = 2S + 1

4π

π�
0

2π�
0

WP
S (ϑ , ϕ, t) |S, ϑ , ϕ〉 〈S, ϑ , ϕ| sin ϑdϑdϕ. (223)

However, the definition equation (223) implies that the average polarization
operator

〈
T̂†(S)

LM

〉
(t) = Tr

(
ρ̂S(t)T̂

†(S)
LM

)
is given by

〈
T̂†(S)

LM

〉
(t) = 2S + 1

4π

π�
0

2π�
0

WP
S (ϑ , ϕ, t)Tr

(
|S, ϑ , ϕ〉 〈S, ϑ , ϕ| T̂†(S)

LM

)
sin ϑdϑdϕ

= 2S + 1

4π

π�
0

2π�
0

WP
S (ϑ , ϕ, t) 〈S, ϑ , ϕ| T̂†(S)

LM |S, ϑ , ϕ〉 sin ϑdϑdϕ

=
√

2S + 1

4π
CS S

S S L 0

π�
0

2π�
0

WP
S (ϑ , ϕ, t)Y∗

LM(ϑ , ϕ) sin ϑdϑdϕ

=
√

4π

2S + 1
CS S

S S L 0

〈
Y∗

LM

〉
(t). (224)
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Here, we have used the fact that

Tr
(
|S, ϑ , ϕ〉 〈S, ϑ , ϕ| T̂†(S)

LM

)
= 〈S, ϑ , ϕ| T̂†(S)

LM |S, ϑ , ϕ〉 ,

which in turn based on Eqs. (A.17), (A.27), and (A.34) and the identity equation
(211). Comparing Eq. (224) and the general prescription given by Eq. (197) then
yields in this case the following:

�S
L,M =

(√
4π

2S + 1
CS S

S S L 0

)−1

. (225)

For purposes of symmetry and in order to satisfy the normalization condition,
Eq. (222), we define the P-function WP

S (ϑ , ϕ, t) in a form like Eq. (221)

WP
S (ϑ , ϕ, t) =

√
4π

2S + 1

2S∑
L=0

L∑
M=−L

(
CS S

S S L 0

)−1
YLM(ϑ , ϕ)

〈
T̂†(S)

LM

〉
(t) (226)

which differs from Eq. (221) only because of the reciprocal of the Clebsch–Gordan
coefficients involved in the summand.

Finally, the Wigner function for spins is defined as the function, which is its
own conjugate, that is, the function obtained by setting [51]

�S
L,M = 1. (227)

Again for purposes of symmetry and in order to satisfy the normalization relation,
Eq. (222), we define the Wigner function WW

S (ϑ , ϕ, t) as follows:

WW
S (ϑ , ϕ, t) =

√
4π

2S + 1

2S∑
L=0

L∑
M=−L

YLM(ϑ , ϕ)
〈
T̂†(S)

LM

〉
(t). (228)

Now, by introducing the parameter s, which takes the values s = −1, 0, +1 for Q-,
Wigner-, and P-functions, respectively, we can finally rewrite Eqs. (221), (226),
and (228) as the single mapping [59]

W(s)
S (ϑ , ϕ, t) = Tr

{
ρ̂S(t)ŵs(ϑ , ϕ)

}
=
√

4π

2S + 1

2S∑
L=0

L∑
M=−L

(
CS S

S S L 0

)−s
YLM(ϑ , ϕ)

〈
T̂†(S)

LM

〉
(t), (229)
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where ŵs(ϑ , ϕ) is the Wigner–Stratonovich kernel of the bijective transformation
given by

ŵs(ϑ , ϕ) =
√

4π

2S + 1

2S∑
L=0

L∑
M=−L

(
CS S

S S L 0

)−s
Y∗

LM(ϑ , ϕ)T̂(S)
LM (230)

such that (cf. Eqs. 175–180) ŵs(ϑ , ϕ) = ŵ†
s (ϑ , ϕ), Tr(ŵs) = 1, and

2S + 1

4π

π�
0

2π�
0

ŵs(ϑ , ϕ) sin ϑdϑdϕ = Î.

Now, due to the orthogonality properties of the spherical harmonics equation
(B.11), all the phase space distributions embodied in Eq. (229) can also be written
in a compact form as the finite series

2S + 1

4π
W(s)

S (ϑ , ϕ, t) =
2S∑

L=0

L∑
M=−L

YLM(ϑ , ϕ)
〈
Y∗

LM

〉(s)
(t), (231)

where

〈
Y∗

LM

〉(s)
(t) = 2S + 1

4π

π�
0

2π�
0

Y∗
LM(ϑ , ϕ)W(s)

S (ϑ , ϕ, t) sin ϑdϑdϕ

=
√

4π

2S + 1

(
CS S

S S L 0

)−s 〈
T̂†(S)

LM

〉
(t). (232)

The quantum distribution function (2S + 1)W(s)
S (ϑ , ϕ, t)/4π given by the general

finite series of Eq. (231) clearly has a similar form to the Fourier expansion of
the classical orientational distribution W(ϑ , ϕ, t), Eq. (184), and reduces to it
in the classical limit, S → ∞. Furthermore, the quantum distribution equation
(231) in representation space is a general result valid for an arbitrary spin system
described by a spin density matrix ρ̂S(t). Therefore, the phase space representation
allows one (as already discussed for particles) to describe spin systems via a
quasiprobability density function W(s)

S (ϑ , ϕ, t) of spin orientations in the phase
(here configuration) space (ϑ , ϕ). The advantage of such a mapping of the
density matrix onto a c-number quasiprobability density function W(s)

S (ϑ , ϕ, t)
as extensively used in quantum optics (see, e.g., Refs. [45] and [46]) is that it
is possible to learn how W(s)

S (ϑ , ϕ, t) evolves as a function of S. In addition for

large spins, (2S + 1)W(s)
S (ϑ , ϕ, t)/4π as defined by Eq. (231) reduces to the

classical distribution W(ϑ , ϕ, t), Eq. (184), thereby naturally linking the quantum
and classical regimes.
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Now, knowing the Wigner–Stratonovich kernel ŵs(ϑ , ϕ) of the bijective map,
we can calculate the Weyl symbol A(s)(ϑ , ϕ) of any spin operator Â as follows:

A(s)(ϑ , ϕ)= Tr
(

Âŵs(ϑ , ϕ)
)

. (233)

Conversely, as we shall immediately justify via Eqs. (236)–(238), the operator
Â can be reconstructed from its Weyl symbol A(s)(ϑ , ϕ) via the inverse Wigner–
Stratonovich map,

Â = 2S + 1

4π

π�
0

2π�
0

A(−s)(ϑ , ϕ)ŵs(ϑ , ϕ) sin ϑdϑdϕ. (234)

In particular, via the inverse equation (234), the density matrix ρ̂S(t) (like any other
quantum operator) may then be neatly expressed as follows:

ρ̂S(t) = 2S + 1

4π

π�
0

2π�
0

W(−s)
S (ϑ , ϕ, t)ŵs(ϑ , ϕ) sin ϑdϑdϕ. (235)

Thus knowing the phase space distribution W(s)
S (ϑ , ϕ, t), the density matrix ρ̂S(t) in

Hilbert space can then be directly reconstructed via the particular inverse Wigner–
Stratonovich map, Eq. (235). This procedure may be justified, as we shall now
prove, because the Weyl symbols of any two spin operators Â and B̂ will provide
the overlap relation (cf. Eq. 128)

2S + 1

4π

π�
0

2π�
0

A(s)(ϑ , ϕ)B(−s)(ϑ , ϕ) sin ϑdϑdϕ = Tr
(

ÂB̂
)

, (236)

leading to Eqs. (234) and (235). To justify Eq. (236), we substitute the Weyl
symbols of the operators Â and B̂ defined by Eq. (233) into Eq. (236), and we
then use the series expression for the kernel equation (230) of the bijective map
and the orthogonality property of spherical harmonics equation (B.11). Thus, we
have from Eq. (233) and (236),

2S + 1

4π

π�
0

2π�
0

A(s)(ϑ , ϕ)B(−s)(ϑ , ϕ) sin ϑdϑdϕ

=
2S∑

L,L′=0

L∑
M,M′=−L

(
CSS

SSL′0
CSS

SSL0

)s

Tr
(

ÂT̂(S)
LM

)
Tr
(

B̂T̂†(S)

L′M′
)

×
π�
0

2π�
0

Y∗
LM(ϑ , ϕ)YL′M′(ϑ , ϕ) sin ϑdϑdϕ
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=
2S∑

L=0

L∑
M=−L

Tr
(

ÂT̂(S)
LM

)
Tr
(

B̂T̂†(S)
LM

)
(237)

=
2S∑

L=0

L∑
M=−L

S∑
m,n,i,j=−S

AmiBnj

[
T̂(S)

LM

]
im

[
T̂†(S)

LM

]
jn

=
S∑

m,n,i,j=−S

AmiBnj

2S∑
L=0

L∑
M=−L

(−1)M 2L + 1

2S + 1
CSj

SnL−MCSi
SmLM

=
S∑

m,n=−S

AmnBnm = Tr
(

ÂB̂
)

.

Here, we have used Eq. (A.17) for the matrix elements of the polarization operators[
T̂(S)

LM

]
im

and
[
T̂†(S)

LM

]
jn

as well as a property of Clebsch–Gordan coefficients [95],

namely,

2S∑
L=0

L∑
M=−L

(−1)M 2L + 1

2S + 1
CSj

SnL−MCSi
SmLM

=
2S∑

L=0

L∑
M=−L

CLM
S−jSnCLM

S−mSi = δinδmj.

Thus, according to Eq. (236), with obvious replacements, the average value
〈
Â
〉
=

Tr
(
ρ̂SÂ
)

of a spin operator Â is given by the integral

〈
Â
〉
= 2S + 1

4π

π�
0

2π�
0

A(−s)(ϑ , ϕ)W(s)
S (ϑ , ϕ, t) sin ϑdϑdϕ, (238)

thereby transparently leading to Eqs. (234) and (235). By definition, the observable〈
Â
〉

calculated from Eq. (238) is independent of the value of the parameter s

chosen, that is, the Q-, Wigner-, and P-functions will all yield identical results

for
〈
Â
〉

as they must do.

In summary, the one-to-one correspondence between the quantum state in the
Hilbert space and a real representation space function first envisaged for the closed
system in the spin context by Stratonovich [49], formally represents the quantum
mechanics of a spin as a statistical theory in the representation space of polar
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angles (ϑ , φ). This is accomplished essentially in the manner of Wigner [41]
who we recall formally represented the quantum mechanics of a particle with
Hamiltonian

Ĥ = 1

2m
p̂2 + V(q̂)

as a statistical theory in phase space with the canonical variables (p, q). Clearly,
the average value of a quantum spin operator may be calculated from Eq. (238)
like in classical mechanics. Thus, the Stratonovich representation for spins [49]
just as the Wigner representation for particles is well suited to the development
of semiclassical methods of solution allowing one to obtain quantum corrections
for finite S in a manner closely analogous to the classical case, S → ∞ (see, e.g.,
Ref. 5). We emphasize that besides spin relaxation of assemblies of noninteracting
spins in contact with the thermal bath, the phase space formalism can also be
applied to related problems such as spin waves, interacting spins with Heisenberg
coupling, and so on. (see, e.g., Refs. 51, 52, and 140).

2. Weyl Symbols of Some Spin Operators

Any spin operator Â is associated via Eq. (238) with its Weyl symbol (c−number
function) A(s)(ϑ , ϕ) in the representation space. In this section, we evaluate the
Weyl symbols of the spin operators ŜX , ŜY , ŜZ , and Ŝ and also those of some
other model spin Hamiltonians ĤS. Using the definition of the spin operators
in terms of the polarization operators given by Eq. (A.21), the Weyl symbols
S(s)

X (ϑ , ϕ), S(s)
Y (ϑ , ϕ), S(s)

Z (ϑ , ϕ), and S(s)(ϑ , ϕ) of the corresponding spin oper-

ators ŜX , ŜY , ŜZ , and Ŝ can be calculated from the mapping equation (233) for
s = 0, ±1 via the orthogonality property of the polarization operators defined by
Eq. (A.34). Thus, we have the simple maps from Hilbert space onto phase space
[59] (cf. Eqs. 213–215)

ŜX → S(s)
X (ϑ , ϕ) =

√
2πS(S + 1)

3

2S∑
L=0

L∑
M=−L

(
CSS

SSL0

)−s
Y∗

LM(ϑ , ϕ)

× Tr
{
(T̂(S)

1−1 − T̂(S)
11 )T̂(S)

LM

}
=
√

2π

3
S

(
S + 1

S

)(s+1)/2

[Y1−1(ϑ , ϕ) − Y11(ϑ , ϕ)] (239)

= S

(
S + 1

S

)(s+1)/2

sin ϑ cos ϕ,
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ŜY → S(s)
Y (ϑ , ϕ) = i

√
2πS(S + 1)

3

2S∑
L=0

L∑
M=−L

(
CSS

SSL0

)−s
Y∗

LM(ϑ , ϕ)

× Tr
{
(T̂(S)

1−1 + T̂(S)
11 )T̂(S)

LM

}
= i

√
2π

3
S

(
S + 1

S

)(s+1)/2

[Y1−1(ϑ , ϕ) + Y11(ϑ , ϕ)] (240)

= S

(
S + 1

S

)(s+1)/2

sin ϑ sin ϕ,

ŜZ → S(s)
Z (ϑ , ϕ) =

√
4πS(S + 1)

3

2S∑
L=0

L∑
M=−L

(
CSS

SSL0

)−s
Y∗

LM(ϑ , ϕ)Tr
{

T̂(S)
10 T̂(S)

LM

}

=
√

4π

3
S

(
S + 1

S

)(s+1)/2

Y10(ϑ , ϕ) (241)

= S

(
S + 1

S

)(s+1)/2

cos ϑ .

Clearly, these phase space mappings bear a close resemblance to the corresponding
classical quantities. Moreover, we have the overall compact form of the phase
space mapping of the spin operator Ŝ, namely,

Ŝ → S(s)(ϑ , ϕ) = S

(
S + 1

S

)(s+1)/2
⎛
⎝sin ϑ cos ϕ

sin ϑ sin ϕ

cos ϑ

⎞
⎠

= S

(
S + 1

S

)(s+1)/2

u. (242)

Next, since the magnetic moment operator μ̂ is defined via the spin operator Ŝ as
μ̂ = γ h̄Ŝ, it then follows that the Weyl symbol μ(s) = μ(s)u of μ̂ has essentially
the form of the magnetic moment vector μ for a classical spin [μ(s) = γ h̄S(1 +
S−1)(s+1)/2].

As further examples of the mapping procedure onto phase space, we evaluate
the Weyl symbols for the uniaxial, biaxial, cubic, and mixed anisotropy Hamilto-
nians defined, respectively, as follows:

βĤun
S = − σ

S2 Ŝ2
Z , (243)

βĤbi
S = − σ

S2 S2
Z + δ

S2

(
Ŝ2

X − Ŝ2
Y

)
, (244)

βĤcub
S = − σc

2S4

(
Ŝ4

X + Ŝ4
Y + Ŝ4

Z

)
, (245)

βĤmix
S = −σ1

S2 Ŝ2
Z − σ2

S4 Ŝ4
Z + χ

S4

(
Ŝ4+1 + Ŝ4−1

)
, (246)
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where σ , δ, σc, σ1, σ2, and χ are dimensionless anisotropy parameters. The
uniaxial Hamiltonian Eq. (243) is commonly used, for example, to describe the
magnetic properties of the dodecanuclear manganese molecular cluster Mn12 with
S = 10, σ1T/S2 = 0.6 ÷ 0.7 K [142]. The biaxial anisotropy Hamiltonian Ĥbi

S ,
Eq. (244), is commonly used to describe the magnetic properties of an octanuclear
iron(III) molecular cluster Fe8 [9, 143] with S = 10, σT/S2 = 0.275 K and
δT/(S2) = 0.046 K. The cubic anisotropy Hamiltonian equation (245) contributes
to the mixed anisotropy Hamiltonian equation (246), which is commonly used, for
example, to describe more accurately the magnetic properties of the dodecanuclear
manganese molecular cluster Mn12 with S = 10, σ1/(βS2) = 0.56 K, σ2/(βS4) =
1.1 · 10−3 K, and χ/(βS4) = ±3 · 10−5 K [143].

Here for simplicity, we only evaluate the Weyl symbols for the Hamiltonians
equation (243–246) for the Q-function corresponding to s = −1 (for s = 0 and
s = +1 the calculations can be accomplished in like manner). Thus, the Weyl
symbols Hun

S (ϑ , ϕ), Hbi
S (ϑ , ϕ), Hcub

S (ϑ , ϕ), and Hmix
S (ϑ , ϕ) corresponding to the

Hamiltonians, Eqs. (243)–(246), can now be calculated from the general finite
series representation of the kernel ŵs (cf. Eq. 230)

H(−1)
S (ϑ , ϕ) = Tr

{
ĤSŵ−1(ϑ , ϕ)

}

=
√

4π

2S + 1
Tr

{
ĤS

2S∑
L=0

L∑
M=−L

CSS
SSL0Y∗

LM(ϑ , ϕ)T̂(S)
LM

}
(247)

(cf. the mapping equation (233) for the phase space representation of an arbitrary
spin operator Â). Hence, we obtain from the Hamiltonians given by Eqs. (243)–
(246) and the general mapping equation (247) after some algebra involving
both products of the polarization operators and their orthogonality relations as
described in Appendix A the following explicit maps onto phase space

βĤun
S →

s=−1
βHun

S (ϑ , ϕ) = −σ
S − 1/2

S
cos2 ϑ − σ

2S
, (248)

βĤbi
S →

s=−1
βHbi

S (ϑ , ϕ) = −S − 1/2

S

(
σ cos2 ϑ − δ cos 2ϕ sin2 ϑ

)
− σ

2S
,

(249)

βĤcub
S →

s=−1
βHcub

S (ϑ , ϕ) = −σc
2S3 + 3S − 1

4S3
(250)

+ σc
(S − 1/2)(S − 1)(S − 3/2)

4S3

×
(
sin2 2ϑ + sin4 ϑ sin2 2ϕ

)
,
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βĤmix
S →

s=−1
βHmix

S (ϑ , ϕ) = − 1

4S

(
2σ1 + σ2

3S − 1

S2

)

− S − 1/2

S

(
σ1 + σ2

3S − 2

S2

)
cos2 ϑ (251)

− (S − 1/2)(S − 1)(S − 3/2)

2S3

×
[
2σ2 cos4 ϑ − χ sin4 ϑ cos 4ϕ

]
.

Again, the Weyl symbols of these quantum Hamiltonians bear a close resemblance
to the classical free energies of the corresponding magnetocrystalline anisotropies
(see, e.g., Ref. 6). All these Weyl symbols will be used later.

3. Master Equation and Statistical Moment Equations for Spin Relaxation in
Phase Space

By transforming the reduced density operator evolution equation (40) into phase
space via the Wigner–Stratonovich map Eqs. (229 and 235), the phase space
evolution (master) equation for W(s)

S (ϑ , ϕ, t) may be formally written as follows:

∂W(s)
S

∂t
= LSW(s)

S , (252)

where LS is the phase space differential operator corresponding to the operator in
Hilbert space

− i

h̄
[ĤS, ρ̂S] + St

(
ρ̂S
)

in the density matrix evolution equation (40). Although the operator LS will have,
in general, a very complicated form even for axial symmetry, nevertheless the
phase space master equation (252) still has some obvious advantages over the
density matrix evolution equation (40) because it is now possible to treat the spin
relaxation for arbitrary S like that of classical spins (e.g., Eqs. 239–242) (see
Appendix C for a specific nontrivial example). Indeed, in the classical limit, the
phase space evolution equation (252) reduces to the Fokker-Planck equation (3)
for the distribution function Wcl(ϑ , ϕ, t) of the orientations of classical spins
thereby naturally linking the quantum and classical regimes. We reiterate that
the analogy between the quantum and classical formulations for spins again
enables powerful methods of solution of classical Fokker-Planck equations for
the rotational Brownian motion of classical magnetic dipoles (e.g., continued
fractions and, mean first passage times. [5]) to be used in the quantum domain
[62–70].

As shown in Section II.A.4, the formal solution of the evolution equation (40)
for the reduced density matrix can be written using the polarization operators
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T̂(S)
LM and the statistical moments

〈
T̂†(S)

LM

〉
(t) as the finite linear combination given

by Eq. (70) [30, 95]. The statistical moments
〈
T̂†(S)

LM

〉
(t) can then be evaluated

(usually after lengthy operator algebra) from the differential recurrence equation
(77). Now the statistical moment method can also be applied in analogous fashion
to the phase space master equation (252) because the phase space distribution
W(s)

S (ϑ , ϕ, t) may be written for arbitrary S in terms of a finite linear combination
of the spherical harmonics, Eq. (231). Then by using Eq. (232) relating the average

spherical harmonics
〈
Y∗

LM

〉(s)
(t) and the average polarization operators

〈
T̂†(S)

LM

〉
(t),

the differential recurrence equations for
〈
Y∗

LM

〉(s)
(t) can be obtained by simple

algebraic transformation from the differential recurrence equation (77) so that the
latter becomes

d

dt

〈
Y∗

LM

〉(s)
(t) =

∑
L′,M′

pL′M′;LM
〈
Y∗

L′M′
〉(s)

(t). (253)

Here, the coefficients

pL′M′;LM =
π�
0

2π�
0

YLM(ϑ , ϕ)LSY∗
L′M′(ϑ , ϕ) sin ϑdϑdϕ (254)

by definition constitute the matrix elements of the phase space operator LS

given by

pL′M′;LM =
(

CSS
SSL0

CSS
SSL′0

)−s

gL′M′;LM , (255)

where the coefficients gL′M′;LM which depend upon the precise form of the
Hamiltonian ĤS are defined by the averages indicated by Eq. (75). For classical
spins, S → ∞, the explicit equation for pL′M′;LM for an arbitrary free energy has
been derived in Ref. [143] (see Appendix D). Equation (253) is just a phase space
correspondent of Eq. (77), which governs the evolution of the average polarization

operators
〈
T̂†(S)

LM

〉
(t). Now Eq. (253) written as a matrix differential equation can

be solved either by direct matrix diagonalization, involving the calculation of the
eigenvalues and eigenvectors of the system matrix, or by the computationally
efficient (matrix) continued fraction method [5, 71]. We remark that due to the
identity Y∗

lm = (−1)m Yl−m [95], the conjugate equation (253) can also be rewritten
as an evolution equation for the statistical moments 〈YLM〉(s) (t), namely,

d

dt
〈YLM〉(s) (t) =

∑
L′,M′

(−1)M′−MpL′−M′;L−M 〈YL′M′ 〉(s) (t). (256)
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Now the phase space evolution equation (253) for the average spherical harmonics〈
Y∗

LM

〉(s)
(t) and its corresponding equation (77) for the average polarization

operators
〈
T̂†(S)

LM

〉
(t) are equivalent. Thus having determined

〈
Y∗

LM

〉(s)
(t) from the

phase space equations (231 and 252), we can also evaluate the density matrix ρ̂

from the polarization operator expansion equations (70 and 71) without formally

solving its evolution equation (40). Vice versa, having calculated
〈
T̂†(S)

LM

〉
(t) from

the density matrix equations (40 and 70), we also have the phase space distribution
W(s)

S (ϑ , ϕ, t) from Eqs. (231) and (232) without solving the phase space evolution
equation (252).

According to the finite series phase space representation equation (231), all
the statistical moments 〈YLM〉(s) (t) are required (in general) to evaluate the
phase space distribution W(s)

S (ϑ , ϕ, t) for given S. However, for the calculation
of particular observables only a few moments may in practice be necessary. For

example, in evaluating the average spin operators
〈
ŜX

〉
(t),

〈
ŜY

〉
(t), and

〈
ŜZ

〉
(t),

only the spherical harmonic averages 〈Y10〉(s) (t) and 〈Y1±1〉(s) (t) are required
according to the Weyl symbols, given by Eqs. (239)–(241), namely, (cf. Eqs. (84)–
(86) for these averages in terms of polarization operators)

〈
ŜX

〉
(t) =

√
2π

3
S

(
S + 1

S

)(s+1)/2 [
〈Y1−1〉(s) (t) − 〈Y11〉(s) (t)

]
, (257)

〈
ŜY

〉
(t) = i

√
2π

3
S

(
S + 1

S

)(s+1)/2 [
〈Y1−1〉(s) (t) + 〈Y11〉(s) (t)

]
, (258)

〈
ŜZ

〉
(t) =

√
4π

3
S

(
S + 1

S

)(s+1)/2

〈Y10〉(s) (t). (259)

These results are formal and general. Specific applications of Eqs. (252)–(256)
are given in Sections III.A.2 and IV. Next, we shall demonstrate how the phase
space distributions for particular spin systems can be determined. Note that the
representation space analysis for spins is intrinsically more complicated than
that for particles because spin and polarization operators are involved. Hence,
the Wigner correspondents must be evaluated from first principles for a given
Hamiltonian as we shall now illustrate.

D. Equilibrium Phase Space Distribution Functions for Spins

Here, we shall demonstrate how to obtain both analytically and numerically equi-
librium time-independent quasiprobability distribution functions for spin systems
with various time-independent Hamiltonians ĤS, where the equilibrium density
matrix ρ̂S is given by
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ρ̂S = 1

ZS
e−βĤS (260)

with the partition function ZS = Tr
(

e−βĤS

)
. We recall that according to Eq. (70),

the density matrix ρ̂S for an arbitrary Hamiltonian ĤS can be written as a finite
series of polarization operators, namely,

ρ̂S =
2S∑

L=0

L∑
M=−L

T̂(S)
LM

〈
T̂†(S)

LM

〉
eq, (261)

while the general equation (231) yields the corresponding equilibrium phase space
distributions W(s)

S (ϑ , ϕ) as a finite series of spherical harmonics, namely,

2S + 1

4π
W(s)

S (ϑ , ϕ) =
2S∑

L=0

L∑
M=−L

YLM(ϑ , ϕ)
〈
Y∗

LM

〉(s)
eq , (262)

where averaged spherical harmonics are related to averaged polarization
operators via

〈
Y∗

LM

〉(s)
eq =

√
4π

2S + 1

(
CSS

SSL0

)−s 〈
T̂†(S)

LM

〉
eq. (263)

Hence, W(s)
S (ϑ , ϕ) can also be written as a finite series of the averaged polarization

operators thus it can always be determined (analytically or numerically) for a given
Hamiltonian ĤS.

Following Ref. 65 and 66, we shall evaluate analytically (for small S) or
numerically (for large S) from Eqs. (262) and (263) the equilibrium phase space
distributions W(s)

S (ϑ , ϕ). In order to implement this procedure for a particular
Hamiltonian,

1. First, we write the density matrix operator ρ̂S from Eqs. (260) and (261) for
the given effective anisotropy–Zeeman energy Hamiltonian expressed either
in terms of polarization operators T̂(S)

L,M (as will be needed to implement the
following step (ii)) or, using Eqs. (A.21) and (A.28), in terms of the spin
operators Ŝi (i = X, Y , Z).

2. Next, we calculate for the given Hamiltonian the averaged polarization

operator
〈
T̂†(S)

LM

〉
eq = Tr

(
ρ̂ST̂†(S)

LM

)
using the operator expansion method

described in Appendix A (Eq. (A.20) et seq.).
3. Then, we can write from Eq. (263) the Fourier coefficients

〈
Y∗

LM

〉(s)
eq connect-

ing the average of a spherical harmonic to that of a polarization operator.
4. Thus, we obtain the phase space distribution W(s)

S (ϑ , ϕ) for the chosen
Hamiltonian from the formal finite series equation (262) for any particular S.
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All the calculations for a given Hamiltonian ĤS, which are tedious, can be
accomplished using MATHEMATICA.

Initially, we evaluate the equilibrium Wigner (s = 0), Q- (s = −1) and P-
(s = 1) phase space distributions W(s)

S (ϑ , ϕ) for the very simple case of a spin
with spin number S and magnetic moment μ = γ h̄S/μ0 in an external constant
field H applied along the Z-axis (essentially these distributions correspond to the
usual treatment of quantum paramagnetism). Consequently, the spin Hamiltonian
ĤS is just

βĤS = −ξ

S
ŜZ , (264)

where ξ = βμ0μH is the dimensionless external field parameter. Hence we shall
see that the Q-function W(−1)

S (ϑ , ϕ) alone satisfies the nonnegativity condition,

namely, W(−1)
S ≥ 0, required of a true probability density function. The quasiprob-

ability densities W(1)
S and W(0)

S do not satisfy this condition (because they may take
on negative values). Thus in future determinations of a phase space representation,
we shall usually restrict ourselves to the (Q-) function W(−1)

S (ϑ , ϕ) as all other
functions can be treated in like manner. First, we shall determine the equilibrium
Q- (s = −1) phase space distributions for an assembly of noninteracting spins in
an external constant field H applied in an arbitrary direction in space. Here, the
Hamiltonian of a spin is

βĤS = −ξ

S

(
γXŜX + γY ŜY + γZŜZ

)
, (265)

where γX , γY , and γZ are the direction cosines of the field H. Next, we shall treat
various magnetic anisotropies, so establishing one or more preferred orientations
of the magnetization of an assembly of spins. In particular, we shall consider a
uniaxial paramagnet in an external magnetic field with arbitrary orientation so
that

βĤS = −ξ

S

(
γXŜX + γY ŜY + γZŜZ

)
− σ

S2 Ŝ2
Z (266)

as well as two particular cases of Eq. (266), namely, a uniaxial nanomagnet in both
a longitudinal and a transverse external field with

βĤS = −ξ

S
ŜZ − σ

S2 Ŝ2
Z (267)

and

βĤS = −ξ

S
ŜX − σ

S2 Ŝ2
Z , (268)

respectively, where σ is the dimensionless anisotropy parameter. In the classical
limit, S → ∞, the latter Hamiltonian corresponds to the nonaxially symmetric
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problem of a uniaxial nanomagnet with two equivalent ground states of magne-
tization separated by a magnetocrystalline anisotropy energy barrier (the σ term)
in the presence of an applied transverse field. The transverse field in the quantum
case will enhance the tunneling probability. Finally, we shall consider biaxial and
cubic-like systems with Hamiltonians

βĤS = − σ

S2
Ŝ2

Z − δ

S2
(Ŝ2

X − Ŝ2
Y), (269)

(δ is a dimensionless biaxiality parameter) and

βĤS = −ξ

S
ŜZ − σc

2S4

(
Ŝ4

X + Ŝ4
Y + Ŝ4

Z

)
, (270)

where σc is the dimensionless cubic anisotropy parameter, which may be either
positive or negative.

Having determined the equilibrium quasiprobability distributions W(s)
S (ϑ , ϕ)

corresponding to these Hamiltonians ĤS, our second purpose is to calculate the
magnetization reversal time via the quantum generalization of TST (previously
treated for classical spins by Néel [16]), permitting one to estimate temperature
effects in the astroids and hysteresis loops within the limitations imposed by
quantum TST (moderate damping, and so on.) [5, 6]. Finally, we shall calculate
the Stoner–Wohlfarth magnetization curves (represented in switching field astroid
form) as a function of spin number S for nonaxially symmetric potentials. This
calculation will generalize Thiaville’s geometrical method [19] (for the construc-
tion of switching field curves for such potentials) to include quantum effects due
to finite spin number. Thus, one may study the behavior of the astroids in the
interesting magnetic cluster — single-domain nanoparticle transition region. In the
magnetic context, explicit equations for the equilibrium phase space distributions
have already been obtained for an assembly of noninteracting spins in a uniform
magnetic field [35, 36] and for spins in the simplest uniaxial potential of the
magnetocrystalline anisotropy and Zeeman energy [65].

1. Spins in a Uniform External Field

First, we evaluate the equilibrium phase space distributions for the axially sym-
metric situation pertaining to a spin with spin number S (integer or half-integer) in
an external dc field H applied along the Z-axis. The spin Hamiltonian ĤS is then
given by Eq. (264), namely [2],

ĤS = −γ h̄HŜZ (271)

with the eigenenergies

Em = −γ h̄Hm with m = −S, −S + 1, . . . , S,



116 YURI P. KALMYKOV, WILLIAM T. COFFEY, AND SERGUEY V. TITOV

the distance between adjacent energy levels being γ h̄H. Now in equilibrium, the
phase space distributions W(s)

S (ϑ) are independent of the azimuthal angle ϕ and,
according to Eq. (262), can be expressed by the series [65]

W(s)
S (ϑ) =

√
4π

2S + 1

2S∑
L=0

(
CSS

SSL0

)−s
YL0(ϑ , ϕ)

〈
T̂†(S)

L0

〉
eq

= 1

ZS(2S + 1)

2S∑
L=0

(2L + 1)
(

CSS
SSL0

)−s
PL(cos ϑ)

S∑
m=−S

CSm
SmL0eξm/S,

(272)

where PL(z) are the Legendre polynomials [105], ξ = βγ h̄HS is the dimensionless
field parameter, and the partition function ZS is given by

ZS =
S∑

m=−S

eξm/S =
sinh

[(
S + 1

2

)
ξ/S
]

sinh
(

1
2ξ/S

) . (273)

In writing Eq. (272), we have noted Eq. (B.4) and have utilized the explicit
expression for the matrix elements ρm′m of the density matrix ρ̂S, namely,

ρm′m = δmm′

ZS
eξm/S, (274)

and Eq. (A.17) for T̂†(S)
LM so yielding the closed-form expression for the average

polarization operators in Eq. (272), namely,

〈
T̂†(S)

L0

〉
eq

= 1

ZS

√
2L + 1

2S + 1

S∑
m=−S

CSm
SmLMeξm/S. (275)

Furthermore, the finite series in Eq. (272) for s = −1 can be summed (after some
algebra, which is best accomplished via MATHEMATICA). Thus, the Q-function
W(−1)

S (ϑ) can finally be written for arbitrary S in the (known) concise closed form
[36], namely,

W(−1)
S (ϑ) = 1

ZS

[
cosh

ξ

2S
+ cos ϑ sinh

ξ

2S

]2S

. (276)

Moreover, using the general rule for the calculation of the expected value of the
spin operator ŜZ via the corresponding (c-number) function, Eq. (241), the average
longitudinal component of the spin at equilibrium is (because the integral over ϕ

is 2π )
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〈
ŜZ

〉
eq

=
(

S + 1
2

)
S

(
S + 1

S

)(s+1)/2 π�
0

cos ϑW(−s)
S (ϑ) sin ϑdϑ

= S

ZS

(
S + 1

S

)(s+1)/2
(

(2S)!√2S + 1√
(2S − 1)!(2S + 2)!

)s S∑
m=−S

CSm
Sm10eξm/S

= 1

ZS

S∑
m=−S

meξm/S = SBS(ξ), (277)

where BS(x) is the Brillouin function defined as [2]

BS(x) = 2S + 1

2S
coth

(
2S + 1

2S
x

)
− 1

2S
coth

( x

2S

)
, (278)

and we have utilized the Clebsch–Gordan identity [95]

CSm
Sm10 = m√

S(S + 1)
.

Obviously,
〈
ŜZ

〉
eq

from Eq. (277) has the all-important feature that it is indepen-

dent of the parameter s. Note for future reference that setting s = 1 unlike in
the Weyl symbol equation (241) means that we are utilizing the Q-distribution,
where s = −1. Moreover, Eq. (277) is in complete agreement with the established
result for the equilibrium magnetization of an assembly of noninteracting spins in
a uniform magnetic field [1, 2]. Furthermore, in the classical limit,

S → ∞ and μ = γ h̄S/μ0 = const, (279)

the distribution W(s)
S (ϑ) tends to the Boltzmann distribution for classical magnetic

dipoles

(S + 1/2) W(s)
S (ϑ) → Z−1

cl eξ cosϑ , (280)

while the Brillouin function BS(ξ) tends to the Langevin function L(ξ) = coth
ξ − 1/ξ , namely,

BS(ξ) → 1

Zcl

π�
0

cos ϑeξ cosϑ sin ϑdϑ = L(ξ). (281)

Here, Zcl is the classical partition function given by

Zcl =
π�
0

eξ cosϑ sin ϑdϑ = 2
sinh ξ

ξ
. (282)
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Experimental studies of the magnetization of various paramagnetic atoms and
molecules indicate that they agree closely with the Brillouin function equation
(278) (see, e.g., Refs. 145 and 146). In Fig. 4, the magnetization M = μBS(ξ)

per molecule in units of μB as a function of applied field H at T = 2 K is shown
for the three isotropic high-spin molecules [Cr{(CN)Cu(tren)}6](ClO4)21 (S =
9/2), [Cr{(CN)Ni(tetren)}6](ClO4)9 (S = 15/2), [Cr{(CN)Mn(tren)}6](ClO4)21
(S = 27/2), which are labeled as CrCu6, CrNi6, and CrMn6, respectively. These
consist of clusters of metal ions ordered in a crystal lattice and coupled only via
Heisenberg ferromagnetic or antiferromagnetic interactions between spins inside
the molecule. In all cases, M increases with the applied field reaching a saturation
value of (9/2)gμB, (15/2)gμB, and (27/2)gμB in CrCu6, CrNi6, and CrMn6,
respectively (g � 2 is Landé′s factor).

The three phase space equilibrium distributions W(s)
S (ϑ) embodied in the

finite series representation equation (272) are shown for comparison purposes
in Fig. 5 for s = 0, ±1. The foregoing example then amply demonstrates that
the Q-function W(−1)

S (ϑ , ϕ) alone satisfies the nonnegativity condition, namely,

W(−1)
S ≥ 0, required of a true probability density function. The other quasiprob-

ability distribution functions W(1)
S and W(0)

S violate this condition (because they
may take on negative values). From now on for purposes of convenience, we
shall consider W(−1)

S (ϑ , ϕ, t) only omitting everywhere the superscript (−1) in
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Figure 4. The magnetization M = gμBSBS(βμ0gμBSH) per molecule in units of Bohr
magnetons μB of CrCu6, CrNi6, and CrMn6 vs. the external applied field H at T = 2 K.
The experimental data (symbols) are accurately described by the Brillouin functions (solid lines).
Reproduced with permission of American Physical Society Salman et al. [147].
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Figure 5. W(s)
S (ϑ) versus the polar angle ϑ for s = 0, ±1, ξ = 3, and S = 1, (Color on line).

W(−1)
S (ϑ , ϕ, t) (nevertheless all results may be easily generalized for W(1)

S (ϑ , ϕ, t)

and W(0)
S (ϑ , ϕ, t), which can be treated in a like manner).

Next, we calculate the phase space Q-function distribution (henceforth, this will
be given the generic title “Wigner function”) for spins in an external uniform field
H of an arbitrary orientation rather than just applied along the Z-axis so that the
Hamiltonian is given by Eq. (265). This operator that now pertains to a nonaxially
symmetric problem can be rewritten in terms of the spherical spin operators Ŝμ

(see Appendix A) as

βĤS = −ξ

S

1∑
μ=−1

γ μŜμ,

where in terms of direction cosines γ ±1 = ∓2−1/2(γX ∓ iγY), γ 0 = γZ , and the
matrix elements of the Hamiltonian operator ĤS can again be given in closed form,
namely,

[
βĤS

]
m′m

= −ξ

S

(
γ −1

[
Ŝ−1

]
m−1m′ δm−1m + γ 0mδmm′ + γ 1

[
Ŝ1

]
m+1m

δm+1m′
)

,

(283)

where the matrix elements of the spherical spin operator Ŝ±1 are given by
Eq. (A11), namely,[

Ŝ±1

]
m±1m

= ∓√(S ∓ m)(S ± m + 1)/2. (284)
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Furthermore, for small S, the equilibrium density matrix ρ̂S = e−βĤS/ZS can be
written in closed form as a finite series of the spin operators. For example, for
S = 1/2, S = 1, and so on, one has

ρ̂1/2 = 1

Z1/2

⎛
⎝Î cosh ξ + 2

1∑
μ=−1

γ μŜμ sinh ξ

⎞
⎠ , (285)

ρ̂1 = 1

Z1

⎡
⎢⎣Î +

1∑
μ=−1

γ μŜμ sinh ξ + 2

⎛
⎝ 1∑

μ=−1

γ μŜμ

⎞
⎠2

sinh2 ξ

2

⎤
⎥⎦ , (286)

and so on, where Î is the identity matrix.
The corresponding Q-distribution WS(ϑ , ϕ) can then be calculated in the finite

series form given by Eq. (262). In turn, this finite series can then be summed (after
tedious algebra, which is again best accomplished via MATHEMATICA) so that
the distribution WS(ϑ , ϕ) can ultimately be written for arbitrary spin S in concise
closed form [66], namely, (cf. Eq. 276)

WS(ϑ , ϕ) = 1

ZS

[
cosh

ξ

2S
+ F(ϑ , ϕ) sinh

ξ

2S

]2S

, (287)

where

F(ϑ , ϕ) = γX sin ϑ cos ϕ + γY sin ϑ sin ϕ + γZ cos ϑ (288)

and

ZS = 2S + 1

4π

π�
0

2π�
0

[
cosh

ξ

2S
+ F(ϑ , ϕ) sinh

ξ

2S

]2S

sin ϑdϑdϕ

=
sinh

[(
S + 1

2

)
ξ/S
]

sinh
(

1
2ξ/S

) (289)

is the partition function [Eq. (289) concurs with Eq. (273)]. Moreover, for the three
specific cases represented by the following direction cosines

γX = 1, γY = 0, γZ = 0,

γX = 0, γY = 1, γZ = 0,

and

γX = 0, γY = 0, γZ = 1,
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the phase space distribution equation (287) reduces to the equations already given
by Takahashi and Shibata [35, 36] and reproduces Eq. (276). Now, the equilibrium
average

〈(
μ̂ · H

)〉
eq is then from Eqs. (287) and (288) (cf. Eq. 277)

〈(
μ̂ · H

)〉
eq = μH

(2S + 1) (S + 1)

4π

π�
0

2π�
0

F(ϑ , ϕ)WS(ϑ , ϕ) sin ϑdϑdϕ

= μHBS (ξ) , (290)

where BS(x) is the Brillouin function defined by Eq. (278). In the classical limit
S → ∞, the equilibrium distribution WS(ϑ , ϕ) given by Eq. (287) tends to the
Boltzmann distribution

2S + 1

4π
WS(ϑ , ϕ) → 1

Zcl
eξF(ϑ ,ϕ), (291)

while the the equilibrium average
〈(
μ̂ · H

)〉
eq tends to the Langevin function

〈(
μ̂ · H

)〉
eq → μH

Zcl

π�
0

2π�
0

cos ϑeξF(ϑ ,ϕ) sin ϑdϑdϕ

= μHL(ξ) = μH

(
coth ξ − 1

ξ

)
, (292)

where Zcl is the classical partition function given by

Zcl =
π�
0

2π�
0

eξF(ϑ ,ϕ) sin ϑdϑdϕ = 4π
sinh ξ

ξ
. (293)

Clearly, these calculations represent quantum and classical treatments of paramag-
netism [2]. Here, quantum effects as identified via the Brillouin function equation
(278) become important at small S when that function must be used instead of the
Langevin function given by Eq. (291), which is valid in the classical limit.

2. Uniaxial Nanomagnet in an External Field

Now we calculate the equilibrium Wigner function WS(ϑ , ϕ) for a uniaxial
nanomagnet of arbitrary spin number S in an external magnetic field of an arbitrary
orientation. First, we briefly consider the more general nonaxially symmetric case
of a spin in an external constant field H with the Hamiltonian operator ĤS given
by Eq. (266); then we specialize it to a longitudinal field. In the general case, the
matrix elements of ĤS can again be given via the matrix elements of the spherical
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spin operators Ŝμ(μ = 0, ±1) and Ŝ2
0, namely (cf. Eq. (283) with superimposed

anisotropy term),

[
βĤS

]
m′m

=
⎡
⎣−ξ

S

1∑
μ=−1

γ μŜμ − σ

S2
Ŝ2

0

⎤
⎦

m′m

= −ξ

S

(
γ −1

[
Ŝ−1

]
m−1m

δm−1m′ + γ 1
[
Ŝ1

]
m+1m′ δm+1m

)

−
(

m2 σ

S2 + γ 0m
ξ

S

)
δmm′ , (294)

where the matrix elements
[
Ŝ±1

]
m±1m

are defined by Eq. (284). The correspond-

ing phase space distribution WS(ϑ , ϕ) can then be calculated in the finite series
form given Eqs. (262) and (263). Now motivated by the form of the classical
potential, the results of the calculation of an “effective” free energy potential
defined by βV(ϑ , ϕ) = − ln WS(ϑ , ϕ) are shown in Fig. 6 for various values of
S. The effective potential V(ϑ , ϕ) has two nonequivalent minima (the minimum
at ϑ = π is masked in these plots) and one saddle point in the plane ϕ = 0;
the potential shape and barrier heights strongly depend on the spin number S.
Moreover, in the classical limit, S → ∞, V(ϑ , ϕ) tends to the normalized classical
free energy Vcl(ϑ , ϕ) given by

Z Z

ZZ
S = 5

S = 1 S = 2

S → ∞

X
X

XX

Figure 6. 3D plot of the “effective” free energy potential βV(ϑ , ϕ) for a uniaxial nanomagnet
in an external field for various values of S = 1, 2, 5, and S → ∞ [classical limit; Eq. (295)] and the
parameters σ = 5, h = ξ/2σ = 0.2, γZ = 1/2, γY = 0, and γX = √

3/2 (i.e., the field H is in the
XZ-plane and directed at an angle π/3 to the Z-axis) (Color on line).
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βVcl(ϑ , ϕ) = −σ
{
cos2 ϑ + 2h [(γX cos ϕ + γY sin ϕ) sin ϑ + γZ cos ϑ ]

}
,

(295)

which is also shown in Fig. 6 for the purpose of comparison.
However, this general treatment considerably simplifies for a longitudinal field

(ubiquitous in magnetic applications) so that γX = 0, γY = 0 and γZ = 1 (see Eq.
267), and so the problem becomes axially symmetric. Here, the density matrix ρ̂S

is diagonal with matrix elements ρmm′ given explicitly by [142, 147]

ρmm′ = δmm′

ZS
e

σm2

S2 + ξm
S , (296)

where the partition function ZS is

ZS =
S∑

m=−S

e
σm2

S2 + ξm
S . (297)

The explicit matrix elements ρmm′ from Eq. (296) can then be used to evaluate

the averages
〈
T̂†(S)

LM

〉
eq

in Eq. (263) as (cf. Eq. 275)

〈
T̂†(S)

LM

〉
eq

= δM0

ZS

√
2L + 1

2S + 1

S∑
m=−S

CSm
SmLMe

σm2

S2 + ξm
S . (298)

Furthermore, due to the symmetry about the Z-axis, the phase space distribution
function WS(ϑ , ϕ) ≡ WS(ϑ) is independent of the azimuthal angle ϕ so that the
Wigner function equation (262) for this important problem simplifies to the series
of Legendre polynomials [65]

WS(ϑ) =
2S∑

L=0

L + 1/2

S + 1/2
〈PL〉eq PL(cos ϑ). (299)

Here, 〈PL〉eq are the equilibrium averages of the Legendre polynomials PL(cos ϑ)

given by

〈PL〉eq = (S + 1/2)

π�
0

PL(cos ϑ)WS(ϑ) sin ϑdϑ

= (2S)!√2S + 1

ZS
√

(2S − L)!(2S + L + 1)!
S∑

m=−S

CSm
SmL0e

σm2

S2 + ξm
S (300)
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and we have used Eqs. (298) and Eq. (B4). The equilibrium statistical moment
〈P1〉eq then yields the average longitudinal component of the spin as〈

ŜZ

〉
eq

= (S + 1) 〈P1〉eq = (S + 1) 〈cos ϑ〉eq

= 1

ZS

S∑
m=−S

m e
σm2

S2 + ξm
S , (301)

which concurs with the well-known result for the equilibrium magnetization for
arbitrary S [142, 147]. Here, we have used the Weyl symbol of the operator ŜZ

given by Eq. (241) with s = 1. From the explicit expressions for the PL(cos ϑ)

[105] in Eq. (299), we then have explicit trigonometric forms for the distribution
functions, for example, for S = 1/2, 1, 3/2, 2, · · · . [65]

W1/2(ϑ) = eσ

Z1/2
fξ (ϑ),

W1(ϑ) = eσ

Z1

[(
f (1)
ξ (ϑ)

)2 + 1

2

(
e−σ − 1

)
sin2 ϑ

]
,

W3/2(ϑ) = e9σ/4

Z3/2

[(
f (3/2)
ξ (ϑ)

)3 + 3

4

(
e−8σ/9 − 1

)
f (3/2)
ξ (ϑ) sin2 ϑ

]
,

W2(ϑ) = eσ

Z2

[(
f (2)
ξ (ϑ)

)4 +
(

e−3σ/4 − 1
) (

f (2)
ξ (ϑ)

)2
sin2 ϑ

+ 1

8

(
3e−σ − 4e−3σ/4 + 1

)
sin4 ϑ

]
,

and so on, where the function

f (S)
ξ (ϑ) = cosh

ξ

2S
+ cos ϑ sinh

ξ

2S
. (302)

For arbitrary S, the trigonometric series in
(

f (S)
ξ (ϑ)

)2(S−m)

sin2m ϑ for the distri-

bution WS(ϑ) can be rewritten in general form as

WS(ϑ) = eσ

ZS

[S]∑
n=0

bn

(
f (S)
ξ (ϑ)

)2(S−n)

sin2n ϑ , (303)

where [S] means the whole part of S and the leading coefficients bn are

b0 = 1,

b1 = S

2

[
e−(2S−1)σ/S2 − 1

]
,

b2 = S

16

[
(2S − 1)e−4(S−1)σ/S2 − 4(S − 1)e−(2S−1)σ/S2 + 2S − 3

]
,

and so on.
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Figure 7. (a) (S + 1/2) WS(ϑ)versus ϑ for σ = 2, ξ = 0.5, and various values of S including
the classical limit, S → ∞ (asterisks), Eq. (305). (b) The distribution (S + 1/2) WS(ϑ) (solid lines)
for σ = 5, ξ = 0.5, and S = 2 and 10. Crosses (×) and stars (∗): Eq. (306) (Color on line).

The distribution WS(ϑ) given by Eq. (299) is shown in Fig. 7 as a function of
the polar angle ϑ . The maxima of WS(ϑ) occur at ϑ = 0 and ϑ = π , where

WS(0) = 1

ZS
eξ+σ and WS (π) = 1

ZS
e−ξ+σ , (304)

respectively, meaning classically speaking that the spins are concentrated at the
bottom of the wells, where the minima of the potential energy occur. In the
classical limit, S → ∞, WS(ϑ) from Eq. (299) tends to the usual Boltzmann
distribution for a uniaxial nanomagnet in a longitudinal field, that is,

(S + 1/2) WS(ϑ) → 1

Zcl
eξ cosϑ+σ cos2 ϑ , (305)

where

Zcl =
π�
0

eξ cosϑ+σ cos2 ϑ sin ϑdϑ
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is the classical partition function. Clearly from Fig. 7(a), the deviations of the
quantum distribution (S + 1/2) WS(ϑ) from the classical Boltzmann distribution
equation (305) become pronounced only for small spin numbers S < 10 while as S
increases, the distribution (S + 1/2) WS(ϑ) tends to the classical expression (Eq.
305) (e.g., for S = 20, the differences between the two distributions Eqs. (303)
and (305) do not exceed 10%; see the curve 5 in Fig. 7(a)). Due to the biasing
effect of the external field, the maxima are unequal in height. Moreover, in the low
temperature limit, the dynamics of the spin in the vicinity of the maxima ϑ = 0
and ϑ = π represent precession in the effective magnetic field with characteristic
angular frequencies ω+ and ω−, respectively,

ω± = 1

βh̄

[
±ξ

S
+ (2S − 1)

σ

S2

]
,

so that the distribution WS(ϑ) can be approximated by

WS(ϑ) ≈

⎧⎪⎨
⎪⎩

Z−1
S e−σ(1−S−1)

(
f (S)

βh̄ω+(ϑ)
)2S

, (ϑ ≤ 1 )

Z−1
S e−σ(1−S−1)

(
f (S)

βh̄ω−(ϑ)
)2S

, (π − ϑ ≤ 1 )

=

⎧⎪⎨
⎪⎩

WS(0)e−ξ/S−σ(1−S−1)
(

f (S)

βh̄ω+(ϑ)
)2S

, (ϑ ≤ 1 )

WS(π)eξ/S−σ(1−S−1)
(

f (S)

βh̄ω−(ϑ)
)2S

, (π − ϑ ≤ 1 )

(306)

For σ = 0, that is, for a spin in a uniform external magnetic field, when the
Hamiltonian becomes simply βĤS = −ξ ŜZ/S, Eq. (299) reduces to our previous
result given by Eq. (276) [35, 36], viz.,

WS(ϑ) = 1

ZS

(
f (S)
ξ (ϑ)

)2S
, (307)

where ZS is defined by Eq. (273). As may be seen in Fig. 7(b), the “oscillator” func-
tion f from Eq. (307) describes with a very high degree of accuracy the behavior
of WS(ϑ) near ϑ = 0 and ϑ = π as expected from intuitive reasoning. Equation
(307) represents a quantum analog of the Boltzmann distribution equation (280)
for classical magnetic dipoles μ precessing in the uniform magnetic field H with
the precession angular frequency ω0 = γ H.

For another particular case, namely, ξ = 0, that is, for a uniaxial spin
system alone with Hamiltonian βĤS = −σ Ŝ2

Z/S2, the equilibrium phase space
distribution WS(ϑ) from Eq. (299) simplifies to

WS(ϑ) = 1

ZS

2S∑
L=0

(2S)!(2L + 1)PL(cos ϑ)√
(2S + 1)(2S − L)!(2S + L + 1)!

S∑
m=−S

CSm
SmL0eσm2/S2

, (308)
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where the partition function

ZS =
S∑

m=−S

eσm2/S2
. (309)

Near ϑ = 0 and ϑ = π/2, the leading terms of the series expansion of
the equilibrium distribution W(ϑ) from Eq. (308) (i.e., in sin2 ϑ and cos2 ϑ ,
respectively) are [65]

WS(ϑ) = WS (0)

{
1 + S

2

[
e−(2S−1)σ/S2 − 1

]
sin2 ϑ + . . .

}
, (310)

WS(ϑ) = WS (π/2)
[
1 + A cos2 ϑ + . . .

]
, (311)

where

WS(0) = eσ

ZS
, (312)

WS (π/2) = (2S)!
22SZS

S∑
m=−S

eσm2/S2

(S + m)!(S − m)! , (313)

A =

S−1∑
m=−S+1

em2σ/S2 e(1−2m)σ/S2+e(1+2m)σ/S2−2
(S−1+m)!(S−1−m)!

2
S∑

m=−S

em2σ/S2

(S+m)!(S−m)!

. (314)

3. Uniaxial Nanomagnet in a Transverse Field

As a further example, we calculate the Wigner function of a uniaxial nanomagnet
in a transverse external field with the nonaxially symmetric Hamiltonian ĤS given
by Eq. (268) otherwise known as the Lipkin–Meshkov Hamiltonian [148]. For

small S, the density matrix ρ̂S = e−βĤS/ZS can again be calculated in closed form
using MATHEMATICA. For example, for S = 1/2, S = 1, and so on, we have in
terms of the spin operators [66]

ρ̂1/2 = eσ

Z1/2

[
Î cosh ξ + 2ŜX sinh ξ

]
, (315)

ρ̂1 = 1

Z1

[(
eσ − σA

)
Î + A

(
ξ ŜX + σ Ŝ2

Z

)

+
⎛
⎝eσ/2 cosh

√
ξ2 + σ 2

4
− eσ + σA

2

⎞
⎠ Ŝ2

X

⎤
⎦ , (316)
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and so on, where

Z1/2 = 2eσ cosh(ξ),

Z1 = eσ + 2eσ/2 cosh
√

ξ2 + σ 2/4,

A = eσ/2√
ξ2 + σ 2/4

sinh
√

ξ2 + σ 2/4.

The corresponding equations for the phase space distribution WS(ϑ , ϕ) which can
be obtained from the general expressions of Eqs. (262) and (263) are given by [66]

W1/2(ϑ , ϕ) = eσ

Z1/2
[cosh ξ + sinh ξ sin ϑ cos ϕ] , (317)

W1(ϑ , ϕ) = 1

2Z1

{
eσ
(

1 − sin2 ϑ cos2 ϕ
)

+ eσ/2 cosh

√
ξ2 + σ 2

4

(
1 + sin2 ϑ cos2 ϕ

)

+σA

2

[
cos 2ϑ + sin2 ϑ cos2 ϕ + 4ξ

σ
sin ϑ cos ϕ

]}
, (318)

and so on. However, once again as the spin number S increases, the analytical
equations for the Wigner function WS(ϑ , ϕ) rapidly become more and more com-
plicated and thus rather impractical to use because WS(ϑ , ϕ) for given spin may
always be calculated much faster numerically from the general series expression
(Eq. 262).

Calculations of the “effective” free energy βV(ϑ , ϕ) = − ln WS(ϑ , ϕ) are
shown in Fig. 8 for various values of S and σ = 5 and h = ξ/(2σ) = 0.1. In
the classical limit, S → ∞, the effective free energy function V(ϑ , ϕ) becomes
the classical free energy Vcl(ϑ , ϕ) given by

βVcl(ϑ , ϕ) = −σ
(
cos2 ϑ + 2h cos ϕ sin ϑ

)
,

which is also shown in Fig. 8 for comparison. The “effective” potential V(ϑ , ϕ),
just as the classical free energy Vcl(ϑ , ϕ), has two equivalent minima and one
saddle point in the plane ϕ = 0 at ϑ = π/2; the potential characteristics (i.e.,
the shape and barrier heights) strongly depend on S, for example, the smallest
barrier height increases with increasing S from 0 (at S = 1/2) to its classical value
σ(1 − h2).

4. Biaxial Anisotropy

We now calculate the Wigner function of a biaxial Hamiltonian ĤS given by Eq.

(269). Here, the density matrix ρ̂S = e−βĤS/ZS can again be calculated in simple
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Figure 8. 3D plot of βV(ϑ , ϕ) for σ = 10, h = 0.1 and various values of S = 1, 2, 4, and
S → ∞ (classical limit) (Color on line).

closed form for small S using MATHEMATICA. For example, for S = 1/2, S = 1,
etc., we have in terms of the spin operators [66]

ρ̂1/2 = eσ

Z1/2
Î, (319)

ρ̂1 = 1

Z1

[
Î + (eσ cosh δ − 1

)
Ŝ2

Z − eσ sinh δ
(

Ŝ2
X − Ŝ2

Y

)]
, (320)

and so on, where Z1/2 = 2eσ and Z1 = 1 + 2eσ cosh δ. The corresponding
equations for the phase space distribution WS(ϑ , ϕ) are [66]

W1/2(ϑ , ϕ) = 1

2
, (321)

W1(ϑ , ϕ) = 1

2Z1

[
sin2 ϑ + eσ cosh δ

(
1 + cos2 ϑ

)
−eσ sinh δ sin2 ϑ cos 2ϕ

]
,

(322)

and so on. As before with increasing S, WS(ϑ , ϕ) may always be calculated
numerically from the general expression given by Eq. (262).

The “effective” potential βV(ϑ , ϕ) = − ln WS(ϑ , ϕ) is shown in Fig. 9 for
S = 2, σ = 5, and δ = 5. In the classical limit, S → ∞, V(ϑ , ϕ) again tends to
the classical free energy Vcl(ϑ , ϕ) given by

βVcl(ϑ , ϕ) = −σ cos2 ϑ + δ cos 2ϕ sin2 ϑ .

The “effective” potential V(ϑ , ϕ) [just as Vcl(ϑ , ϕ)] has two equivalent minima
and two saddle points in the plane XZ at ϑ = π/2; potential characteristics
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Figure 9. 3D plot of βV(ϑ , ϕ) for S = 2 and σ = 5 and δ = 2 (Color on line).

(i.e., the shape and barrier heights) again strongly depend on S. In particular, the
barrier height increases with increasing S from 0 (at S = 1/2) to its classical
value σ .

5. Cubic Anisotropy

Finally, we calculate the Wigner function of a cubic anisotropy free energy in
the presence of a dc field with Hamiltonian ĤS given by Eq. (270). For small S,

the density matrix ρ̂S = e−βĤS/ZS can again be evaluated in closed form using
MATHEMATICA. For example, for S = 1/2, S = 1, 3/2, and 2, we have [66]

ρ̂1/2 = e3σc/2

Z1/2

(
Î cosh ξ + 2ŜZ sinh ξ

)
, (323)

ρ̂1 = eσc

Z1

[
Î + sinh ξ ŜZ + 2 sinh2 ξ

2
Ŝ2

Z

]
, (324)

ρ̂3/2 = e41σc/54

Z3/2

{
1

8

(
9 cosh

ξ

3
− cosh ξ

)
Î + 1

12

(
27 sinh

ξ

3
− sinh ξ

)
ŜZ

+ 2 cosh
ξ

3
sinh2 ξ

3
Ŝ2

Z + 4

3
sinh3 ξ

3
Ŝ3

Z

}
, (325)

ρ̂2 = 1

Z2

{(
e3σc/4 − 3σc

4ξ
R

)
Î + 1

6

(
8e9σc/16 sinh

ξ

2
− R

)
ŜZ

× 1

12

(
16e9σc/16 cosh

ξ

2
− 15e3σc/4 − P − 93σc

32ξ
R

)
Ŝ2

Z

− 1

6

(
2e9σc/16 sinh

ξ

2
− R

)
Ŝ3

Z (326)

+ 1

12

(
3e3σc/4 − 4e9σc/16 cosh

ξ

2
+ P − 9σc

32ξ
R

)
Ŝ4

Z + σc

32ξ
R
(

Ŝ4
X + Ŝ4

Y

)}
,
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where

Z1/2 = 2e3σc/2 cosh ξ ,

Z1 = eσc(1 + 2 cosh ξ),

Z3/2 = 4e41σc/54 cosh
ξ

3
cosh

2ξ

3
,

Z2 = e3σc/4 + 2e9σc/16 cosh
ξ

2
+ 2e21σc/32 cosh

[√
ξ2 + (3σc/32)2

]
,

P = e21σc/32 cosh
[√

ξ2 + (3σc/32)2
]

,

R = ξe21σc/32√
ξ2 + (3σc/32)2

sinh
[√

ξ2 + (3σc/32)2
]

.

The corresponding equations for WS(ϑ , ϕ) are as follows [66]:

W1/2(ϑ , ϕ) = e3σc/2

Z1/2

(
cosh

ξ

2
+ sinh

ξ

2
cos ϑ

)
, (327)

W1(ϑ , ϕ) = eσc

Z1

(
cosh

ξ

2
+ sinh

ξ

2
cos ϑ

)2

, (328)

W3/2(ϑ , ϕ) = e41σc/54

Z3/2

(
cosh

ξ

2
+ sinh

ξ

2
cos ϑ

)3

, (329)

W2(ϑ , ϕ) = 1

8Z2

{
2e9σc/16 sin2 ϑ

[
4 cos ϑ sin

ξ

2
+ (3 + cos 2ϑ) cosh

ξ

2

]
+ 3e3σc/4 sin4 ϑ + P(8 cos2 ϑ + sin4 ϑ) (330)

+ 4R

(
cos ϑ + cos3 ϑ + 3σ

128ξ
cos 4ϕ sin4 ϑ

)}
.

For ξ = 0, Eq. (330) yields

W2(ϑ , ϕ) = 1

2
(
3 + 2e3σc/16

)
×
[

1 + e3σc/16 + 1

4

(
1 − e3σc/16

) (
sin2 2ϑ + sin4 ϑ sin2 2ϕ

)]
.

(331)

For large S, WS(ϑ , ϕ) may always be calculated numerically from the general
equation (262).

The normalized “effective” potential βV(ϑ , ϕ) = − ln WS(ϑ , ϕ) is shown in
Fig. 10 for σc = ±8, ξ = 0, and S = 4. The potential characteristics (i.e., the shape
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Figure 10. 3D plot of βV(ϑ , ϕ) for positive (left) and negative (right) cubic anisotropies for
S = 4 and ξ = 0 (Color on line).

and barrier heights) again strongly depend on S. In the classical limit, S → ∞,
that potential once more tends to the classical free energy βVcl(ϑ , ϕ) given by

βVcl(ϑ , ϕ) = σc

4

(
sin2 2ϑ + sin4 ϑ sin2 2ϕ

)
.

For positive anisotropy constant σc > 0, the cubic potential has 6 minima (wells),
8 maxima, and 12 saddle points. For σc < 0, the maxima and minima are
interchanged.

Clearly the Wigner–Stratonovich transformation yields, in principle, the equi-
librium phase space distribution via its finite series representation for any given
anisotropy free energy. In particular, these results may be used to estimate the spin
reversal time from TST just as for particles in Section II.B.2.

6. TST Reversal Time

As we have seen in Section II.B.2, TST because it is based on equilibrium
distributions affords the simplest possible description of quantum corrections
to the thermally activated escape rate. Now in applying TST to classical spins
(i.e., classical magnetic moments μ) to determine the escape rate due to thermal
agitation from one metastable orientation say A to another metastable orientation
say B, we suppose that the free energy Vcl(ϑ , ϕ) has a multistable structure. Such
a structure has minima at nA and nB separated by a potential barrier with a saddle
point at nC. In the high barrier approximation, as far as TST is concerned, the
classical escape rate �cl may be estimated via the flux over the barrier [20]

�cl ∼ Icl
C

Zcl
A

, (332)
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where the well partition function Zcl
A and the total current Icl

C of the (spin)
representative points at the saddle point C are, respectively,

Zcl
A ∼

�
well

e−βVcl(ϑ ,ϕ) sin ϑdϑdϕ (333)

and

Icl
C ∼

�
saddle

JC(ϑ , ϕ) sin ϑdϑdϕ (334)

(JC(ϑ , ϕ) is the current density near the saddle point C).
Near the metastable minimum nA, the spin precesses about a uniform “effec-

tive” field, which may be represented as the gradient of a potential, namely,

HA = −μ−1
0

∂Vcl

∂μ
, (335)

so that the equation of motion of the magnetic moment μ is

dμ

dt
= γ [μ × HA] . (336)

Then to evaluate the classical partition function Zcl
A and the total current Icl

C , we
simply suppose [5,6,24] that the free energy Vcl near the minimum nA and the
saddle point nC can be approximated by the first two terms of its Taylor expansion,
namely,

Vcl(u
(A)
1 , u(A)

2 ) = Vcl(nA) + 1

2

[
c(A)

1

(
u(A)

1

)2 + c(A)
2

(
u(A)

2

)2
]

, (337)

and

Vcl(u
(C)
1 , u(C)

2 ) = Vcl(nC) + 1

2

[
c(C)

1

(
u(C)

1

)2 + c(C)
2

(
u(C)

2

)2
]

, (338)

where (u(A)
1 , u(A)

2 , u(A)
3 ) and (u(C)

1 , u(C)
2 , u(C)

3 ) denote the direction cosines of a

magnetic moment μ near nA and nC, respectively, c(A)
1 = ∂2Vcl/∂u(A)2

1 > 0 and

c(A)
2 = ∂2Vcl/∂u(A)2

2 > 0, that is, the well has the form of an elliptic paraboloid,

while c(C)
1 = ∂2Vcl/∂u(C)2

1 < 0 and c(C)
2 = ∂2Vcl/∂u(C)2

2 > 0, that is, the saddle
has the form of an hyperbolic paraboloid. Hence, in order to estimate Zcl

A from Eq.
(333) in the high barrier limit, we have via Gaussian integrals using the Taylor
expansion given by Eq. (337) the well partition function
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Zcl
A ∼

�
well

e−βVcl(u
(A)
1 ,u(A)

2 )du(A)
1 du(A)

2

≈
∞�

−∞

∞�
−∞

e−βVcl(u
(A)
1 ,u(A)

2 )du(A)
1 du(A)

2 (339)

= 2πe−βVcl(nA)

β

√
c(A)

1 c(A)
2

= 2πγ e−βVcl(nA)

βμμ0ωA
,

where

ωA = γ

μ0μ

√
c(A)

1 c(A)
2 (340)

is the well (precession) frequency playing the role of the attempt angular frequency
in TST [20]. Here, the limits of integration may be formally extended to ± infinity
without significant error since the spins are almost all at nA. The total current Icl

C of
representative points at the saddle point nC may then be estimated as follows. We
initially suppose that the saddle region has the shape of a hyperbolic paraboloid
and the u1-axis of the local coordinate system at the saddle point nC lies in the
same direction as the current density JC over the saddle. Next, recall that in TST,
the Boltzmann distribution ∼ e−βVcl holds everywhere and that the current density
JC is given by at the saddle point C [24]

JC(u(C)
1 , u(C)

2 ) = − γ

μ0μ
δ
(
∂u(C)

1

) ∂Vcl

∂u(C)
2

e
−βVcl

(
u(C)

1 ,u(C)
2

)

= γ

βμ0μ
δ
(
∂u(C)

1

) ∂

∂u(C)
2

e
−βVcl

(
u(C)

1 ,u(C)
2

)
. (341)

Thus, we must have for the current at the saddle point

Icl
C ∼

�
saddle

JC(u(C)
1 , u(C)

2 )du(C)
1 du(C)

2 ≈ γ

μμ0β
e−βVcl(nC). (342)

Hence, using Eqs. (339) and (342), the flux over barrier given by Eq. (332) yields
the classical TST formula for spins

�cl ∼ ωA

2π
e−β�Vcl , (343)

where

�Vcl = Vcl (nC) − Vcl (nA) (344)

is the potential barrier height the determination of which always involves a detailed
knowledge of the energy landscape.
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In a like manner, the quantum escape rate � for a spin from a metastable
orientation A to another metastable orientation B via the saddle point C as
determined by quantum TST may be given by an equation similar to the classical
equation (332), namely,

� ∼ IC

ZA
. (345)

However, the well quantum partition function ZA and the total current over the
saddle point IC must now be evaluated using the equilibrium phase space distri-
bution function WS(ϑ , ϕ) of the spin system with the quantum spin Hamiltonian
ĤS instead of the classical Boltzmann distribution ∼ e−βVcl(ϑ ,ϕ). Nevertheless, the
dynamics of a spin Ŝ still comprise steady precession with the angular frequency
ωS

A = γ HS
A in the effective magnetic field HS

A in the well near the metastable
minimum nA so that the spin Hamiltonian ĤS may be approximated by the simple
equation ĤS ≈ −h̄(ωS

A · Ŝ). Thus, the quantum dynamics of the spin Ŝ obeys the
Larmor equation [2, 37] (cf. Eq. 336)

d Ŝ
dt

= i

h̄

[
ĤS, Ŝ

]
= γ

[
Ŝ × HS

A

]
. (346)

However, near the metastable minimum nA, the distribution WS can be approxi-
mated simply by the Zeeman energy distribution for a spin in a uniform “effective”
field HS

A given by Eq. (287), namely, (cf. Eq. (306) for the uniaxial nanomagnet)

WS(ϑ , ϕ) ≈ WS(nA)e−SξA

[
cosh

ξA

2
+ FA(ϑ , ϕ) sinh

ξA

2

]2S

, (347)

where ξA = βh̄
∣∣ωS

A

∣∣ in accordance with Eq. (287),

FA(ϑ , ϕ) = γXA sin ϑ cos ϕ + γYA sin ϑ sin ϕ + γZA cos ϑ ,

and γXA , γYA , and γZA are the direction cosines of the “effective” field HS
A at the

minimum nA. This effective field distribution approximation given by Eq. (347)
is just the rotational analog of the harmonic oscillator distribution approximation
for the well dynamics in the particle case (see Section II.B.2). Just as with the
classical case, the precession frequency ωS

A can be estimated from the well angular

frequency given by Eq. (340); however, the coefficients c(A)
1 and c(A)

2 are now
determined from the truncated Taylor series expansion of the Weyl symbol HS

of the Hamiltonian ĤS of the spin, namely,

βHS = βHS(nA) + 1

2

[
c(A)

1

(
u(A)

1

)2 + c(A)
2

(
u(A)

2

)2
]

. (348)
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Now by using the partition function defined by the left-hand side of Eq. (289),
we can approximate the well partition function in the context of quantum TST as
follows:

ZA ∼ WS(nA)e−SξA
�

well

[cosh(ξA/2) + sinh(ξA/2)FA(ϑ , ϕ)]2S sin ϑdϑdϕ

≈ 4πWS(nA)e−SξA
sinh [(S + 1/2) ξA]

(2S + 1) sinh (ξA/2)
(349)

= 2π
[
1 − e−(2S+1)ξA

]
(S + 1/2)(1 − e−ξA)

WS(nA).

Finally, the total spin current IC from the well may also be estimated just as with
the classical equation (342) by defining the current density JC at the vicinity of the
saddle point nC of the “effective” potential Vef (u

(C)
1 , u(C)

2 ) = − ln WS(u
(C)
1 , u(C)

2 ).
Thus, we have (cf. Eq. 341)

IC ∼ 1

βh̄S
WS(nC), (350)

since the magnetic moment is now given by μ = γ h̄S/μ0. Hence, we obtain the
TST escape rate as determined from Eqs. (345), (349), and (350), namely,

� ∼ (S + 1/2)
(
1 − e−ξA

)
2πβh̄S

[
1 − e−(2S+1)ξA

]WS(nC)

WS(nA)
. (351)

To compare this equation with the classical TST equation (343), we rewrite it in
the form of the quantum TST equation (155) for particles, namely,

� ∼ ωA

2π
�Se−β�Vcl = �S�cl, (352)

where

�S = ωS
A(S + 1/2)

(
1 − e−ξA

)
ωAξAS

[
1 − e−(2S+1)ξA

] WS(nC)

WS(nA)
eβ�Vcl , (353)

represents the quantum correction factor strongly depending on the spin number
S and yielding �S → 1 and � → �cl in the classical limit, S → ∞.

For example, for a uniaxial nanomagnet with the Hamiltonian βĤS =
−σ Ŝ2

Z/S2, the Weyl symbol βHS(ϑ) and equilibrium phase space distribution
WS (ϑ) are given by Eqs. (248) and (299), respectively. Furthermore, WS(nA) =
WS (ϑ = 0) and WS(nC) = WS (ϑ = π/2) are given by Eqs. (312) and (313).
Thus, noting that in the classical limit

ωA = 2σγ

μ0μβ
, (354)

β�Vcl = σ (355)
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while

ωS
A = ωA

(
1 − 1

2S

)
, (356)

the quantum correction factor �S is given by

�S =
(S + 1/2)

[
1 − e−σ(2S−1)/S2

]
σ22S+1

[
1 − e−σ(4S2−1)/S2]

S∑
m=−S

(2S)!eσm2/S2

(S + m)!(S − m)! . (357)

In the limit S → ∞, Eq. (352) reduces to the well-known classical TST (Néel)
formula for a uniaxial nanomagnet, namely,

�cl ∼ 1

2πτ0
e−σ , (358)

where τ0 = 1/ωA is a normalizing time. The normalized inverse escape rate
(τ0�)−1 as a function of the inverse temperature parameter σ ∼ 1/T is shown
in Fig. 11 for various values of S. Clearly, the qualitative behavior of the quantum
escape rates � for finite S strongly deviates from the Arrhenius behavior of
the classical escape rates �cl at low temperatures. This difference is due to the
tunneling effect.
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Figure 11. Normalized inverse escape rate (τ0�)−1 as a function of the inverse temperature
parameter σ ∼ 1/T for various values of S = 2, 10, 20, 40, and S → ∞ (classical limit) (Color on
line).
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Like the classical case, having evaluated the escape rate � for a particular
anisotropy, we have the reversal time at finite temperatures. In particular, by
equating the reversal time to the measuring time of a switching time experiment
one may estimate the switching field curves at finite temperatures just as with
the classical theory [5]. Although TST always implies that the dissipation to the
bath does not affect the escape rate, nevertheless, the results should still apply
in a wide range of dissipation. The latter may be defined as wide enough to
ensure that thermal noise is sufficiently strong to thermalize the escaping system
yet not so wide as to disturb the thermal equilibrium in the well, that is, an
equilibrium distribution still prevails everywhere including the saddle point. In
classical Kramers escape rate theory [6], this represents the so-called intermediate
damping case.

We shall now demonstrate how the phase space representation for a given spin
Hamiltonian may be used to calculate switching field curves and/or surfaces as a
function of spin number S at zero temperature.

7. Switching Field Curves

We recall that the first calculation of the magnetization reversal of single-domain
ferromagnetic particles with uniaxial anisotropy subjected to an applied field was
made by Stoner and Wohlfarth [17], with the hypothesis of coherent rotation of the
magnetization and zero temperature so that thermally induced switching between
the potential minima is ignored. In the simplest uniaxial anisotropy as considered
by them, the magnetization reversal consequently occurs at that particular value
of the applied field (called the switching field), which destroys the bistable nature
of the potential. The parametric plot of the parallel versus the perpendicular
component of the switching field then yields the famous astroids. As mentioned in
Section I, Thiaville [19] later developed a geometrical method for the calculation
of the energy of a particle allowing one to determine the switching field for all
values of the applied magnetic field yielding the critical switching field surface
analogous to the Stoner–Wohlfarth astroids. This surface, as it generalizes the
critical curves of the 2D problem of Stoner and Wohlfarth [17], is called the limit
of metastability surface. In the general approach to the calculation of switching
curves via the geometrical method of Thiaville [19], these curves or surfaces
may be constructed for particles with arbitrary anisotropy at zero temperature.
By fitting experimental switching field curves and surfaces, one can in particular
determine the free energy of a nanomagnet and the corresponding anisotropy
constants (see Fig. 12).

In order to generalize Thiaville’s geometrical method [19] to include quantum
effects in switching field curves and surfaces of a spin system with a model spin
Hamiltonian ĤS, we must first determine the Weyl symbol HS(ϑ , ϕ) corresponding
to ĤS, which is defined by the map onto phase space given by Eq. (247).
Then one may, in principle, again calculate the switching fields using Thiaville’s
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Figure 12. 3D theoretical and experimental (measured at T = 35 mK with the microSQUID;
upper figure) switching field surfaces of a 3 nm cobalt cluster. These surfaces are symmetrical with
respect to the Hx–Hy plane, and only the upper part (μ0Hz > 0) is shown. Continuous lines on
the surface are contour lines on which μ0Hz is constant. The theoretical switching field surface
is calculated via Thiaville’s method [19], the free energy V = −K1 cos2 ϑ + K2 sin2 ϑ sin2 ϕ −
(K4/4)

(
sin2 2ϑ + sin4 ϑ cos2 2ϕ

)
with the anisotropy constants K1 = 2.2 · 105 J/m3, K2 =

0.9 · 105 J/m3, K4 = 0.1 · 105 J/m3. Jamet et al. [150]. Reproduced with permission of the American
Physical Society. (See insert for color representation of the figure.)

method [19]. The starting point of this calculation is the normalized energy of the
spin V̄(u) in the presence of a dc magnetic field H defined as

V̄(u) = G(u) − 2(u · h), (359)

where u = (sin ϑ cos ϕ, sin ϑ sin ϕ, cos ϑ) is the unit vector specifying the repre-
sentative point (ϑ , ϕ) in phase space (see Fig. D.1), h is the normalized external
field H/HA (HA is a normalizing constant which has the meaning of the effective
anisotropy field), and G(u) = HS(ϑ , ϕ)/HA is the normalized Hamiltonian in
the absence of the external field H. The switching field is characterized by the
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requirement that both the first and second derivatives of the normalized energy V̄
with respect to ϑ and φ must vanish, indicating that one metastable minimum and
one saddle point in the potential V̄ merge, giving rise to a point of inflexion. These
conditions correspond to a switching field surface in 3D space. At any point of
that surface, V̄ must satisfy the stationary conditions

∂V̄

∂ϑ
= ∂ G

∂ϑ
− 2 (h · eϑ) = 0,

∂V̄

∂ϕ
= ∂ G

∂ϕ
− 2

(
h · eϕ

)
sin ϑ = 0,

so that the field vector h can be described by a parameter λ, namely,

h = λer + 1

2

∂G

∂ϑ
eϑ + 1

2 sin ϑ

∂G

∂ϕ
eϕ , (360)

where the unit vectors er, eϑ , and eϕ forming the orthonormal direct basis are
defined as follows:

er =
⎛
⎝sin ϑ cos ϕ

sin ϑ sin ϕ

cos ϑ

⎞
⎠ , eϑ =

⎛
⎝cos ϑ cos ϕ

cos ϑ sin ϕ

− sin ϑ

⎞
⎠ , eϕ =

⎛
⎝− sin ϕ

cos ϕ

0

⎞
⎠ . (361)

The switching conditions are now determined by the following equation

∂2V̄

∂ϑ2

∂2V̄

∂ϕ2
−
[

∂2V̄

∂ϑ ∂ϕ

]2

= 0. (362)

Because the second derivatives of V̄ are given by

∂2V̄

∂ϑ2 = ∂2G

∂ϑ2 + 2λ,

∂2V̄

∂ϕ2
= ∂2G

∂ϕ2
+
(

cot ϑ
∂G

∂ϑ
+ 2λ

)
sin2 ϑ ,

∂2V̄

∂ϑ ∂ϕ
= ∂2V̄

∂ϕ ∂ϑ
= sin ϑ

∂

∂ϑ

(
1

sin ϑ

∂G

∂ϕ

)
,

equation (362) reduces to a quadratic equation in λ, namely,

4λ2 + 2λ

[
1

sin2 ϑ

∂2G

∂ϕ2 + cot ϑ
∂G

∂ϑ
+ ∂2G

∂ϑ2

]

+
[

1

sin2 ϑ

∂2G

∂ϕ2
+ cot ϑ

∂G

∂ϑ

]
∂2G

∂ϑ2
−
[

∂

∂ϑ

(
1

sin ϑ

∂G

∂ϕ

)]2

= 0,
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which has two roots λ+(ϑ , ϕ) and λ−(ϑ , ϕ) given by

λ± = −1

4

(
1

sin2 ϑ

∂2G

∂ϕ2 + cot ϑ
∂G

∂ϑ
+ ∂2G

∂ϑ2

)

± 1

4

√[
1

sin2 ϑ

∂2G

∂ϕ2
+ cot ϑ

∂G

∂ϑ
− ∂2G

∂ϑ2

]2

+ 4

[
∂

∂ϑ

(
1

sin ϑ

∂G

∂ϕ

)]2

.

(363)

Now the semi-axis, Eq. (360), described by λ > λ+ is the locus of the fields
for which the magnetization is stable. Moreover, when λ = λ+ the metastable
minimum in the potential V̄ disappears so that the spin vector S can then escape
from the potential well. Thus, the switching field surface may be obtained from
the vector hS defined as follows [19]:

hS = λ+er + 1

2

∂G

∂ϑ
eϑ + 1

2 sin ϑ

∂G

∂ϕ
eϕ . (364)

Numerous examples of the calculation of switching field surfaces in 3D space
and the 2D critical curves for various classical free energy densities have been
given, for example, in Refs. 5, 6, 18 and 19. Here, following Ref. 66, we
calculate 2D critical curves for the uniaxial, biaxial, cubic, and mixed Hamil-
tonians defined by Eqs. (243)–(246). The Weyl symbols Hun

S (ϑ , ϕ), Hbi
S (ϑ , ϕ),

Hcub
S (ϑ , ϕ), and Hmix

S (ϑ , ϕ) of these four model Hamiltonians are given by Eqs.
(248)–(251), which bear an obvious resemblance to the corresponding classical
free energy densities (see Sections II.D.1–II.D.5). If we further suppose that a
uniform external magnetic field H is applied in the x − z plane, the Zeeman term

operator −(ξ/S)
(
sin ψ ŜX − cos ψ ŜZ

)
just transforms to the simple phase space

expression −ξ cos(ϑ − ψ), where ψ is the angle between the applied field H and
the Z-axis. Thus, the switching fields hun, hbi, and hcub in the x − z plane (i.e., for
ϕ = 0) can be calculated from the Weyl symbols given by Eqs. (248)–(250) and
Eq. (364), yielding

hun = Qunhcl
un, (365)

hbi = Qbihcl
bi, (366)

hcub = Qcubhcl
cub, (367)

where

Qun = Qbi = 1 − 1

2S
, (368)

Qcub = (S − 1/2)(S − 1)(S − 3/2)

S3
(369)
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are the quantum correction factors to the corresponding classical switching fields
hcl

un, hcl
bi, and hcl

cub in the x − z plane given by the known equations [5, 6]

hcl
un =

(
sin3 ϑ , − cos3 ϑ

)
,

hcl
cub =

(
sin3 ϑ(3 cos 2ϑ + 2), cos3 ϑ(3 cos 2ϑ − 2)

)
,

hcl
bi = (sin ϑ [2� + f (ϑ)] , cos ϑ [2 − f (ϑ)]

)
,

where � = δ/σ and

f (ϑ) = (1 + �) sin2 ϑ +
∣∣∣2� − (1 + �) sin2 ϑ

∣∣∣ .
For mixed anisotropy, however, the corresponding, equation for the switching field
hmix is much more complicated, and therefore must be calculated numerically.
The parametric plots of the parallel hZ versus the perpendicular hX component
of the switching field for the given spin systems are shown in Fig. 13. In general,
the figure indicates that the switching field amplitudes increase markedly with
increasing S all the while tending to their classical limiting values as S → ∞
corresponding to diminishing tunneling effects as that mechanism is gradually
shut off.

We emphasize that these calculations because they are entirely based on the
phase space representation of the Hamiltonian operator ignore thermal effects as
in the original Stoner–Wohlfarth and Thiaville calculations. In order to account for
these, it is necessary to estimate the temperature dependence of the spin reversal
time, which may be accomplished, for example, using the quantum TST, which
we have described in Section II.D.6. This will again only involve the quantum
equilibrium phase space distributions, which we have calculated in the preceding
sections.

8. Discussion

We have just shown how the phase space method may be used to construct
equilibrium distribution functions in the configuration space of polar angles (ϑ , ϕ)

for spin systems in the equilibrium state described by the equilibrium distribution

ρ̂S = e−βĤS/ZS. The Wigner function may be represented in all cases as a
finite series of spherical harmonics like the corresponding classical orientational
distribution and transparently reduces to the usual Fourier series equation (184) in
the classical limit, S → ∞. Moreover, relevant quantum mechanical averages (i.e.,
the magnetization) may be calculated in a manner analogous to the corresponding
classical averages using the Weyl symbol of the appropriate quantum operator (see
Eq. 238). The resulting Wigner functions can now be used to determine the spin
dependence of the switching fields and hysteresis curves and may also be applied
to other problems requiring only a knowledge of equilibrium distributions. This
conclusion is significant particularly from an experimental point of view as the
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Figure 13. Spin dependence of switching field curves for uniaxial (a), biaxial at σ/δ = 0.25
(b), cubic (c), and mixed at σ1/σ2 = 0.5 and χ = 0 (d) anisotropies for S = 2 (red dashed lines), 5
(blue dash-dotted lines), and S → ∞ (black solid lines; classical limit) (Color on line).

transition between magnetic molecular cluster and single-domain ferromagnetic
nanoparticle behavior is essentially demarcated via the hysteresis loops and the
corresponding switching field curves [9]. Furthermore, such Wigner functions are
important, in the interpretation of quantum tunneling phenomena in ferromagnetic
nanoparticles and molecular magnets (see, e.g., Ref. [9]) and also in the inves-
tigation of the crossover region between reversal of the magnetization of these
particles by thermal agitation and reversal by macroscopic quantum tunneling.
For instance, by analogy with Néel’s classical calculation [16], the simplest
description of quantum effects in the magnetization reversal time of a nanoparticle
is provided by the inverse escape rate from the wells of the magnetocrystalline
and external field potential as rendered by quantum TST. Thus, the TST rate
provides an important benchmark for both analytical calculations of the escape
rate, which account for dissipation using quantum rate theory and for the numerical
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results obtained from the appropriate quantum master equation as well as allowing
one to incorporate thermal effects in the switching fields. Now TST ignores the
disturbance to the equilibrium distribution in the wells created by the loss of the
magnetization due to escape over the barrier, and so involves the equilibrium
distribution only as that is assumed to prevail everywhere. Nevertheless, via TST
as corrected for quantum effects (e.g., Eq. 351), which stems from the phase
space representation, it is possible to predict the temperature dependence of the
switching fields and corresponding hysteresis loops within the limitations imposed
by that theory. Therefore, the results should be relevant to experiments seeking
evidence for macroscopic quantum tunneling where the temperature dependence
of the loops is crucial as they are used [9] to differentiate tunneling from thermal
agitation behavior. The equilibrium quantum distribution is also essential in the
inclusion of nonequilibrium effects in the quantum escape rate. For example,
a master equation describing the time evolution of the quasiprobability density
in the representation space is required in generalizing the classical escape rate
calculations pioneered by Kramers [28] for point particles and by Brown [23, 24]
for single-domain ferromagnetic particles using the Fokker–Planck equation.

In Section III, we shall show that a knowledge of the equilibrium phase space
distribution is also important in two other fundamental aspects of nonequilibrium
phenomena involving master equations in the phase space representation. The first
is in formulating the initial conditions for their solution as the appropriate quantum
equilibrium distribution, which must now play the role of the Boltzmann distri-
bution in the corresponding classical problem. Second, the quantum equilibrium
distribution plays a vital role in the determination of the diffusion coefficients in a
quantum master equation because this distribution must be the stationary solution
of that equation. This fact, analogous to Einstein and Smoluchowski’s imposition
of the Maxwell–Boltzmann distribution as the stationary solution of the Fokker–
Planck equation in order to determine drift and diffusion coefficients, will also
allow one to calculate these coefficients in the quantum case. This is illustrated for
the particular case of a spin in a uniform field in Section III.B.3 below (see also
[62]), indicating clearly how all the solution methods developed for the classical
Fokker–Planck equation apply to the quantum case just as the corresponding
solutions for particles [48] (see Section II.B.3). We remark, however, that the
calculation of the drift and diffusion coefficients for axially symmetric potentials
is much simpler than that for nonaxial symmetry since only the single polar angle
ϑ is involved rather than the two angles ϑ and ϕ. The restriction to axial symmetry
also gives rise to further mathematical simplifications, since the quantum master
equation now has essentially the same form as the classical Fokker–Planck
equation in the single coordinate ϑ , implying that formulas for the mean first
passage time, integral relaxation time, and so on, may be directly carried over
to the quantum case. This is not so for nonaxially symmetric potentials as the two
variables involved give rise to a perturbation problem similar to that encountered
in solving the Wigner problem for particles in a classical phase space.
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III. MASTER EQUATION IN PHASE SPACE FOR AXIALLY
SYMMETRIC SYSTEMS

A. Master Equation for a Uniaxial Nanomagnet Subjected to a dc
Magnetic Field

We shall now apply, as an illustrative example, the phase space method to a
uniaxial nanomagnet of arbitrary spin number S in an external constant magnetic
field H applied along the Z-axis, that is, the easy axis, where the Hamiltonian
operator ĤS has the axially symmetric form given by Eq. (267), namely,

βĤS = − σ

S2
Ŝ2

Z − ξ

S
ŜZ . (370)

This Hamiltonian comprises a uniaxial anisotropy term −σ Ŝ2
Z/S2 plus the Zeeman

coupling to the external field −ξ ŜZ/S, constituting a generic model for relaxation
phenomena in uniaxial spin systems such as molecular magnets, nanoclusters, and
so on (see, e.g., Refs. 3, 80, and references cited therein). In the standard basis of
spin functions |S, m〉 (see Appendix A), which describe the states with definite
spin S and spin projection m onto the Z-axis, that is, ŜZ |S, m〉 = m |S, m〉 , the
Hamiltonian ĤS, Eq. (370), has an energy spectrum with a double-well structure
and two minima at m = ±S separated by a potential barrier. Note that in strong
bias fields, ξ0 > σ(2S − 1)/S, the barrier disappears. Now generally speaking,
spin reversal can take place either by thermal activation or by tunneling or a
combination of both. The tunneling may occur from one side of the barrier to the
other between resonant, equal-energy states coupled by transverse fields or high-
order anisotropy terms [80–82]. Now Garanin [80] and García-Palacios and Zueco
[81, 82] by using the spin density matrix in the second order of perturbation theory
in the spin–bath coupling have studied the longitudinal relaxation of quantum
uniaxial nanomagnets with the Hamiltonian equation (370). In other words, they
gave a concise treatment of the spin dynamics by directly proceeding from the
quantum Hubbard operator representation of the evolution equation for the spin
density matrix. This axially symmetric problem has also been treated via the phase
space method in Ref. 64 and may be summarized as follows.

1. Explicit Form of the Master Equation

Using the collision operator in the symmetrized Hubbard form (60) as written for
the particular Hamiltonian given by Eq. (370), we have from the general reduced
density matrix evolution given by Eq. (40) the evolution equation for the reduced
density matrix of a uniaxial nanomagnet [64]

∂ρ̂S

∂t
− i

h̄β

{
σ

S2

[
Ŝ2

0, ρ̂S

]
+ ξ

S

[
Ŝ0, ρ̂S

]}
= St

(
ρ̂S
)

. (371)



146 YURI P. KALMYKOV, WILLIAM T. COFFEY, AND SERGUEY V. TITOV

Thus, written explicitly the collision kernel operator St
(
ρ̂S
)

, characterizing the
spin–bath interaction, is given by

St
(
ρ̂S
) = D0

([
Ŝ0, ρ̂SŜ0

]
+
[
Ŝ0ρ̂S, Ŝ0

])
− D−1

([
Ŝ−1, ρ̂Se

− σ

2S2 Ŝ2
0− ξ

2S Ŝ0 Ŝ1e
σ

2S2 Ŝ2
0+ ξ

2S Ŝ0

]

+
[

e
σ

2S2 Ŝ2
0+ ξ

2S Ŝ0 Ŝ1e
− σ

2S2 Ŝ2
0− ξ

2S Ŝ0 ρ̂S, Ŝ−1

])
(372)

− D1

([
Ŝ1, ρ̂Se

− σ

2S2 Ŝ2
0− ξ

2S Ŝ0 Ŝ−1e
σ

2S2 Ŝ2
0+ ξ

2S Ŝ0

]

+
[

e
σ

2S2 Ŝ2
0+ ξ

2S Ŝ0 Ŝ−1e
− σ

2S2 Ŝ2
0− ξ

2S Ŝ0 ρ̂S, Ŝ1

])
.

Because of the operator relations

e
σ

2S2 Ŝ2
0+ ξ

2S Ŝ0 Ŝ±1e
− σ

2S2 Ŝ2
0− ξ

2S Ŝ0 = e
− σ

2S2 ± ξ
2S e

± σ

S2 Ŝ0 Ŝ±1, (373)

Ŝ±1e
∓ σ

S2 Ŝ0 = e
σ

S2 e
∓ σ

S2 Ŝ0 Ŝ±1, (374)

we have from Eq. (372) a simplified form of St
(
ρ̂S
)
, namely,

St
(
ρ̂S
) = D‖

([
Ŝ0, ρ̂SŜ0

]
+
[
Ŝ0ρ̂S, Ŝ0

])
− 2D⊥

{
e

σ

2S2 + ξ
2S

([
Ŝ1e

σ

S2 Ŝ0 ρ̂S, Ŝ−1

]
+
[

Ŝ1, ρ̂Se
σ

S2 Ŝ0 Ŝ−1

])
(375)

+ e
σ

2S2 − ξ
2S

([
Ŝ−1, ρ̂Se

− σ

S2 Ŝ0 Ŝ1

]
+
[

Ŝ−1e
− σ

S2 Ŝ0 ρ̂S, Ŝ1

])}
,

where we have introduced the notation D⊥ = D±1/2 and D‖ = D0 for the
diffusion coefficients. Now Eq. (371) describes the evolution of the spin system in
contact with the thermal bath at temperature T . Thus, one important property of
the collision kernel operator, namely, Eq. (56), is satisfied by the St

(
ρ̂S
)

given by

Eq. (375), namely, that the equilibrium spin density matrix ρ̂eq = e−βĤS/Tr{e−βĤS}
renders the collision kernel equal to zero, that is, St

(
ρ̂eq
) = 0. Conditions for the

validity of the reduced density matrix evolution given by Eq. (371) have been
discussed in detail in Section II.A.2.

We now proceed to the phase space representation of Eq. (371), which is
accomplished by writing that equation as the inverse map of a Weyl symbol (see
also [76]). By substituting the density matrix ρ̂S so rendered into the reduced
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density matrix evolution given by Eq. (371), we have the inverse map (dropping
the parameter s)� (

ŵ
∂

∂t
WS − WS

{
i

h̄β

(
σ

S2

[
Ŝ2

0, ŵ
]

+ ξ

S

[
Ŝ0, ŵ

])
+St

(
ŵ
)})

d� = 0, (376)

where d� = sin ϑdϑdϕ. Now as it stands the formal inverse map given by
Eq. (376) does not have the standard form, Eq. (235), of the usual inverse
Wigner–Stratonovich map with kernel ŵ(ϑ , ϕ). Therefore, in order to facilitate
this objective, we must first transform the various commutators occurring in the
integrand of Eq. (376) into the phase space representation. These will then appear
as configuration space differential operators acting on the Wigner–Stratonovich
kernel ŵ(ϑ , ϕ) [cf. Eq. (C11) et seq.]. This procedure, which involves lengthy
operator manipulations for each commutator occurring in Eq. (376) as fully
described in Appendix C, will then allow one to express the earlier integrand in the
standard phase space form demanded by Eq. (235). In this way, we will ultimately
have the master equation for the phase space distribution WS(ϑ , ϕ, t), namely,

∂

∂t
WS − σ

h̄βS2

(
2S cos ϑ − sin ϑ

∂

∂ϑ
+ Sξ

σ

)
∂

∂ϕ
WS

= D‖
∂2

∂2ϕ
WS + D⊥

cot ϑ

sin ϑ

[
cos ϑ

∂2

∂2ϕ
R′(S)

+ WS + ∂2

∂2ϕ
R′(S)

− WS

]
(377)

+ D⊥
sin ϑ

[
∂

∂ϑ
sin ϑ

(
∂

∂ϑ
R′(S)

+ WS + cos ϑ
∂

∂ϑ
R′(S)

− WS + 2S sin ϑR′(S)
− WS

)]

+ D⊥
[(

sin ϑ
∂

∂ϑ
− 2S cos ϑ

)
∂

∂ϕ
R′′(S)

+ WS − ∂

∂ϕ
R′′(S)

− WS

]
,

where the phase space differential operators R(S)
± = R′(S)

± + iR′′(S)
± are defined

in Appendix C. The left-hand side of Eq. (377) is just the quantum analog of
the classical Liouville equation for a uniaxial nanomagnet, while the collision
operator given by the right-hand side of Eq. (377) is the quantum analog of the
Fokker–Planck operator for classical spins given by Eq. (4). In summary, the
master equation (377) follows from the equation of motion of the reduced density
matrix given by Eq. (371) written as the standard form, Eq. (235), of the inverse
Wigner–Stratonovich map of a Weyl symbol (see Appendix C). Everywhere, the
interactions between the spin and the heat bath are taken small enough to use the
weak coupling limit and the correlation time characterizing the bath is taken short
enough to regard the stochastic process originating in the bath as Markovian.

In purely longitudinal relaxation, when the azimuthal angle dependence of WS

may be ignored, the Liouville term vanishes in Eq. (377), and the corresponding
phase space evolution equation for WS(z = cos ϑ , t) then simplifies to the axially
symmetric form

∂WS

∂t
= ∂

∂z

(
D(2)WS + D(1)WS

)
, (378)
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where

D(1) = 2D⊥S(1 − z2)R′(S)
− (379)

and

D(2) = D⊥(1 − z2)

(
∂

∂z
R′(S)

+ + z
∂

∂z
R′(S)

−
)

. (380)

The phase space master equation (378) is then formally similar to the single spatial
variable Fokker–Planck equation for the orientation distribution function W(z, t)

∂W

∂t
= D⊥

∂

∂z

[
(1 − z2)

(
∂W

∂z
+ βW

∂V

∂z

)]
, (381)

describing rotational diffusion of a classical spin in an axially symmetric
potential [5]

βV = −σ cos2 ϑ − ξ cos ϑ (382)

and in the classical limit, Eq. (378) reduces after lengthy manipulations to it as we
shall demonstrate in Appendix C.

One of the major computational difficulties associated with the phase space
master equation (377) now appears. By inspection of that equation even for axial
symmetry high order spin number-dependent differential operators occur apart
from two notable exceptions. The first of these comprises noninteracting spins in
a uniform field where all the higher order derivatives in the operators R(S)

± vanish.
Thus, they become closed transcendental functions (see e.g., Eq. (411) et. seq.).
In this case, we will have differential recurrence relations (see Eq. (418) et. seq.),
which are essentially similar to those occurring in the corresponding classical
problem (see e.g., Eq. (434) et. seq.). The other exception is that in the absence of
any potential whatsoever, that is, when σ = 0 and ξ = 0, the differential operators
merely reduce to R(S)

+ = 1 and R(S)
− = 0, respectively (see Appendix C), so that

Eq. (377) becomes (setting D‖ = D⊥)

∂WS

∂t
= D⊥

[
1

sin ϑ

∂

∂ϑ

(
sin ϑ

∂WS

∂ϑ

)
+ 1

sin2 ϑ

∂2WS

∂ϕ2

]
. (383)

Equation (383) corresponds to the classical Fokker–Planck equation [5] in the
single coordinate ϑ for the orientational distribution function of free magnetic
dipole moments on the unit sphere. Hence, like the free quantum translational
Brownian motion (see Section II.B.3), the phase space distribution WS of free
quantum spins obeys the classical Fokker–Planck equation (383) for the rotational
diffusion of free classical spins [5].

Thus, it would appear that the phase space master equation (377) is in general
of limited practical use. However, this does not preclude one from deriving
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differential recurrence relations for observables via the density matrix evolution
equation by using the one-to-one correspondence between the averages of the
polarization operators in Hilbert space and the averages of the spherical harmonics
(see Section II.C) as we now describe. This will automatically yield the recurrence
relations, Eq. (389), for the averages of the polarization operators that may be
mapped onto averages of the spherical harmonics via Eq. (392). This procedure is
of course just a special case of the formal one outlined in Section II.C.3 [Eq. (252)
et seq.]

2. Differential Recurrence Relations for the Statistical Moments

Recalling the previous paragraph of the previous section, the formal solutions of
the axially symmetric density matrix evolution given by Eq. (371) corresponding
to the Hamiltonian equation (370) and the corresponding phase space equation
(377) for arbitrary S may be written as

ρ̂S(t) = ρ̂eq +
2S∑

L=0

cL(t)T̂(S)
L0 (384)

and

WS(ϑ , ϕ, t) = Weq
S (ϑ) +

2S∑
L=0

bL(t)YL0(ϑ , ϕ), (385)

respectively. The equilibrium phase space distribution Weq
S (ϑ) is the stationary

solution of both of the phase space equation (377 and 378). We emphasize that
Weq

S (ϑ) corresponds to the equilibrium spin density matrix ρ̂eq and is defined by
Eq. (229), that is

Weq
S (ϑ) = Tr

{
ρ̂eqŵ(ϑ)

}
. (386)

The distribution Weq
S (ϑ) defined by the map, Eq. (386), has already been calcu-

lated in Section II.D.2 and is given by the finite series of Legendre polynomials
given by Eq. (299), while the collision kernel of Eq. (377) satisfies St(Weq

S ) = 0,
that is, the distribution Weq

S defined by Eq. (299) is indeed the stationary solution
of the phase space master equation (377) and (378). The coefficients cL(t) and
bL(t) (corresponding to the statistical moments) are, in turn, the averages of the
polarization operators T̂(S)

L0 and the spherical harmonics YL0, respectively, namely,

cL(t) =
〈
T̂(S)

L0

〉
(t) −

〈
T̂(S)

L0

〉
eq

, (387)

bL(t) = 〈YL0〉 (t) − 〈YL0〉eq . (388)
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By substituting the operator expansion equation (384) and the spherical harmonic
expansion equation (385) into the density matrix evolution equation (371) and the
phase space equation (377), respectively, we have in each case a finite hierarchy
of differential recurrence equations for the statistical moments (in contrast to the
classical case, where the corresponding hierarchy is infinite).

Since either of the equations (384 and 385) will yield similar hierarchies for
the statistical moments (see Section II.C.3), we shall describe the derivation of
their recurrence relations using the density matrix. This is accomplished by first
substituting the operator expansion equation (384) into the explicit evolution
equation (371). Next, we use Eq. (C19) for the expansion of the matrix exponents

e
σ

2S2 ± ξ
2S e

± σ

S2 Ŝ0 in terms of the polarization operators T̂(S)
l0 and the product formula

given by Eq. (A.28) for the operators T̂(S)
LM , which allows products of these to be

expressed as a sum. In this way, we ultimately have a hierarchy of multi-term
differential recurrence equations for the relaxation functions cL(t) in Eq. (384),
namely,

τN
d

dt
cL(t) =

2S∑
L′=0

g(S)

L,L′cL′(t). (389)

Here, τN = (2D⊥)−1 is the characteristic (free diffusion) time, and we have for
the expansion coefficients that are defined in the usual way by the average

g(S)

L,L′ = −1

2
e

σ

2S2 L(L + 1)Tr

{
T̂(S)

L′0

[
cosh

(
σ

S2
Ŝ0 + ξ

2S

)
T̂(S)

L0 + sinh
(

σ

S2
Ŝ0 + ξ

2S

)

×
(√

(2S − L)(2S + L + 2)√
(2L + 3)(2L + 1)

T̂(S)
L+10

−
√

(2S − L + 1)(2S + L + 1)√
(2L − 1)(2L + 1)

T̂(S)
L−10

)]}
, (390)

where cosh(Â) and sinh(Â) appearing in Eq. (390) are matrix functions. Likewise,
in the phase space representation, we formally have the relevant system of
differential recurrence equations for the relaxation functions bL(t) from the general
recurrence relation given by Eq. (253), the matrix elements of Eq. (255), and the
particular equation (389), namely,

τN
d

dt
bL(t) =

∑
L′

p(S)

L′,LbL′(t), (391)

where

p(S)

L′,L =
√

(2S − L′)!(2S + L′ + 1)!
(2S − L)!(2S + L + 1)! g(S)

L′,L. (392)
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Alternatively, using the phase space method the recurrence relation given by Eqs.
(391) could be derived by directly substituting the spherical harmonic expansion
equation (385) into the phase space evolution equation (377) and then using the
recurrence relations of the spherical harmonics, namely, Eqs. (B15)–(B17). How-
ever, in general, very detailed manipulations would be involved for the reasons we

have outlined. It should be mentioned that the equilibrium averages
〈
T̂(S)

L0

〉
eq

and

〈YL0〉eq satisfy similar, however, time-independent recurrence relations, namely,

2S∑
L′=0

g(S)

L,L′
〈
T̂(S)

L′0

〉
eq

= 0 (393)

and ∑
L′

p(S)

L′,L 〈YL′0〉eq = 0. (394)

The resulting system of Eq. (390) and/or (391), which we have just derived, can
be solved by either direct matrix diagonalization, which involves calculating the
eigenvalues and eigenvectors of the system matrix (see Section II.A.4) or by the
computationally efficient (matrix) continued fraction method [5, 71]. As shown
in the following text, the solutions can be obtained both for the transient and ac
stationary (linear and nonlinear) responses of spins in magnetic fields.

In the limiting case of zero anisotropy σ = 0, Eq. (390) can be further
simplified by once again using the general formula for the product of polarization
operators in terms of the Clebsch–Gordan series, that is, Eq. (A.28), thereby
yielding

g(S)

L,L′ = −1

2
L(L + 1)

[
δL′L cosh

ξ

2S
+ sinh

ξ

2S

(
δL′L+1

√
(2S − L)(2S + L + 2)

(2L + 3)(2L + 1)

−δL′L−1

√
(2S − L + 1)(2S + L + 1)

(2L − 1)(2L + 1)

)]

so that with the replacement

cL(t) → (−1)L

√
(2S − L)!(2S + L + 1)!(2L + 1)

4π(2S)! fL(t), (395)

we have from Eq. (389) the simple three-term differential recurrence relation

τN
d

dt
fL(t) = qLfL(t) + q−

L fL−1(t) + q+
L fL+1(t), (396)
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with

qL = −L(L + 1)

2
cosh

ξ

2S
, (397)

q±
L = ±L(L + 1)(2S ± L + 3/2 ± 1/2)

2(2L + 1)
sinh

ξ

2S
, (398)

The quantum relaxation function fL(t) defined by Eq. (395) for a given S corre-
sponds to

fL(t) = 〈PL〉 (t) − 〈PL〉eq

where the PL(z) are the Legendre polynomials [105]. This limiting case exactly
corresponds to the spin relaxation in a uniform field treated comprehensively in
Section III.B.

Returning to the general case, in the classical limit, S → ∞, the Hamiltonian
equation (370) corresponds to the classical free energy equation (382), while
the quantum differential recurrence relation given by Eq. (389) reduces to the
usual five-term differential recurrence relation for a classical uniaxial nanomagnet
subjected to a uniform longitudinal field, namely,

τN
d

dt
fL(t) = qLfL(t) + q−

L fL−1(t) + q+
L fL+1(t) + q−−

L fL−2(t) + q++
L fL+2(t),

(399)

where

fL(t) = 〈PL (cos ϑ)〉 (t) − 〈PL (cos ϑ)〉eq (400)

is now the classical relaxation function with

qL = −L(L + 1)

2

(
1 − 2σ

(2L − 1)(2L + 3)

)
,

q±
L = ∓ξ

L(L + 1)

2(2L + 1)
,

and

q−−
L = −q++

L−1 = σL(L + 1)(L − 1)

(2L − 1)(2L + 1)
.

This classical problem has been treated in detail in Refs. 5, 6, 23 and 150–155.
In particular, the exact solution of Eq. (399) is given in Ref. 5, ch. 7. For zero
anisotropy, that is, σ = 0, we have from Eq. (399) the known result for relaxation
of a classical spin in a uniform field [5, 156–159]

τN
d

dt
fL(t) + L(L + 1)

2
fL(t) = ξL(L + 1)

2(2L + 1)
[ fL−1(t) − fL+1(t)] , (401)

which exact solution has been also given in Ref. 5, ch. 7.
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We have indicated (see Appendix C for details) how one may derive a master
equation for the evolution of the phase space quasiprobability distribution for
a uniaxial nanomagnet in contact with a heat bath at temperature T . This is
accomplished by first expressing the reduced density matrix master equation
in Hilbert space in terms of an inverse Wigner–Stratonovich transformation
according to Eq. (376). The various commutators in the integrand of Eq. (376)
involving the spin operators may then be converted into phase space differential
operators using the orthogonality and recurrence properties of the polarization
operators and the corresponding spherical harmonics to ultimately yield via the
standard form of the inverse transformation equations (234 and 235) the desired
master equation for the distribution function in the phase space of the polar angles.
Despite the superficial resemblance of the quantum diffusion equation (377 and
378) (governing the behavior of the phase space distribution) to the Fokker–Planck
equations for classical spins, the problem is actually much more complicated.
The difficulty lies in the collision kernel, which involves powers of differential
operators up to the spin number S considered, only simplifying for large spin
numbers (S → ∞) when the high-order derivatives occurring in the operators
may be ignored.

We have illustrated the phase space representation of spin relaxation by treating
a uniaxial nanomagnet in a uniform magnetic field of arbitrary strength directed
along the easy axis, thereby realizing that only a master equation in configuration
space akin to the Fokker–Planck equation for classical spins is involved. Hence, for
spins (just as particles), the existing classical solution methods [5, 71] also apply in
the quantum case indeed suggesting new closed form quantum results via classical
ones. The magnetization, dynamic susceptibility, characteristic relaxation times,
and so on, for the uniaxial system may now be evaluated. Note that the spin
relaxation of this uniaxial system has already been treated using the quantum
Hubbard operator representation of the evolution equation for the spin density
matrix [80–82], and as shown in Ref. [62] for spins in an external field alone
both the phase space and density matrix methods yield results in outwardly
very different forms. Nevertheless, the numerical values from both methods for
the same physical quantities (i.e., relaxation times and susceptibility) coincide,
thereby establishing a vital corollary between the phase space and the density
matrix methods. Thus, the phase space representation, because it is closely allied
to the classical representation, besides being complementary to the operator one,
transparently illustrates how quantum distributions reduce to the classical ones.
The analysis is carried out via the finite Fourier series representation embodied
in the Wigner–Stratonovich map as we have illustrated for axially symmetric
potentials. It may be extended in the appropriate limits to nonaxially symmetric
systems such as biaxial, cubic, and so on. However, the difficulties (e.g., the
operator form of the diffusion coefficients in the master equation) encountered
in our treatment of axially symmetric potentials are indicative of the even greater
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ones, which would be faced when generalizing the phase space representation to
such potentials, where the Liouville term never vanishes.

In the Section III.B, we first consider the linear and nonlinear longitudinal
relaxation for the particular case of the model parameters σ = 0 and ξ = 0
corresponding to a spin in an external dc magnetic field H directed along the
Z−axis. Then, we shall consider in Section III.C the general case σ = 0 and
ξ = 0, that is, a uniaxial nanomagnet in an external magnetic field.

B. Spin Relaxation in a dc Magnetic Field

For noninteracting spins in an external dc magnetic field H directed along the
Z-axis, the Hamiltonian ĤS is simply Eq. (370) with σ = 0

ĤS = −h̄ω0ŜZ , (402)

where ω0 = ξ/(βh̄S) is the precession (Larmor) frequency. We shall determine
both the exact and approximate solutions yielding the averaged longitudinal

component of a spin
〈
ŜZ

〉
(t) for arbitrary S. Furthermore, we shall show how

the solution of the corresponding classical problem [5, 159] carries over into the
quantum domain and how the exact solution for the integral relaxation time due
to an arbitrarily strong sudden change in the uniform field may be obtained. We
remark that the original treatment of this transient-response problem via the master
equation in phase space was first given by Shibata et al. [35–37] and was further
developed by Kalmykov et al. [62]. In the linear-response approximation, the
solution reduces to that previously given by Garanin [80] using the spin density
matrix in the second order of perturbation theory in the spin-bath coupling. That
result was later re-derived by García-Palacios and Zueco [81] who (again using
the density matrix solution) considered the linear response of the longitudinal
relaxation of a spin for arbitrary S

1. Basic Equations

Expanding on the introductory paragraph following [62], we analyze the transient
relaxation dynamics of a spin Ŝ in an external dc magnetic field H directed along
the Z-axis and a random field h(t) characterizing the collision damping (due to the
heat bath) incurred by the precessional motion of the spin. For the Hamiltonian
given by Eq. (402), the evolution equation for the reduced density matrix is simply

∂ρ̂S

∂t
− iω0

[
Ŝ0, ρ̂S

]
= St

(
ρ̂S
)

. (403)

Equation (403) merely represents the particular case σ = 0 of the more general
equation (371) for a uniaxial nanomagnet subjected to a uniform dc magnetic
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field treated in the Section III.B. For the Hamiltonian ĤS given by Eq. (402), the
collision kernel operator St

(
ρ̂S
)

(Eq. (375) with σ = 0) becomes

St
(
ρ̂S
) = D‖

([
Ŝ0, ρ̂SŜ0

]
+
[
Ŝ0ρ̂S, Ŝ0

])
− 2D⊥

{
e−βh̄ω0/2

([
Ŝ−1, ρ̂SŜ1

]
+
[
Ŝ−1ρ̂S, Ŝ1

])
+ eβh̄ω0/2

([
Ŝ1ρ̂S, Ŝ−1

]
+
[
Ŝ1, ρ̂SŜ−1

])}
. (404)

Now, in the master equation (377) for the particular case σ = 0 corresponding to
a spin in a uniform field, all the higher order derivatives will disappear so that the
operators R(S)

± just become the closed transcendental expressions

R(S)
+ = cosh

βh̄ω0

2
and R(S)

− = sinh
βh̄ω0

2
.

Then the master equation (377) takes on a much simpler form, namely,

∂WS

∂t
= ω0

∂WS

∂ϕ
+

D⊥ sinh
(

1
2βh̄ω0

)
sin ϑ

{
cot ϑ

[
cos ϑ coth

βh̄ω0

2
+ 1

]
∂2WS

∂2ϕ

+ ∂

∂ϑ

[
sin ϑ

(
coth

βh̄ω0

2
+ cos ϑ

)
∂WS

∂ϑ
+ 2S sin2 ϑWS

]}
+ D‖

∂2WS

∂2ϕ
.

(405)

By introducing the renormalization of the diffusion coefficients D⊥e−βh̄ω0/2 →
D⊥, Eqs. (404) and (405) yield the result previously obtained for a nonsym-
metrized form of the collision kernel operator [35–37]. This master equation
describing the time evolution of WS(ϑ , ϕ, t) again has essentially the same form as
the corresponding Fokker–Planck equation for the distribution function W(ϑ , ϕ, t)
of classical spin orientations in the configuration space [35]

∂W

∂t
= ω0

∂W

∂ϕ

+ D⊥
{

ξ

sin ϑ

∂

∂ϑ

(
sin2 ϑW

)
+ 1

sin ϑ

∂

∂ϑ

(
sin ϑ

∂W

∂ϑ

)
+ 1

sin2 ϑ

∂2W

∂ϕ2

}
(406)

(ξ = βh̄ω0S). Equation (405) serves as the simplest example of the phase space
method for open spin systems. In fact, it is just the rotational analog of the quantum
translational harmonic oscillator treated using the Wigner function by Agarwal
[120]. In this instance, the evolution equation (168) for the Wigner distribution
W(q, p, t) in the phase space of positions and momenta has the same mathematical
form as the Fokker–Planck equation for the classical oscillator (see Section II.B.3).
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For longitudinal relaxation, where the distribution function WS is independent of
the azimuth, the Liouville term in the evolution equation vanishes, and Eq. (405)
reduces to an equation very similar to that governing a classical spin in a uniform
magnetic field [5]

∂WS

∂t
= D⊥ sinh (βh̄ω0/2)

sin ϑ

× ∂

∂ϑ

{[
sin ϑ

(
cos ϑ + coth

βh̄ω0

2

)]
∂WS

∂ϑ
+ 2S sin2 ϑWS

}
. (407)

This simplification arises naturally and is to be expected on intuitive grounds
because precession of a spin in a uniform field is effectively the rotational analog
of the translational harmonic oscillator.

Equation (405) applies in the narrowing limit case in which the correlation time
τc of the random field h(t) acting on the spin satisfies the condition γ Hτc << 1,
where H is the averaged amplitude of the random magnetic field. The left-hand
side of Eq. (405) is the quantum analog of the Liouville equation for a spin, which
is now the same as the classical case for particles with quadratic Hamiltonians,
while the right-hand side (collision kernel) characterizes the interaction of the
spin with the thermal bath at temperature T . The remaining conditions for the
validity of Eq. (405) have already been discussed. We remark that for longitudinal
relaxation, Eq. (405) may be plausibly derived by postulating (like in the phase
space treatment of the quantum translational Brownian motion, see Section II.B.3)
a master equation for the Wigner function WS with collision terms given by
a Kramers–Moyal expansion truncated at the second term. The various drift
and diffusion coefficients in the truncated expansion may then be calculated
by requiring that the equilibrium Wigner distribution Weq, corresponding to the

equilibrium spin density matrix ρ̂eq = e−βĤS/Tr
(

e−βĤS

)
, renders the collision

kernel equal to zero (see Section III.B.3).

2. Quantum Analog of the Magnetic Langevin Equation

The spin relaxation described by the master equation (405) may also be equiva-
lently described using a quantum analog of the magnetic Langevin equation with
multiplicative noise. For this, we use the Stratonovich definition [160] of such
equations constituting the mathematical idealization of the spin relaxation process
[161]. Thus, it is unnecessary to transform them to Itô stochastic differential
equations (see e.g., Ref. [161]). Moreover, one can then use conventional calculus
[5, 161]. The Langevin equations governing the two stochastic equations of motion
for the variables ϑ and ϕ corresponding to the phase space master equation (405)
are in the Stratonovich interpretation [5, 67]
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ϑ̇(t) = D⊥ cot ϑ(t)

(
QS

1 [ϑ(t)] −
√

QS
1 [ϑ(t)] QS

2 [ϑ(t)]
)

− 2D⊥(S + 1/4) sin ϑ(t) sinh
βh̄ω0

2
+
√

QS
1 [ϑ(t)]

[
hϑ(t) − α−1hϕ(t)

]
,

(408)

ϕ̇(t) = −ω0 +
√

QS
2 [ϑ(t)] csc ϑ(t)

[
hϕ(t) + α−1hϑ(t)

]
, (409)

where

QS
1 [ϑ(t)] = D⊥β

η(1+α−2)

(
cosh

βh̄ω0

2
+ cos ϑ(t) sinh

βh̄ω0

2

)
, (410)

QS
2 [ϑ(t)] = D⊥β

η(1+α−2)

×
{
cos2 ϑ(t) cosh

βh̄ω0

2
+ cos ϑ(t) sinh

βh̄ω0

2
+ D‖

D⊥
sin2 ϑ(t)

}
,

(411)

and the components hϑ(t), hϕ(t) of the random field h(t) in the spherical coordi-
nate system or basis are expressed in terms of the components hX(t), h Y(t), h Z(t),
in the Cartesian basis as [5]

hϑ(t) = hX(t) cos ϑ(t) cos ϕ(t) + h Y(t) cos ϑ(t) sin ϕ(t) − h Z(t) sin ϑ ,

hϕ(t) = −hX(t) sin ϕ(t) + hY(t) cos ϕ(t),

with

hi(t) = 0, hi(t)hj(t′) = 2η

β
δijδ(t − t′). (412)

Here the indices i, j = 1, 2, 3 in Kronecker’s delta δij correspond to the Cartesian
axes X, Y, Z of the laboratory coordinate system OXYZ, and α = γ ημ is a
dimensionless dissipation (damping) parameter, η is a “friction” coefficient, and
the overbar means the statistical average over the realizations of the random field.
In the isotropic diffusion (D⊥ = D‖) and classical (S → ∞) limit, the Langevin
equation (408 and 409) reduce to those for isotropic diffusion of a classical spin
in spherical coordinates [5], namely,

ϑ̇(t) = D⊥

{
−ξ sin ϑ(t) +

√
D⊥β

η(1+α−2)

[
hϑ(t) − α−1hϕ(t)

]}
, (413)

ϕ̇(t) = −ω0 +
√

D⊥β

η(1+α−2)
csc ϑ(t)

[
hϕ(t) + α−1hϑ(t)

]
. (414)
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To show that the Langevin equations (408 and 409) are equivalent to the master
equation (405), we recall that by choosing Langevin equations for a set of two
stochastic variables {ξ1(t) = ϑ(t), ξ2(t) = ϕ(t)} as

ξ̇i(t
′) = Hi[ξ1(t

′), ξ2(t
′)] +

3∑
j=1

Gij[ξ1(t
′), ξ2(t

′)]hj(t
′),

(i = 1, 2, j = 1, 2, 3) and subsequently interpreting them as Stratonovich
stochastic differential equations, then the averaged equations for the drift, Di, and
diffusion, Dij, coefficients time t are [5, 71]

Di = ξ̇i = lim
τ→0

1

τ
[ξi(t + τ) − ξi(t)]

= Hi(x1, x2, t) + η

β

2∑
k=1

3∑
j=1

Gkj(x1, x2)
∂

∂xk
Gij(x1, x2), (415)

Dij = lim
τ→0

1

2τ
[ξi(t + τ) − ξi(t)]

[
ξj(t + τ) − ξj(t)

]

= η

β

3∑
k=1

Gik(x1, x2)Gjk(x1, x2). (416)

Moreover due to Eqs. (415) and (416), we have from Eqs. (408) and (409) the drift
and diffusion coefficients

D1 = −D⊥
[
(2S + 1) sin ϑ sinh

βh̄ω0

2

− cot ϑ

(
cosh

βh̄ω0

2
+ cos ϑ sinh

βh̄ω0

2

)]
,

D2 = −ω0,

D11 = D⊥
(

cosh
βh̄ω0

2
+ cos ϑ sinh

βh̄ω0

2

)
,

D22 = D‖ + D⊥
sin2 ϑ

(
cos2 ϑ cosh

βh̄ω0

2
+ cos ϑ

βh̄ω0

2

)
.

The Fokker–Planck equation for the probability density function P(ϑ , ϕ, t) =
sin ϑWS(ϑ , ϕ, t) corresponding to Eqs. (408) and (409) is

∂P

∂t
= − ∂

∂ϑ
(D1P) − ∂

∂ϕ
(D2P) + ∂2

∂ϑ2 (D11P) + ∂2

∂ϕ2 (D22P) . (417)
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Equation (417) ultimately reduces to the master equation (405) for the phase space
distribution function WS(ϑ , ϕ, t).

Moreover via the Langevin equations (408 and 409) for the stochastic variables
ϑ(t) and ϕ(t), we also have the Langevin equation for the evolution of the spherical
harmonics Ylm(ϑ , ϕ) rendered as [5]

Ẏlm[ϑ(t), ϕ(t)] = ϑ̇(t)
∂

∂ϑ
Ylm[ϑ(t), ϕ(t)] + ϕ̇(t)

∂

∂ϕ
Ylm[ϑ(t), ϕ(t)],

where ϑ̇(t) and ϕ̇(t) are given by Eqs. (408) and (409), respectively. Then by
averaging the Langevin equation for Ylm(ϑ , ϕ) over its realizations as described
in Ref. [5], and using the recursion relations for the spherical harmonics (see
Appendix B), we ultimately have a closed system of differential recurrence
equations for the statistical moments (averaged spherical harmonics), namely,

d

dt
〈Ylm〉 (t) = q−

l,m 〈Yl−1m〉 (t) + ql,m 〈Ylm〉 (t) + q+
l,m 〈Yl+1m〉 (t), (418)

where 0 ≤ l ≤ 2S,

ql,m = −D‖m2 + imω0 − D⊥
[
l(l + 1) − m2

]
cosh

βh̄ω0

2
,

q−
l,m = D⊥ (l − 2S − 1)

√
l2 − m2

4l2 − 1
sinh

βh̄ω0

2
,

q+
l,m = D⊥ (l + 2S + 2)

√
(l + 1)2 − m2

(2l + 1)(2l + 3)
sinh

βh̄ω0

2
.

Here, the number of recurrent equations is finite namely 2S + 1 because
〈YLm〉 (t)= 0 for L > 2S, which is the main difference from the corresponding
classical hierarchy of differential recurrence equations for the moments, where the
number of equations is infinite. Thus, the Langevin and master equation treatments
are now equivalent and yield the same results.

Here, we have illustrated how a phase space Langevin equation may be
written by considering the simplest possible yet meaningful problem, namely,
the relaxation of a spin of arbitrary number S in a uniform magnetic field of
arbitrary strength directed along the Z-axis. We emphasize that the Langevin
equations are written down from a priori knowledge of the master equation unlike
the classical case where they are written down independently of the Fokker–
Planck equation. Consequently, the results of each method in the classical case
only coincide due to the Gaussian white noise properties of the random field,
particularly Isserlis’s (or Wick’s) theorem [5] is satisfied. This theorem allows
multiple time correlations of Gaussian random variables to be expressed as two
time ones, thereby leading directly to the correspondence between the Langevin
and Fokker–Planck equations in the classical case.
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3. Exact Solution of the Master Equation for Longitudinal Relaxation

Having formulated the relevant evolution equations, we shall now explicitly treat
transient nonlinear spin relaxation by direct using the phase space master equation
because in this particular case it takes the Fokker–Planck form (see Eq. 419). In
order to accomplish this, we suppose that the magnitude of an externally uniform
dc magnetic field is suddenly altered at time t = 0 from HI to a new value HII
(the fields HI and HII are assumed to be applied parallel to the Z-axis of the
laboratory coordinate system). Thus, we study as in the classical case [5], the
transient longitudinal relaxation of a system of noninteracting spins starting from
an equilibrium state I, say with the initial distribution function WHI

eq (t ≤ 0), to a

new equilibrium state II, say with the final distribution function WHII
eq (t → ∞).

Here, the longitudinal component of the spin operator relaxes from the initial

equilibrium value
〈
ŜZ

〉
I

to the final equilibrium value
〈
ŜZ

〉
II

, the intervening

transient being described by an appropriate relaxation function
〈
ŜZ

〉
(t) −

〈
ŜZ

〉
II

(see Fig. 14). The transient response so formulated is truly nonlinear because the
change in amplitude HI −HII of the external dc magnetic field is arbitrary (the lin-
ear response can be regarded as the particular case |HI − HII| → 0). Here, the
azimuthal angle dependence of the distribution function WS may be ignored. Thus,
the master equation (407) becomes the single-variable Fokker–Planck equation

∂WS

∂t
= ∂

∂z

(
D2(z)

∂WS

∂z
+ D1(z)WS

)
, (419)

where z = cos ϑ ,

D1(z) = S(1 − z2)

τN
sinh

ξ

2S
, (420)

D2(z) = (1 − z2)

2τN

(
cosh

ξ

2S
+ z sinh

ξ

2S

)
, (421)

0 t

H

HII
HI

II
ŜZ

ˆ (t)SZ

0 t

I
ŜZ

Figure 14. Schematic representation of the nonlinear transient response.
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τN = 1/(2D⊥) is the characteristic time of the free rotational “diffusion” of the
spin, and the dimensionless field parameter ξ is defined as follows:

ξ = βμ0μHII. (422)

Hitherto, the explicit expressions (Eqs. 420 and 421) for D1(z) and D2(z)
for spins subjected to a dc magnetic field H0 have been obtained (as we have
just seen) by starting from the evolution equation for the density matrix ρ̂S

giving rise to lengthy calculations. However, these equations can also be obtained
in far simpler fashion merely by knowing the functional form of the master
equation (419) and the equilibrium phase space distribution Wξ

eq(z) for spins.
To illustrate this, we shall again select the extension to the semiclassical case
of the Ansatz of the imposition of a Boltzmann distribution originally used by
Einstein, Smoluchowski, Langevin, and Kramers to determine drift and diffusion
coefficients in the classical Brownian motion. We have already used this idea for
the quantum translational Brownian motion in Section II and in Ref. 48.

Thus, to determine D1(z) and D2(z) in Eq. (419) explicitly, we first recall that
the equilibrium distribution Wξ

eq(z) given by Eq. (287) with γX = γY = 0, namely,

Wξ
eq(z) =

sinh
(

1
2ξ/S

)
sinh

[(
S + 1

2

)
ξ/S
] (cosh

ξ

2S
+ z sinh

ξ

2S

)2S

(423)

must also be the equilibrium solution of the generic master equation (419), that is,
it must satisfy

∂

∂z

(
D2(z)

∂

∂z
Wξ

eq(z) + D1(z)W
ξ
eq(z)

)
= 0. (424)

Now one is at liberty to seek D1(z) and D2(z) in series form as

D1(z) =
(

1 − z2
) (

aS
0 + aS

1z + aS
2z2 + . . .

)
, (425)

D2(z) =
(

1 − z2
) (

bS
0 + bS

1z + bS
2z2 + . . .

)
. (426)

By substituting Eqs. (425) and (426) into Eq. (424), then if Wξ
eq(z) from Eq. (423)

is to satisfy Eq. (424), only the coefficients aS
0, bS

0, and bS
1 can be nonzero so that

D1(z) and D2(z) are, respectively,

D1(z) = 2SbS
0

(
1 − z2

)
tanh

ξ

2S

and

D2(z) = bS
0

(
1 − z2

)(
1 + z tanh

ξ

2S

)
.
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In order to determine the normalizing coefficient bS
0, we use the fluctuation–

dissipation theorem [75] along with the additional requirements that in the
classical limit S → ∞, D1(z) and D2(z) must reduce to their classical counterparts
for the rotational Brownian motion of a classical spin [5], namely,

D1(z) → ξ

2τN

(
1 − z2

)
and

D2(z) → 1

2τN

(
1 − z2

)
.

Thus, we obtain

bS
0 = 1

2τN
cosh

ξ

2S

so that D1(z) and D2(z) are given by the closed form equations (420 and 421). Now
in the derivation of D1(z) and D2(z), we have imposed the stationary solution of
the master equation as the equilibrium phase space distribution equation (423)
corresponding to the equilibrium density matrix ρ̂eq given by Eq. (274) describing
the system in thermal equilibrium without coupling to the thermal bath. However,
from the theory of open quantum systems [134], the equilibrium state, in general
may deviate from the equilibrium density matrix ρ̂eq; the latter describes the
thermal equilibrium of the system in the weak coupling and high-temperature
limits only. A detailed discussion is given, for example, by Geva et al. [162].
Nevertheless, the imposition of the phase space distribution equation (423) as the
equilibrium solution of Eq. (424), so yielding D1(z) and D2(z), appears to be the
exact analog of the Ansatz used by Gross and Lebowitz [132] in their formulation
of quantum kinetic models of impulsive collisions. According to Ref. [132], for
a system with a Hamiltonian Ĥ, the equation governing the time behavior of the
density matrix ρ̂S is Eq. (40), where the collision kernel operator St(ρ̂S) satisfies
the condition St(ρ̂eq) = 0. Equation (424) is entirely analogous to this condition.
Moreover, as we have seen in Section II.A.2, the condition St(ρ̂eq) = 0 was also
used by Redfield [14] to determine the matrix elements of the relaxation operator
in his theory of quantum relaxation processes.

The time-dependent solution of the axially symmetric evolution given by
Eq. (419) is obtained as usual by expanding the distribution function WS(z, t) in
Legendre polynomials Pn(z)

WS(z, t) = Wξ
eq(z) +

2S∑
n=0

(n + 1/2)Pn(z)fn(t), (427)

where

fn(t) = 〈Pn〉 (t) − 〈Pn〉ξeq
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are the relaxation functions, the angular brackets 〈〉 (t) and 〈〉ξeq designate statistical
averaging defined as

〈Pn〉 (t) =
(

S + 1
2

) 1�
−1

Pn(z) WS(z, t)dz (428)

and

〈Pn〉ξeq =
(

S + 1
2

) 1�
−1

Pn(z)W
ξ
eq(z)dz. (429)

In particular, Eqs. (429) and (431) yield the equilibrium average of P1(z), namely,

〈P1〉ξeq =
(

S + 1
2

) 1�
−1

zWξ
eq(z)dz = S

S + 1
BS (ξ) , (430)

where BS (ξ) is the Brillouin function defined by Eq. (278). The equilibrium
distribution Wξ

eq(z) can be equivalently defined as (cf. Eq. 307)

Wξ
eq(z) =

2S∑
n=0

(
n + 1

2

)
Pn(z) 〈Pn〉ξeq . (431)

Substituting Eq. (427) into Eq. (421) and using the orthogonality and recurrence
properties of Legendre polynomials Pn(z), we have as in the classical case [5] a
differential recurrence relation for the relaxation functions fn(t), namely, (cf. the
three-term recurrence relation given by Eq. 396)

τnḟn(t) = q−
n fn−1(t) + qnfn(t) + q+

n fn+1(t), (432)

where 1 ≤ n ≤ 2S,

f0(t) = f2S+1(t) = 0,

τn = 2τN

n(n + 1)
,

qn = − cosh
ξ

2S
,

q±
n = ∓2S ± n + (3 ± 1)/2

(2n + 1)
sinh

ξ

2S
.

Since the initial value of the distribution function is WS(z, 0) = Wξ+δ
eq (z), where

the transient parameter δ = βμ0μ (HII − HI), the initial values of the relaxation
function fn(t) are

fn(0) = 〈Pn〉ξ+δ
eq − 〈Pn〉ξeq . (433)
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Equation (432) is a quantum counterpart of the recurrence relation given by Eq.
(401) for a classical spin and has been solved in Refs. 38 and 39 for the particular
spin numbers S = 1/2, 1, and 3/2. Now, we give the exact solution for the transient
quantum nonlinear longitudinal relaxation governed by Eq. (432) for arbitrary S.

Using the one-sided Fourier transform, we have from Eq. (432)

(iωτn − qn) f̃n(ω) − q−
n f̃n−1(ω) − q+

n f̃n+1(ω) = τnfn(0), (434)

where

f̃n(ω) =
∞�
0

e−iωtfn(t)dt.

The inhomogeneous algebraic three-term recurrence equation (434) can be solved
exactly for the one-sided Fourier transform of the relaxation function f̃1(ω) using
continued fractions like the corresponding classical problem (see for details the
general solution of three-term recurrence relations given in Ref. [5], ch. 2),
yielding

f̃1(ω) = τN csch
ξ

2S

2S∑
n=1

fn(0)

n(n + 1)(S + 1)

n∏
k=1

q+
k−1

q−
k

�k(ω, ξ)

= τN csch
ξ

2S

2S∑
n=1

(−1)n+1 (2n + 1)(2S + n + 1)!(2S − n)!
n(n + 1) (S + 1) (2S + 1)!(2S)!

× fn(0)

n∏
k=1

�k(ω, ξ). (435)

Here, the finite continued fraction �n(ω, ξ) is defined by the two-term recurrence
relation

�n(ω, ξ) = q−
n

iωτn − qn − q+
n �n+1(ω, ξ)

with �2S+1(ω, ξ) = 0, moreover, we have the product

n∏
k=1

q+
k−1

q−
k

= (−1)n+1 (2n + 1)(2S + n + 1)!(2S − n)!
(2S + 1)!(2S)! .

The equilibrium averages 〈Pn〉ξeq, Eq. (429), can also be evaluated in terms of

the continued fraction �n(0, ξ) since 〈Pn〉ξeq satisfies the three-term recurrence
relation

q−
n 〈Pn−1〉ξeq + qn 〈Pn〉ξeq + q+

n 〈Pn+1〉ξeq = 0, (436)
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so that

�n(0, ξ) = 〈Pn〉ξeq

〈Pn−1〉ξeq

.

Consequently, we have

〈Pn〉ξeq =
n∏

k=1

�k(0, ξ). (437)

Equation (435) is the exact solution for the one-sided Fourier transform of the non-
linear relaxation function f1(t) in terms of continued fractions. Having determined
f1(t), various transient nonlinear responses of the longitudinal component of the
magnetic moment may always be evaluated because in terms of averages of spin
operators 〈

ŜZ

〉
(t) −

〈
ŜZ

〉
II

= (S + 1) f1(t), (438)

where in terms of the Brillouin function the final equilibrium value is〈
ŜZ

〉
II

= (S + 1) 〈P1〉ξeq = SBS (ξ) .

In particular, we mention the rise, decay, and rapidly reversing field transient
responses. The general relaxation equation (435) can often be simplified. For
example, to treat the rise transient we suppose that a strong constant field HII
is suddenly switched on at time t = 0 (so that HI = 0). Thus, we require the
nonlinear relaxation behavior of a system of spins starting from an equilibrium
state I with the isotropic distribution function W0

eq = 1/ (2S + 1) (t ≤ 0) to another

equilibrium state II with the final distribution function WHII
eq = Wξ

eq(z) (t → ∞).
Using Eq. (437), Eq. (435) simplifies to

f̃1(ω) = i

ω
[�1(0, ξ) − �1(ω, ξ)]

= i

ω

[
〈P1〉ξeq − �1(ω, ξ)

]
, (439)

yielding the spectrum of the relaxation function f̃1(ω) for the rise transient.

4. Nonlinear Longitudinal Relaxation Time

The overall transient behavior of the relaxation function f1(t) is characterized by
the integral relaxation time [5] (see Appendix E)

τint = 1

f1(0)

∞�
0

f1(t)dt = f̃1(0)

f1(0)
(440)
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(i.e., the area under the normalized relaxation function f1(t)/f1(0)), which can be
evaluated in series form from the zero frequency limit [5] of Eqs. (435) and (437) is

τint = τN csch
ξ

2S

2S∑
n=1

(−1)n+1(2n + 1)(2S + n + 1)!(2S − n)!fn(0) 〈Pn〉ξeq

n(n + 1) (S + 1) (2S + 1)!(2S)!f1(0)
.

(441)

Moreover, the latter result can also be written in an equivalent integral form
because the master equation (419) is actually just a single-variable Fokker–Planck
equation, which may be integrated by quadratures. Now for any system with
dynamics governed by a single-variable Fokker–Planck equation, for example,
Eq. (419), the integral relaxation time τint, characterizing the nonlinear relaxation
behavior of f1(t), can be obtained in integral form in terms of the equilibrium
distribution and the diffusion coefficient D2(z) only (see Appendix E for details)
[5]. Hence, with Eqs. (419) and (E.22), we have like the classical case [5] an exact
integral expression for τint, namely,

τint = 1(
S + 1

2

)
f1(0)

1�
−1

�(z)(z)

D2(z)W
ξ
eq(z)

dz, (442)

where

(z) =
(

S + 1
2

) z�
−1

(
x − 〈P1〉ξeq

)
Wξ

eq(x)dx,

�(z) =
(

S + 1
2

) z�
−1

[
Wξ+δ

eq (x) − Wξ
eq(x)

]
dx,

f1(0) = 〈P1〉ξ+δ
eq − 〈P1〉ξeq

= S

S + 1
[BS(ξ + δ) − BS(ξ)] .

For the limiting case S = 1/2, τint is independent of the parameter δ and is given by

τint = τN

cosh ξ
, (443)

while in the classical limit S → ∞, one has

τint = τNξ cschξ

〈P1〉ξ − 〈P1〉ξ+δ

1�
−1

φ(z)ψ(z)e−ξz

1 − z2 dz, (444)
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where

〈P1〉ξ = coth ξ − 1

ξ
,

φ(z) =
z�

−1

[
eξz′ − e(ξ+δ)z′

]
dz′,

ψ(z) =
z�

−1

(
cos z′ − 〈P1〉ξ

)
eξz′dz′

agreeing entirely with the established classical result (5, ch. 7).
Numerical calculations show that both the series expression equation (441) and

the integral equation (442) yield identical results. Thus, τint for various nonlinear
transient responses (i.e., the rise, decay, and rapidly reversing field transients)
may be easily evaluated from Eq. (442). The normalized relaxation time τint/τN

from Eq. (442) is plotted in Fig. 15 for various values of the transient strength δ,
the field strength parameter ξ , and spin number S. The figure indicates that the
relaxation time decreases with increasing field strength ξ with a strong dependence
on both Sand the transient strength δ. The nonlinear effect comprising accelerated
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Figure 15. (Color on line) Normalized relaxation time τint/τN from Eq. (442) as a function of
S (a) and ξ (b) for various values of δ (symbols). Dashed line: Eq. (447).
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relaxation in the external field also exists for classical dipoles [5]. An explanation
may be given as follows. In the absence of the field (ξ = 0), the relaxation time of
the spin is just the free-diffusion relaxation time τN so that τint = τN . However, in a
strong field (ξ >> 1) and S >> 1, the relaxation time of the spin is determined by
the damped diffusion of the spin in the field HII, and the characteristic frequency
is now the frequency of the spin oscillation about HII (in the vicinity of z = 0).
Thus, τint is of the order of ∼ 1/[2D1(0)] = τN/ξ so that

τint ∼ τN

ξ
. (445)

This asymptotic formula may be used to estimate τint for ξ >> 1 and δ > 0 and
|δ| << ξ . However, for δ ∼ −ξ , a more accurate formula is

τint ∼ τN

ξ − 1 − ξ(ξ + δ)
. (446)

The influence of the transient parameter δ entering into the relaxation time owing
to the initial distribution function Wξ+δ

eq is more pronounced for field strengths
ξ ∼ 2 ÷ 7 (see Fig. 15). The enhanced dependence of τint on δ for negative
values of δ can be understood because these situations correspond to the situation
of rise and rapidly reversing transients, where the initial and final distributions
differ considerably. As far as the spin dependence of τint for ξ >> 1 and δ > 0
and |δ| << ξ is concerned, a simple asymptotic formula for τint is (see Fig. 14)

τint ∼ 1

2D1(0)
= τN

2S
csch

ξ

2S
. (447)

5. Linear Response

Now using these results, we may also evaluate the linear response of a spin system
to infinitesimally small changes in the magnitude of the dc field HII. This is
of particular interest as the corresponding integral relaxation time now becomes
the correlation time, which has been previously evaluated [80–82] from the spin
density matrix. Thus, we again suppose that the uniform dc field HII is directed
along the Z-axis of the laboratory coordinate system and that a small probing field
H1, having been applied to the assembly of noninteracting spins in the distant
past (t = −∞) so that equilibrium conditions obtain at time t = 0, is suddenly
switched off at t = 0. Here, the normalized relaxation function f1(t)/f1(0) reduces
to the longitudinal equilibrium correlation function C(t), that is [33, 75],

C(t) = lim
δ→0

f1(t)

f1(0)
= 1

βχ

〈
β�
0

[
ŜZ(−iλh̄) −

〈
ŜZ

〉
II

] [
ŜZ(t) −

〈
ŜZ

〉
II

]
dλ

〉
II

,

(448)
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where χ is the static susceptibility defined in terms of the Brillouin function given
by Eq. (278) as follows:

χ = S2 ∂

∂ξ
BS(ξ) = 1

4

[
csch2

(
ξ

2S

)
− (2S + 1)2 csch2

(
2S + 1

2S
ξ

)]
. (449)

According to linear-response theory (see, e.g., Ref. 75 and Appendix D), the
dynamic susceptibility χ(ω) = χ ′(ω) − iχ ′′(ω) is defined as [75]

χ(ω)

χ
= 1 − iωC̃(ω), (450)

where C̃(ω) is the one-sided Fourier transform of C(t), namely,

C̃(ω) =
∞�
0

C(t)e−iωtdt. (451)

In linear response, the integral relaxation time, that is, the correlation time
τint|δ→0 = τcor = C̃(0) of C(t), follows from the general nonlinear equation (442)
in the limit of a very small transient strength parameter δ → 0 and is given by

τcor =
S(S + 1)

(
S + 1

2

)
χ

1�
−1

z�
−1

∂
∂ξ

Wξ
eq(x)dx

z�
−1

(
y − SBS(ξ)

S+1

)
Wξ

eq(y)dy

D2(z)W
ξ
eq(z)

dz, (452)

where

∂

∂ξ
Wξ

eq(z) = csch(ξ/2S) − (2S + 1) csch(ξ + ξ/2S)(cosh ξ − z sinh ξ)

2S[cosh(ξ/2S) + z sinh(ξ/2S)] Wξ
eq(z).

For the limiting case S = 1/2, τcor is equal to τint as yielded by the closed
expression equation (443), while in the classical limit S → ∞, Eq. (452) becomes

τcor = τNξ csch ξ

1 + ξ−2 − coth2 ξ

1�
−1

[
z − coth ξ + e−ξ(1+z)(1 + coth ξ)

]2 eξzdz

1 − z2

(453)

concurring with the result for classical spins [5, ch. 7]. As far as the spin number
dependence of τcor for ξ >> 1 is concerned, an asymptotic formula for τcor =
τint|δ→0 is given by Eq. (447). Generally, τcor varies smoothly from power law-
like behavior (τcor ∼ τN/ξ) as S → ∞ to exponential decrease τcor ∼ τN cschξ

for S = 1/2 and is plotted from the exact equation (452) in Fig. 16 as a function
of ξ for various S; the asymptotic equation (447) is also shown for comparison.

We remarked before that the linear response has been studied previously by
Garcia-Palacios and Zueco [81] using the spin density matrix. They also gave
an explicit expression for the linear-response integral relaxation time, which was
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Figure 16. Normalized correlation time τcor/τN of C‖(t) from Eq. (452) as a function of ξ for
various S (symbols). Dashed lines: Eq. (447) (Color on line).

first derived by Garanin [80]. He derived his formula pertaining to a uniaxial
nanomagnet in a uniform field with the Hamiltonian ĤS = −h̄ω0ŜZ −DŜ2

Z , which
is also valid in the limit D → 0, corresponding to our case. By applying his
method [80] to the symmetrized form of the collision kernel given by Eq. (558),
the corresponding equations are (see for details Section III.C.3, Eq. (521))

τint = 2τN〈
ŜZ

〉
I
−
〈
ŜZ

〉
II

S∑
k=1−S

S∑
m=k

(
ρI

m − ρII
m

) S∑
m′=k

(
m′ −

〈
ŜZ

〉
II

)
ρII

m′

[S(S + 1) − k(k − 1)]
√

ρII
k ρII

k−1

, (454)

τcor = 2τN

χ

S∑
k=1−S

(
S∑

m=k

(
m −

〈
ŜZ

〉
0

)
ρII

m

)2

[S(S + 1) − k(k − 1)]
√

ρII
k ρII

k−1

. (455)

where

ρi
n = eξin/S

S∑
m=−S

eξim/S

,
〈
ŜZ

〉
i
=

S∑
m=−S

mρi
m, χ =

S∑
m=−S

m2ρm −
〈
ŜZ

〉2
II

.

Although the integral and series expressions given by Eqs. (442), (452), (454), and
(455), respectively, have outwardly very different forms, nevertheless numerical
calculation shows that both yield identical results establishing an essential corol-
lary between the phase space and density matrix methods.
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6. Single-Mode Approximation

Although the continued fraction solution given before is effective in numerical
calculations, it has one significant drawback, namely, the qualitative behavior of
the system is not at all obvious in a physical sense. Thus, to gain a physical un-
derstanding of the relaxation process, we shall use the single-mode approximation
suggested by Shibata et al. [38, 39] and Kalmykov et al. [62] for the relaxation of
quantum and classical spins. We first recall that the spectrum f̃1(ω) from Eq. (435)
on Fourier inversion indicates that the time behavior of the relaxation function f1(t)
in general comprises 2S exponentials

f1(t) = f1(0)

2S∑
k=1

cke−λkt, (456)

where the λk are the eigenvalues of the tridiagonal system matrix X with the matrix
elements

(X)qp = δpq+1q−
p + δpqqp + δpq−1q+

p .

In the frequency domain, the corresponding spectrum f̃1(ω) is thus the series of
2S Lorentzians

f̃1(ω) = f1(0)

2S∑
k=1

ck

λk + iω
. (457)

According to Eq. (457), the finite number of relaxation modes (corresponding
to the eigenvalues λk) each contribute to the spectrum f̃1(ω). However, as we
shall see later, these near-degenerate individual modes are indistinguishable in
the spectrum f̃1(ω) appearing merely as a single band suggesting that f̃1(ω) may
be approximated by the single Lorentzian

f̃1(ω)

f1(0)
≈ τint

1 + iωτint
, (458)

where τint is given by Eq. (442). In the time domain, the single-mode approxima-
tion given by Eq. (458) amounts to the Ansatz that the relaxation function f1(t) as
determined by Eq. (456) (comprising 2S exponentials) may be approximated by a
single exponential, namely,

f1(t) ≈ f1(0)e−t/τint . (459)

Now, García-Palacios and Zueco [81, 82] have also used the single-mode
approximation to evaluate the linear response of an isotropic spin system. In linear
response, Eqs. (458) and (459) can be reformulated for the susceptibility χ(ω) and
correlation function C(t) as

C(t) ≈ e−t/τcor (460)
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and

χ(ω) ≈ χ

1 + iωτcor
, (461)

where τcor is given by Eq. (455).
In order to test the single-mode approximation, we plot in Fig. 17 the real

parts of the normalized spectra f̃1(ω)/f1(0) as calculated both from the exact
continued fraction solution (Eq. (435): solid lines) and from that approximation
equation (458). Clearly, no practical difference exists between the exact continued
fraction solution and the single-mode one (the maximum deviation between the
corresponding curves does not exceed a few percent). Like the classical case (see
5, ch. 7), the single-mode approximation is accurate because the finite number
(2S) of relaxation modes are near degenerate again appearing merely as a single
high-frequency band in the spectrum. Thus, they may be effectively approximated

3
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Figure 17. The real parts of the normalized spectra f̃1(ω)/f1(0) versus the normalized
frequency ωτN evaluated from the exact continued fraction solution (Eq. (435): solid lines) for (a)
S = 5, δ = 0.1, and various ξ and for (b) ξ = 3, δ = 0.1 and various S compared with those calculated
from the single Lorentzian approximation equation (458) (symbols).
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by a single mode, that is, both the linear and nonlinear longitudinal relaxation for
all S is accurately described by the Bloch equation

d

dt

〈
ŜZ

〉
(t) + 1

T‖

(〈
ŜZ

〉
(t) −

〈
ŜZ

〉
II

)
= 0, (462)

where T‖ = τint is the longitudinal relaxation time,
〈
ŜZ

〉
II

= SBS (ξ) is the

equilibrium average of the operator ŜZ , and BS (x) is the Brillouin function given
by Eq. (278).

We have treated nonlinear spin relaxation of noninteracting spins using phase
space quasiprobability density evolution equations in configuration space via
the extension of Wigner’s phase space formulation of quantum mechanics to
open systems. The calculations show that in particular limiting cases (e.g., the
correlation time given by Eq. (452)), the results reduce to established ones
obtained using the evolution equation for the density matrix in the second order
of perturbation theory in the spin–bath coupling. Thus, we have an important
check on the validity of our approach by demonstrating the equivalence of the
two methods. Both exact (continued fraction) and approximate (single-mode)
solutions are given. The continued fraction solution yields the dependence of the
longitudinal spin relaxation on the spin number S in closed form. This solution is
dominated by a single exponential having as time constant the integral relaxation
time τint, which strongly depends on both S and the field strength for arbitrary S.
Hence, an accurate description in terms of a Bloch equation holds even for the
nonlinear response of a giant spin.

Thus, we have explicitly demonstrated for noninteracting spins in an external
magnetic field that the existing methods of solution of the classical Fokker–
Planck equation (continued fractions, which can be evaluated by iterating a simple
algorithm, integral representation of relaxation times, and so on.) seamlessly carry
over to the quantum case. Again, the methods suggest new closed form quantum
results via the corresponding classical ones. An example being the quantum
integral relaxation time, Eq. (442). We have illustrated the phase space method
via the rudimentary problem of the longitudinal relaxation of a spin in a uniform
magnetic field of arbitrary strength directed along the Z-axis [the relaxation of
the transverse components of the magnetization can be treated in a like manner
using the master equation (405) and the associated quantum recurrence equation
(418)]. This problem is the simplest example of the phase space method for spins
and may be considered as the rotational analog of the Agarwal problem for the
translational harmonic oscillator model [120] described by the master equation
equation (168). Just as with translational oscillators, the phase space master equa-
tion (419) for spins has a Fokker–Planck equation form. This is not, however, true
in general, for example, for nonaxially symmetric magnetocrystalline anisotropy
and external field potentials, where the corresponding master equation may have
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a very complicated form. Nevertheless, the simple noninteracting spins problem
indicates how one may treat the influence of spin number S on the relaxation
behavior using the phase space method. A factor that is both essential in the
formation of magnetic clusters and for nanomagnets in the quest for macroscopic
quantum tunneling.

C. Longitudinal Relaxation of Uniaxial Nanomagnets

In contrast to the phase space approach used before, we shall now apply the
density matrix method. We shall consider a uniaxial nanomagnet of arbitrary spin
number S in an external constant magnetic field H applied along the Z-axis, that
is, the axis of symmetry, with the Hamiltonian ĤS defined by Eq. (370) with
σ = 0 and ξ = 0. Furthermore, we shall use the method in the form based
on the relation between the averages of polarization operators and the averages
of spherical harmonics as described in Section III.A.2 (see also Section II.A.4).
However, as mentioned earlier, Garanin and García-Palacios et al. [80–82] have
also treated a uniaxial nanomagnet in a uniform longitudinal field via the quantum
Hubbard operator representation of the evolution equation for the spin density
matrix. Now in the axially symmetric Hamiltonian equation (370), the diagonal
terms of the density matrix decouple from the non-diagonal ones. Hence, only the
former contribute to the time evolution of the longitudinal component of the spin
operator, so facilitating a treatment of the problem. Thus, in order to describe the
longitudinal relaxation of a uniaxial nanomagnet, in which case only the diagonal
terms of the density matrix are involved, the evolution equation (371) with the
collision kernel given by Eq. (375) simplifies to

∂ρ̂S

∂t
= − 1

τN

{
e
− σ

2S2 − ξ
2S

[
Ŝ−1e

− σ

S2 Ŝ0 ρ̂S, Ŝ+1

]
+ e

σ

2S2 + ξ
2S

[
Ŝ+1e

σ

S2 Ŝ0 ρ̂S, Ŝ−1

]}
.

(463)

This simplified method will be described in detail in Section III.C.2. Now, the
associated evolution equation for the phase space distribution function WS(z =
cos ϑ , t) corresponding to Eq. (371) is then given by Eq. (378), namely,

∂WS

∂t
= 1

2τN

∂

∂z

(
(1 − z2)

[
∂

∂z

(
R′(S)

+ WS

)
+ z

∂

∂z

(
R′(S)

− WS

)
+ 2SR′(S)

− WS

])
(464)

(because the azimuthal angle φ dependence of WS may be ignored in longitudinal
relaxation). In the classical limit, Eq. (464), further reduces to the Fokker–Planck
equation for a classical uniaxial nanomagnet in a dc magnetic field, namely
[5, 6, 23],

∂W

∂t
= 1

2τN

∂

∂z

[(
1 − z2

)(∂W

∂z
+ W

∂V

∂z

)]
, (465)

where V(z) = −σ z2 − ξz is the normalized classical free energy.‘
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1. Calculation of the Observables

As before, we suppose that the magnitude of an external uniform dc magnetic
field is suddenly altered at time t = 0 from HI to HII (the magnetic fields HI
and HII are applied parallel to the Z-axis of the laboratory coordinate system in
order to preserve axial symmetry). Thus, we study as in the classical case [5],
the nonlinear transient longitudinal relaxation of a system of spins starting from
an equilibrium state I, say with density matrix ρ̂I

eq (t ≤ 0) to a new equilibrium

state II, say with density matrix ρ̂II
eq (t → ∞), see Fig. 14. Simultaneously, the

longitudinal component of the spin
〈
ŜZ

〉
(t) relaxes from the equilibrium value〈

ŜZ

〉
I

to the new value
〈
ŜZ

〉
II

, the ensuing transient response being described by

the relaxation function
〈
ŜZ

〉
(t) −

〈
ŜZ

〉
II

. The transient response so formulated is

again truly nonlinear because the change in amplitude HI − HII of the external
dc magnetic field is now arbitrary (the linear response is the particular case
βμ0μ |HI − HII| → 0). Now, the equilibrium phase space distributions WI

eq

and WII
eq corresponding to the equilibrium spin density matrices ρ̂I

eq and ρ̂II
eq

comprise the appropriate stationary (time-independent) solutions of Eq. (464).
These equilibrium distributions have been extensively studied in Sec. II.D and
are given by Eq. (299), namely,

(S + 1/2)Wi
eq(ϑ) =

2S∑
L=0

(L + 1/2)〈PL〉iPL(cos ϑ), (466)

where i = I, II and 〈PL〉i are the equilibrium averages of the Legendre polynomials
PL defined by Eq. (300).

As far as the transient response is concerned, according to the multi-term
differential recurrence relation (389) for the relaxation functions cL(t)=〈
T̂(S)

L0

〉
(t)−

〈
T̂(S)

L0

〉
II

in terms of polarization operators, the behavior of any selected

cL(t) is coupled to that of all the others so forming as usual a finite hierarchy of
the averages of operators (because the index L ranges only between 0 and 2S).
The solution of such a multi-term recurrence relation may always be obtained (as
we saw) by rewriting it as a first-order linear matrix differential equation with
constant coefficients. Thus, we first construct the column vector C(t) such that

C(t) =

⎛
⎜⎜⎜⎝

c1(t)
c2(t)

...
c2S(t)

⎞
⎟⎟⎟⎠ . (467)

The column vector C(t) formed by Eq. (467) now contains just 2S rows (the index
L ranges between 1 and 2S) since the evolution equation for the function c0(t) is
simply ∂tc0(t) = 0 with the trivial solution c0(t) = const. The initial conditions
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for the relaxation functions cL(t) are

cL(0) =
〈
T̂(S)

L0

〉
I
−
〈
T̂(S)

L0

〉
II

. (468)

Hence, the matrix representation of the recurrence equations for the functions cL(t)
becomes the linear matrix differential equation

Ċ(t) + XC(t) = 0, (469)

where X is the 2S×2S system matrix with matrix elements given by

(X)n,m = −τ−1
N gS

n,m (470)

with gS
n,m given by Eq. (390). For example, for S = 1, the system matrix X takes

the simple two-by-two form

X = e−σ/2

τN

⎛
⎜⎝ cosh

ξII

2

1√
3

(2eσ − 1) sinh
ξII

2

−√
3 sinh

ξII

2
(2eσ + 1) cosh

ξII

2

⎞
⎟⎠ . (471)

Now, in general, the solution of the homogeneous matrix equation (469) is [96]

C(t) = e−XtC(0), (472)

which may be written in a more useful form as

C(t) = Ue−�tU−1C(0), (473)

where � is a diagonal matrix composed of the eigenvalues λ1, λ2, . . . λ2S of
the system matrix X and U is a right eigenvector matrix composed of all the
eigenvectors of X, namely,

U−1XU = �.

All the λk are real and positive. The one-sided Fourier transform of Eq. (472) also
yields the spectrum C̃(ω) of the column vector, namely,

C̃(ω) =
∞�
0

C(t)e−iωtdt = (X + iω I)−1 C(0). (474)

The function c̃1(0) is the first row of the column vector C̃(0) which itself in
accordance with Eq. (474) is given by

C̃(0) = (X)−1 C(0). (475)
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The formal matrix solutions (472) and (474) will then yield the longitudinal

relaxation function
〈
ŜZ

〉
(t) −

〈
ŜZ

〉
II

(cf. Eq. 86), namely,

〈
ŜZ

〉
(t) −

〈
ŜZ

〉
II

=
√

S(S + 1)(2S + 1)

3
c1(t), (476)

and its spectrum as well as the effective and integral relaxation times from their
definitions (see Appendix E and Ref. 5)

τef = −c1(0)

ċ1(0)
, (477)

τint = 1〈
ŜZ

〉
I
−
〈
ŜZ

〉
II

t�
0

[〈
ŜZ

〉
(t) −

〈
ŜZ

〉
II

]
dt = c̃1(0)

c1(0)
, (478)

where

c̃1(ω) =
∞�
0

c1(t)e
−iωtdt.

In accordance with the matrix Eqs. (473) and (475), the relaxation function c1(t)
and the effective integral relaxation times are given by [5]

c1(t) =
2S∑

k=1

u1krke−λkt, (479)

τef =

2S∑
k=1

u1,krk

2S∑
k=1

u1,krkλk

, (480)

τint =

2S∑
k=1

u1krkλ
−1
k

2S∑
k=1

u1krk

, (481)

where the ulk are the matrix elements of the eigenvector matrix U defined before
and rk are those of the associated column vector U−1C(0). As usual, both the
integral and effective relaxation times each contain contributions from all the
eigenvalues λk, and so they characterize the overall relaxation behavior, while
the inverse of the smallest nonvanishing eigenvalue λ1 characterizes the spin
reversal time. Furthermore, because the influence of the high-frequency relaxation
modes on the low-frequency relaxation may often be ignored, λ1 usually provides
adequate information concerning the low-frequency dynamics of the system (see
Section III.C.3).
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Obviously, the matrix method also allows us to evaluate the linear response of
a spin system due to infinitesimally small changes in the magnitude of the dc field,
evaluated in Refs. [80–82] via the spin density matrix. Thus, we again suppose that
the uniform dc field HII is directed along the Z-axis of the laboratory coordinate
system and that a small probing field H1 (H1 ‖ HII), having been applied to the
assembly of spins in the distant past (t = −∞) so that equilibrium conditions
obtain at time t = 0, is switched off at t = 0. The only difference lies in the
initial conditions. Instead of the general equation (468) pertaining to the transient
response of arbitrary strength, in linear response, ξI −ξII = ε << 1, they become

cL(0) =
〈
T̂(S)

L0

〉
(0) −

〈
T̂(S)

L0

〉
II

≈ ε

β
Tr

⎧⎨
⎩ρ̂II

eq

β�
0

Ŝ0(−iλh̄)dλ
(

T̂(S)
L0 −

〈
T̂(S)

L0

〉
II

Î(S)
)⎫⎬
⎭ . (482)

Here, we have used the following identity concerning an exponential function of
two operators [75]

eβ(â+b̂) = eβâ

⎛
⎝1 +

β�
0

e−λâb̂eλ(â+b̂)dλ

⎞
⎠ . (483)

Furthermore, c1(t)/c1(0) reduces to the normalized equilibrium longitudinal
correlation function C(t) given by [33,75] [cf. Eq. (448)]

C(t) = lim
ε→0

c1(t)

c1(0)

= 1

βχ

〈� β

0

[
ŜZ(−iλh̄) −

〈
ŜZ

〉
II

] [
ŜZ(t) −

〈
ŜZ

〉
II

]
dλ

〉
II

, (484)

where

χ = 1

β

〈� β

0

[
ŜZ(−iλh̄) −

〈
ŜZ

〉
II

] [
ŜZ(0) −

〈
ŜZ

〉
II

]
dλ

〉
II

≈
〈
Ŝ2

Z

〉
II

−
〈
ŜZ

〉2
II

(485)

is the normalized static susceptibility. Then, we have the dynamic susceptibility
χ(ω) = χ ′(ω) − iχ ′′(ω) [75], namely,

χ(ω)

χ
= 1 − iωC̃(ω), (486)
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where the one-sided Fourier transform C̃(ω) is defined by Eq. (451). We have also
as in the classical case [5] the integral and effective relaxation times,

τcor = C̃(0), (487)

τef = − 1

Ċ(0)
, (488)

which now represent the characteristic times governing the behavior of the
autocorrelation function C(t).

According to the formal definitions embodied in Eqs. (479) and (486), the
dynamic susceptibility is once more a finite sum of Lorentzians, namely,

χ(ω)

χ
=

2S∑
p=1

cp

1 + iω/λp
, (489)

where

cp = u1, prp

2S∑
m=1

u1,mrm

and

2S∑
p=1

cp = 1.

Moreover, in the low- (ω → 0) and high- (ω → ∞) frequency limits, the behavior
of the dynamic susceptibility can be easily evaluated as in the classical case [5].
For example by means of Eqs. (481) and (480), we have from the general equation
(489) for the limits ω → 0 and for ω → ∞, respectively

χ(ω) ≈ χ (1 − iωτcor + . . .) , ω → 0, (490)

χ(ω) ∼ χ
(
iωτef

)−1 + . . . , ω → ∞. (491)

Furthermore, the equilibrium averages
〈
ŜZ

〉
I
,
〈
ŜZ

〉
II

, and
〈
Ŝ2

Z

〉
II

can all be expressed

in terms of either the density matrix or the phase space distribution as

〈
ŜZ

〉
i
=

S∑
m=−S

mρi
m, (492)

〈
Ŝ2

Z

〉
i
=

S∑
m=−S

m2ρi
m, (493)
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〈
ŜZ

〉
i
=
(

S + 1
2

)
(S + 1)

1�
−1

zWi
S(z)dz, (494)

〈
Ŝ2

Z

〉
II

=
(

S + 1
2

)
(S + 1)

1�
−1

[
(S + 3

2 )z2 − 1
2

]
WII

S (z)dz, (495)

because the Weyl symbols of the operators ŜZ and Ŝ2
Z are, respectively,

SZ = (S + 1) cos ϑ

and

S2
Z = (S + 1)

[
(S + 3

2 ) cos2 ϑ − 1
2

]
.

Our method allows one to calculate numerically the integral (τef and τcor),
effective (τef ), and longest (τ = 1/λ1) relaxation times as well as the dynamic
susceptibility χ(ω) for a uniaxial nanomagnet. Moreover, all these observables
can be calculated analytically.

2. Analytic Equations for the Characteristic Relaxation Times
and Dynamic Susceptibility

Although, in general, the method of determining observables based on the corre-
spondence between averages of polarization operators discussed in Sections II.A.4
and III.A.2 circumvent the phase space equation a much simpler method of treating
axially symmetric problem exists. This is so because as already mentioned, for
the axially symmetric Hamiltonian equation (370), the diagonal elements of the
density matrix decouple from the non-diagonal ones. Hence, only the former
contribute to the time evolution, so forming the basis of our simple treatment
which we now explain. To appreciate this, we first transform the reduced density
matrix evolution equation (463) into an evolution equation for its individual
matrix elements. Thus, we have directly from Eq. (463) a three-term differential
recurrence equation for the diagonal matrix elements ρm = ρmm of the density
matrix, namely,

τN
∂ρm(t)

∂t
= q−

mρm−1(t) + qmρm(t) + q+
mρm+1(t), t > 0, (496)

where m = −S, −S + 1, . . . , S,

qm = −a−
me

−(2m−1) σ

2S2 − ξII
2S − a+

me
(2m+1) σ

2S2 + ξII
2S , (497)

q±
m = a±

me
∓(2m±1) σ

2S2 ∓ ξII
2S , (498)

a±
m = −S∓1

mm±1S±1
m±1m = (S ∓ m)(S ± m + 1)/2. (499)
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Here

S±1
m±1m = ∓√(S ∓ m)(S ± m + 1)/2

(cf. Eq. A.7) are the matrix elements of the spherical spin operators Ŝ±1. Equation
(496) is accompanied by the initial condition ρm(0) = ρI

m. Because of our usual
Ansatz that the equilibrium spin density matrix ρ̂eq must render the collision kernel

zero, substitution of the final equilibrium matrix element ρII
m = eσm2/S2+ξIIm/S/ZII

S

with partition function ZII
S = ∑S

m=−S eσm2/S2+ξIIm/S into the right-hand side of
Eq. (496) requires

q−
mρII

m−1 + qmρII
m + q+

mρII
m+1 = 0. (500)

Consequently, ρII
m is by inspection the stationary solution of Eq. (496).

To determine the integral relaxation time as defined by Eq. (478), we introduce
the set of relaxation functions fm(t) defined by

fm(t) = ρm(t) − ρII
m. (501)

Then, the fm(t) also satisfy the recurrence equation (496) with the initial conditions

fm(0) = ρI
m − ρII

m. (502)

Because

〈
ŜZ

〉
(t) −

〈
ŜZ

〉
II

=
S∑

m=−S

mfm(t)

and 〈
ŜZ

〉
(0) −

〈
ŜZ

〉
II

=
〈
ŜZ

〉
I
−
〈
ŜZ

〉
II

,

the Fourier–Laplace transform c̃1(ω)/c1(0) of the normalized relaxation function
c1(t)/c1(0) is

c̃1(ω)

c1(0)
= 1〈

ŜZ

〉
I
−
〈
ŜZ

〉
II

S∑
m=−S

mf̃m(ω), (503)

so that the integral relaxation time is as usual by definition (cf. Eq. 478)

τint = 1〈
ŜZ

〉
I
−
〈
ŜZ

〉
II

S∑
m=−S

mf̃m(0), (504)
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where

〈
ŜZ

〉
i
=

S∑
m=−S

mρi
m. (505)

The spectrum c̃1(ω)/c1(0) and the integral relaxation time τint can now be
calculated analytically using continued fractions, which starting from Eq. (496) we
describe as follows. For convenience, we first introduce a new index n defined as
n = m+S. Thus, the differential recurrence equation (496) can then be rearranged
as one for the relaxation functions fn(t) defined by Eq. (501), namely,

τN
∂fn
∂t

= p−
n fn−1 + pnfn + p+

n fn+1, (506)

where the new coefficients p±
n and pn are (cf. Eqs. 497–499)

pn = −n(2S − n + 1)

2
e
−(2n−2S+1) σ

2S2 − ξII
2S

− (n + 1)(2S − n)

2
e
(2n−2S+1) σ

2S2 + ξII
2S (507)

p+
n = 1

2
(2S − n)(n + 1)e

−(2n−2S−1) σ

2S2 − ξII
2S , (508)

p−
n = n

2
(2S − n + 1)e

(2n−2S−1) σ

2S2 + ξII
2S . (509)

Consequently, the new recurrence relation given Eq. (506) can be written in the
homogeneous matrix form

τN Ḟ(t) = � · F(t), (510)

where the column vector F(t) and the tridiagonal system matrix � are

F(t) =

⎛
⎜⎜⎜⎝

f0(t)
f1(t)

...
f2S(t)

⎞
⎟⎟⎟⎠ , (511)

� =

⎛
⎜⎜⎜⎜⎝

p0 p+
0 0 . . . 0

p−
1 p1 p+

1 . . .
...

...
...

...
. . . p+

2S−1
0 . . . 0 p−

2S p2S

⎞
⎟⎟⎟⎟⎠ . (512)

The tridiagonal system matrix � has exactly the same eigenvalues as the actual
system matrix X given by Eq. (470) except that it possesses an additional zero



SPIN RELAXATION IN PHASE SPACE 183

eigenvalue λ0 = 0 corresponding to the thermal equilibrium state. Clearly, the
matrix recurrence given by equation (510) could again be solved numerically
by the matrix methods described in Section II.A.4. Rather, we prefer to obtain
the exact analytic solution in terms of continued fractions. Applying the general
method of solution of inhomogeneous three-term recurrence relations to the
Fourier–Laplace transform of the scalar equation (506) [5, section 2.7.3], we have
the solution

f̃n(ω) = �n(ω)p−
n f̃n−1(ω) + τN

(
p+

n−1

)−1
2S∑

l=n

l∏
k=n

(
p+

k−1�k(ω)
)
fl(0), (513)

where �n(ω) are the continued fractions defined by the two-term recurrence
equation

�n(ω) = 1

iωτN − pn − p+
n p−

n+1�n+1(ω)

with 0 ≤ n ≤ 2S and �2S+1(ω) = 0. The spectrum c̃1(ω)/c1(0) from the
definition Eq. (503) is then given by

c̃1(ω)

c1(0)
= 1〈

ŜZ

〉
I
−
〈
ŜZ

〉
II

2S∑
n=1

nf̃n(ω). (514)

For ω = 0, Eq. (513) simplifies yielding the two-term recurrence equation

f̃n(0) = dnf̃n−1(0) + rn, (515)

where the coefficients are

dn = e
(2n−2S−1) σ

S2 + ξII
S ,

rn = 2τNe
(2n−2S−1) σ

2S2 + ξII
2S

n(2S − n + 1)

2S∑
l=n

fl(0)

because �n(0) = (
p+

n−1

)−1
. However, the three-term recurrence equations for

the relaxation functions defined by Eq. (506) are no longer linearly independent,
because the determinant of the matrix � generated from Eq. (506) is zero
(det � = 0). Thus, all the subsequent f̃n(0) needed to calculate the integral
relaxation time can be determined only in terms of f̃0(0). However, in order to
calculate f̃0(0), we can now utilize the normalization properties of the density
matrix, namely,

S∑
m=−S

fm(t) =
S∑

m=−S

(
ρm(t) − ρII

m

)
= 0,
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so that

S∑
m=−S

f̃m(0) = 0. (516)

Now because of Eqs. (515) and (516), we have the identity

f̃0(0) +
2S∑

n=1

(
dnf̃n−1(0) + rn

)

= f̃0(0) + d1 f̃0(0) + r1 +
2S∑

n=2

(
dndn−1 f̃n−2(0) + dnrn−1 + rn

)
(517)

= f̃0(0) + f̃0(0)

2S∑
n=1

n∏
l=1

dl +
2S∑

n=1

rn

dn

2S∑
k=n

k∏
l=n

dl = 0,

where the products are given by

1

dn

k∏
l=n

dl = e
(k−S)2 σ

S2 +(k−S)
ξII
S

e
(n−S)2 σ

S2 +(n−S)
ξII
S

,

n∏
l=1

dl = eξII−σ e
(n−S)2 σ

S2 +(n−S)
ξII
S .

However,

e
(2k−1) σ

2S2 + ξII
2S =

√√√√ ρII
k

ρII
k−1

, (518)

so that Eq. (517) immediately yields a closed form expression for f̃0(0), namely,

f̃0(0) = −2τNeσ−ξII

Z

S∑
k=1−S

S∑
m=k

(
ρI

m − ρII
m

) S∑
j=k

ρII
j

[S(S + 1) − k(k − 1)]
√

ρII
k ρII

k−1

. (519)

Thus, we have

2S∑
n=1

nf̃n(0) = f̃0(0)eξII−σ
〈
ŜZ

〉
II

+
2S∑

n=1

rne
−(n−S)2 σ

S2 −(n−S)
ξII
S

2S∑
k=n

ke
(k−S)2 σ

S2 +(k−S)
ξII
S . (520)
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Hence, by substituting Eqs. (519) and (520) into the definition equation (504), we
finally have the integral relaxation time rendered in explicit series form as follows:

τint =

2S∑
n=1

nf̃n(0)〈
ŜZ

〉
I
−
〈
ŜZ

〉
II

= 2τN〈
ŜZ

〉
I
−
〈
ŜZ

〉
II

S∑
k=1−S

S∑
m=k

(
ρI

m − ρII
m

) S∑
j=k

(
j −
〈
ŜZ

〉
II

)
ρII

j

[S(S + 1) − k(k − 1)]
√

ρII
k ρII

k−1

. (521)

Both the eigensolution given by the formal equation (481) and the explicit equation
(521) as determined from the definition of the integral relaxation time via the zero-
frequency limit of the normalized relaxation function c̃1(ω)/c1(0) yield exactly
the same numerical result. Thus, τint for various nonlinear transient responses (i.e.,
the rise, decay, and rapidly reversing field transients) may be easily evaluated
from the explicit equation (521). Equation (521) is also valid for an arbitrary
axially symmetric potential ĤS(ŜZ), because the precise form of the potential
is involved only in the equilibrium matrix elements of the density operator ρII

m

and in the averages
〈
ŜZ

〉
I

and
〈
ŜZ

〉
II

. Furthermore, it is useful to recall that in

the classical limit S → ∞, the nonlinear integral relaxation time τint of the
longitudinal relaxation function c1(t) = 〈cos ϑ〉 (t) − 〈cos ϑ〉II of a classical
uniaxial nanomagnet with a free energy density

βV(ϑ) = −σ cos2 ϑ − ξII cos ϑ (522)

is given by [5] (see Appendix D for details)

τint = 2τN

〈cos ϑ〉I − 〈cos ϑ〉II

1�
−1

�(z)(z)e−σ z2−ξIIz

1 − z2 dz, (523)

where

�(z) =
z�

−1

[WI(x) − WII(x)] dx

= π1/2e−σh2
II

2σ 1/2ZII

{
erfi[(z + hII)

√
σ ] +erfi[(1 − hII)

√
σ ] }

− π1/2e−σh2
I

2σ 1/2ZI

{
erfi[(z + hI)

√
σ ] +erfi[(1 − hI)

√
σ ]} ,
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(z) =
z�

−1

(x − 〈cos〉II)e
σ(x2+2hIIx)dx

= 1

2σ

[
eσ(z2+2hIIz) − eσ(1−2hII)

]
− eσ(1−h2

II)

√
π sinh(2σhII)

2
√

σ 3ZII

× { erfi[(z + hII)
√

σ ] +erfi[(1 − hII)
√

σ ] } ,

〈cos ϑ〉i = eσ sinh(2σhi)

σZi
− hi, (524)

Zi = e−σh2
i

2

√
π

σ

{
erfi[(1 + hi)

√
σ ] + erfi[(1 − hi)

√
σ ] } , (525)

where hi = ξi/(2σ) and the error function of imaginary argument erfi(x) is [105]

erfi(x) = 2√
π

x�
0

et2 dt. (526)

The nonlinear relaxation time τint for the rise transient response as a function of the
anisotropy parameter σ and the spin number S is plotted in Fig. 18, indicating a
pronounced dependence of this time on the field (ξII), anisotropy (σ), and spin
(S) parameters; in particular that time decreases with increasing field strength
ξII It is apparent from Fig. 18 that for large S, the quantum solutions reduce to
the corresponding classical ones. Typical values ofS for the quantum classical
crossover are ∼20–40. The smaller the anisotropy σ , the smaller the S value
required for convergence of the quantum equations to the classical ones.

In Fig. 19, we have plotted the real part of the normalized relaxation function
spectrum c̃1(ω)/c1(0) versus the normalized frequency ωτN for the rise transient
response, ξI = 0 → ξII = 0. Like the classical case [5], knowledge of λ1 alone is
enough to accurately predict the low-frequency part of c̃1(ω)/c1(0) as well as the
long-time behavior of the relaxation function c1(t)/c1(0). Here, the single-mode
approximation

c̃1(ω)

c1(0)
≈ τint

1 + iω/λ1
, (527)

where τint is given by Eq. (521) and λ1 is the smallest nonvanishing eigenvalue of
the system matrix X defined by Eq. (470), is shown for comparison indicating
that τint and λ1 comprehensively describe the low-frequency behavior of the
spectrum c̃1(ω)/c1(0) as in the classical case. In the time domain, the single-
mode approximation equation (527) amounts to assuming that the relaxation
function c1(t) as determined by Eq. (479) (comprising 2S exponentials) may be



SPIN RELAXATION IN PHASE SPACE 187

0 5 10 15 20
10−1

101

103

105

10−1

101

103

105

2 3 4

S =8
ξI= 0→ ξII

ξI= 0→ ξII = 6

σ

1: ξII=κ (κ →0)

2: ξII=2

3: ξII=4

4: ξII=6

1

(a)

0 5 10 15 20

4
3

σ

1: S = 5/2

2: S = 10

3: S = 20

4: S = 40

5: S → ∞ 

1

2

(b)

τ in
t/

τ N
τ in

t/
τ N

Figure 18. Nonlinear integral relaxation time τint/τN for the rise transient response as a
function of the barrier parameter σ (a) for S = 8, ξI = 0, and various ξII = κ → 0, 2, 4, 6; and
(b) for ξI = 0 and ξII = 6; and various values of spin S = 5/2, 10, 20, 40, and S → ∞. Solid lines:
calculations from Eq. (521); circles: Eq. (531) (Color on line).

approximated for t > 0 by a single exponential. Consequently, the long-time
relaxation behavior may once again be accurately approximated by a single
exponential with relaxation time T1 = 1/λ1, and thus is again governed by the
Bloch equation (462).

We may also evaluate the linear response of a uniaxial nanomagnet corre-
sponding to infinitesimally small changes in the magnitude of the dc field, so that
the integral relaxation time now becomes the correlation time. In linear response,
that is, considering transient relaxation between the states I and II with respective
Hamiltonians

ĤI
S = σ

S2
Ŝ2

Z + ξII + ε

S
ŜZ and ĤII

S = σ

S2
Ŝ2

Z + ξII

S
ŜZ ,

where ε is a small external field parameter, the initial conditions fm(0) and〈
ŜZ

〉
I
−
〈
ŜZ

〉
II

reduce to
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Figure 19. Real parts of the relaxation function spectrum c̃1(ω)/c1(0) versus the normalized
frequency ωτN for the rise transient response (a) for S = 8, σ =10, ξI = 0 and various ξII = κ →
0, 2, 4, 6; and (b) for ξI = 0, ξII = 6, S = 8, and various anisotropy parameters σ . Solid lines:
calculations from Eq. (474); stars: Eq. (527) (Color on line).

fm(0) = 1

ZI
S

e
σ

S2 m2+ ξII+ε

S m − 1

ZII
S

e
σ

S2 m2+ ξII
S m ≈ ε

S

(
m −

〈
ŜZ

〉
II

)
ρII

m, (528)

〈
ŜZ

〉
I
−
〈
ŜZ

〉
II

≈ ε

S
χ , (529)

where

χ =
〈
Ŝ2

Z

〉
II

−
〈
ŜZ

〉2
II

=
S∑

m=−S

m2ρII
m −

(
S∑

m=−S

mρII
m

)2

. (530)

Thus, in the limit ε → 0, Eq. (521) yields the correlation time τcor in the explicit
series form

τcor = 2τN

χ

S∑
k=1−S

(
S∑

m=k

(
m −

〈
ŜZ

〉
II

)
ρII

m

)2

[S(S + 1) − k(k − 1)]
√

ρII
k ρII

k−1

. (531)
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Equation (531) in the limit S → ∞ yields numerical results concurring with the
classical ones (cf. Eq. 552).

Furthermore, for the model embodied in Eq. (496), we can also calculate
the effective relaxation time τef given by Eq. (E.2). Thus, τef yielding precise
information on the initial decay of c1(t) in the time domain and defined as usual
by [5]

τef = −c1(0)

ċ1(0)
= −

S ∂ε

〈
ŜZ

〉
I

∣∣∣
ε=0

S∑
m=−S

mḟm(0)

= − χ

S∑
m=−S

mḟm(0)

, (532)

is given by

τef = 2χτN

S∑
k=1−S

[S(S + 1) − k(k − 1)]
√

ρII
k ρII

k−1

, (533)

where noting Eqs. (508), (509), and (528) we have used and that

S∑
m=−S

mḟm(0) =
2S∑

n=1

n
[
p−

n fn−1(0) + pnfn(0) + p+
n fn+1(0)

]

=
2S∑

n=1

[
(n − 1)p+

n−1ρ
II
n − np−

n ρII
n−1

]

= 1

2τN

S∑
k=1−S

[S(S + 1) − k(k − 1)]
√

ρII
k ρII

k−1.

Finally, the longest relaxation time τ , which is associated with the spin reversal
time, can be calculated via the smallest nonvanishing eigenvalue λ1 of the matrix
τ−1

N � given by Eq. (512) as τ = λ−1
1 from the deterministic equation

det
(
τ−1

N � − λI
)

= 0. (534)

The left-hand side of Eq. (534) represents the polynomial of the order 2S + 1,
namely,

(
k2S+1λ

2S + k2Sλ
2S−1 + · · · + k2λ + k1

)
λ = 0, (535)
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where

k1 = −
2S∑

i=0

Mi
i , (536)

k2 =
2S−1∑
i=0

2S∑
j=i+1

Mij
ij , (537)

and so on, and we have noted that det (�) = 0. Here, the Mi′
i are the first minors

of the matrix �, which are in turn the determinants of square matrices as reduced
from τ−1

N � by removing the ith row and the i′th column of τ−1
N � while the

Mi′j′
ij are the minors of the matrix τ−1

N � which are the determinants of the square

matrix reduced from τ−1
N � by removing two (the ith and the jth) of its rows and

two (the i′th and the j′th) columns. Now the smallest nonvanishing eigenvalue
λ1 can be readily evaluated numerically from Eq. (534), for example, using
MATHEMATICA. However, in the high-barrier approximation when λ1 << 1, it
can be evaluated analytically by neglecting all higher-powers of λn with n > 2 in
Eq. (535). Thus, we have

λ1 ≈ −k1

k2
. (538)

Equation (538) can be written equivalently in matrix form as

λ1 ≈ Tr
(
M(1)

)
Tr
(
M(2)

) , (539)

where M(1) is the matrix formed from the all first minors

M(1) =

⎛
⎜⎜⎜⎝

M2S
2S M2S−1

2S . . . M0
2S

M2S
2S−1 M2S−1

2S−1 . . . M0
2S−1

...
...

. . .
...

M2S
0 M2S−1

0 . . . M0
0

⎞
⎟⎟⎟⎠ , (540)

and the matrix M(2) contains all the Mi′j′
ij minors

M(2) =

⎛
⎜⎜⎜⎜⎜⎝

M2S,2S−1
2S,2S−1 M2S,2S−2

2S,2S−1 . . . M0,0
2S,2S−1

M2S,2S−1
2S,2S−2 M2S,2S−2

2S,2S−2 . . . M0,0
2S,2S−2

...
...

. . .
...

M2S,2S−1
0,0 M2S,2S−2

0,0 . . . M0,0
0,0

⎞
⎟⎟⎟⎟⎟⎠ . (541)
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The matrices M(1) and M(2) have, respectively, the dimensions n×n and n(n−1)/

2 × n(n − 1)/2, where n = 2S + 1. Furthermore, the ordering of the elements in
the matrix M(2) is such that reading across or down the final matrix the successive
lists of positions appear in lexicographic order. Now, Tr

(
M(1)

)
and Tr

(
M(2)

)
can

be calculated analytically as

Tr
(

M(1)
)

= (−1)2S

τ 2S
N

2S∑
i=0

i∏
s=1

p−
s

2S−1∏
r=i

p+
r = (2S)!

22Sτ 2S
N

2S∑
i=0

e
(i2−2iS) σ

S2 +(i−S)
ξII
S

= (2S)!
22Sτ 2S

N

S∑
k=−S

e
(k2−S2) σ

S2 +k
ξII
S = (2S)!e−σ

22Sτ 2S
N

ZS (542)

and

Tr
(

M(2)
)

= (−1)2S+1

τ 2S−1
N

2S−1∑
i=0

2S∑
j=i+1

⎛
⎝ i∏

s=1

p−
s

2S−1∏
r=j

p+
r

j−i∑
m=1

j∏
u=j+2−m

p−
u

j−m−1∏
v=i

p+
v

⎞
⎠

= (2S)!e−σ

22S−1τ 2S−1
N

S−1∑
k=−S

S∑
n=k+1

n−k∑
m=1

× e
[2k2−2n−1+2m(2n−m+1)] σ

2S2 +(2k+2m−1)
ξII
2S

(S + n − m + 1)(S − n + m)
. (543)

Here, we have noted that
b∏

m=a
p±

m = 1 if b < a. Thus in the high-barrier

approximation, the longest relaxation time τ ≈ λ−1
1 is given by the following

approximate equation:

τ ≈ 2τN

ZS

S−1∑
k=−S

S∑
n=k+1

n−k∑
m=1

e
[2k2−2n−1+2m(2n−m+1)] σ

2S2 +(2k+2m−1)
ξII
2S

(S + n − m + 1)(S − n + m)
. (544)

We remarked before that the linear response has been previously studied by
Garanin [80] and Garcia-Palacios and Zueco [81] using the spin density matrix
whereby they also gave analytic expressions for τcor, τef , and τ ≈ λ−1

1 for
more general models of linear and bilinear spin–bath interactions with superohmic
damping. Using Garanin’s method [80], the longest relaxation time τ can be found
in a similar manner for the model embodied in Eq. (496) yielding

τ = 2τN

χ�

S∑
k=1−S

(
S∑

m=k

(
m −

〈
ŜZ

〉
II

)
ρII

m

)(
k−1∑

m=−S
[� − sgn(m − mb)] ρII

m

)

[S(S + 1) − k(k − 1)]
√

ρII
k ρII

k−1

,

(545)
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where mb is the quantum number corresponding to the top of the barrier, with

� =
S∑

m=−S

sgn(m − mb)ρ
II
m

and

χ� =
S∑

m=−S

msgn(m − mb)ρ
II
m −

(
S∑

m=−S

mρII
m

)(
S∑

m=−S

sgn(m − mb)ρ
II
m

)
.

Furthermore, via the replacement k + 1 → k and then via

S∑
m=k

(
m −

〈
ŜZ

〉
II

)
ρII

m = −
k−1∑

m=−S

(
m −

〈
ŜZ

〉
II

)
ρII

m,

one can rearrange Eq. (545) as follows:

τ = 2τN

χ�

S−1∑
k=−S

(
k∑

m=−S

(
m −

〈
ŜZ

〉
II

)
ρII

m

)(
k∑

m=−S
[sgn(m − mb) − �] ρII

m

)

[S(S + 1) − k(k + 1)]
√

ρII
k ρII

k+1

.

(546)

For ξII < σ , the relative deviation of τ given Eq. (546) from λ−1
1 calculated

numerically does not exceed 1%.
All the foregoing expressions have been derived via the density matrix method.

They can also be obtained using the phase space formalism, thereby exemplifying
how they may reduce to the classical expressions. For example, τef as rendered by
Eq. (533) can be written as

τef = 2τNeξ/(2S)

〈
Ŝ2

Z

〉
II

−
〈
ŜZ

〉2
II〈

Ŝ2 − Ŝ2
Z + ŜZ

〉
II

, (547)

where
〈
ŜZ

〉
II

and
〈
Ŝ2

Z

〉
II

can also be given via the phase space equations (494 – 495)

and the denominator is given by the phase space average

〈
Ŝ2 − Ŝ2

Z + ŜZ

〉
II

= (S + 1)
(

S + 1
2

) 1�
−1

[
S
(

1 − z2
)

+ 1
2 + z − 3

2 z2
]

WII
S (z)dz,

(548)

on recalling that the Weyl symbol of the operator Ŝ2 − Ŝ2
Z + ŜZ is

Ŝ2 − Ŝ2
Z + ŜZ → (S + 1)

[
S
(

1 − cos2 ϑ
)

+ cos ϑ − 3

2
cos2 ϑ + 1

2

]
. (549)
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Clearly, Eq. (547) is simply a quantum analog of the long-established equation
for the longitudinal effective relaxation time τef of classical macrospins, namely
[5, 6],

τef = 2τN

〈
cos2 ϑ

〉
II − 〈cos ϑ〉2

II

1 − 〈cos2 ϑ
〉
II

, (550)

where

〈
cos2 ϑ

〉
II

= 1

ZII

1�
−1

x2eσ(x2+2hIIx)dx

= eσ [cosh(2σhII) − h sinh(2σhII)]
σZII

+ h2
II − 1

2σ
(551)

and 〈cos ϑ〉II and the partition function ZII are defined by Eqs. (524) and (525),
respectively. Furthermore, the corresponding integral (correlation) time τcor is
given by [5, 6, 151, 153]

τcor = 2τN

ZII
(〈

cos2 ϑ
〉
II − 〈cos ϑ〉2

II

)
×

1�
−1

⎡
⎣ z�

−1

(x − 〈cos ϑ〉II) eσ(x2+2hIIx)dx

⎤
⎦2

eσ(z2+2hIIz)

1 − z2 dz. (552)

For linear response, the correlation time τcor and overbarrier time λ−1
1 are plotted

in Fig. 20 as a function of the field parameter h = ξII/(2σ) and the barrier height
parameter σ for S = 10. Like the classical case, the behavior of τcor and λ−1

1 is
similar only for small external fields. In a strong external field, h ≥ 0.2, 1/λ1 can
diverge exponentially from τcor. This divergence effect for a classical uniaxial
nanomagnet was discovered numerically by Coffey et al. [152] and was later
explained quantitatively by Garanin [153] (Ref. 5, ch. 1). He showed analytically
that the contribution of relaxation modes other than the overbarrier one to either
the integral relaxation time becomes significant for high external fields due to
population depletion of the shallower of the two potential wells of a bistable
potential under the action of an external applied field. The field is far less than
that needed to destroy the bistable nature of the potential [5]. Furthermore, τcor

and 1/λ1, are also plotted in Fig. 21 as a function of S for various values of ξII
and σ . Clearly, even for relatively small S ∼ 20, the quantum formulas are very
close to the classical ones.

In Figs. 22 and 23, we show the real and imaginary parts of the dynamic
susceptibility χ(ω)/χ . Clearly, like the classical case, two bands appear in the
spectrum of the imaginary part −Im [χ(ω)]. The low-frequency band is due to the
slowest “overbarrier” relaxation mode and can be described by a single Lorentzian.
The characteristic frequency and the half-width of this band are determined by λ1.
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Figure 20. The correlation time τcor (Eq. (531); dashed lines), the inverse of the smallest
eigenvalue λ1 (filled circles) and its approximation τ (Eq. (545); solid line) (a) as a function of the
barrier height parameter σ for various field parameters h = ξII/(2σ) and (b) as a function of the field
parameter h for various σ (S = 10) (Color on line).

The high-frequency band of −Im [χ(ω)] is due to high-frequency well modes
corresponding to the near-degenerate eigenvalues λk (k ≥ 2). These individual
“intrawell” modes are again indistinguishable in the spectrum of −Im [χ(ω)]
appearing merely as a single high-frequency Lorentzian band. Thus, like in the
classical case [5], we may describe the behavior of χ(ω) via the two-mode
approximation [5], that is, by supposing that it is given as a sum of two Lorentzians,
namely,

χ(ω)

χ
≈ 1 − δ

1 + iωτ
+ δ

1 + iωτW
, (553)

where τW is a characteristic relaxation time of the near-degenerate high-
frequency well modes and δ in the present context is a parameter characterizing
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Figure 21. Correlation time τcor/τN (a), (b) and (λ1τN )−1 (c), (d) versus the spin number S
for various field parameters ξII for anisotropy barrier parameter σ =10 and for different σ and field
parameters ξII = 5. Dashed lines: classical limit (Color on line).
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Figure 22. Normalized susceptibility χ(ω)/χ , Eq. (489), versus ωτN for barrier parameter
σ = 10, the uniform field parameter ξII = 0 (symmetrical wells), and various spin numbers S. Asterisks:
the two-mode approximation, Eq. (553). Straight dashed lines: the high-frequency asymptote, Eqs.
(491) and (533). Stars: the classical limit, Eqs. (491) and (550) (Color on line).

the contribution of these high-frequency modes to the susceptibility defined
as [155]

δ =
τcor
τ

+ τ
τef

− τcor
τef

− 1
τcor
τ

+ τ
τef

− 2
, τW = τcor − τ

1 − τ
τef

(554)

and τcor, τef , and τ ≈ λ−1
1 are given by the quantum expressions of Eqs. (531),

(533), and (546), respectively. The parameters δ and τW in Eqs. (553) and (554)
have been determined by imposing the condition that the approximate two-mode
equation (553) must obey the exact asymptotic equations (490 and 491). Now
the longest relaxation time τ must be related to the frequency ωmax of the low-
frequency peak in the magnetic loss spectrum −Im[χ(ω)], where it attains a
maximum, and/or the half-width �ω of the spectrum of the real part of the
susceptibility Re[χ(ω)] via

τ ≈ ω−1
max ≈ �ω−1. (555)

In the low-frequency region (ωτ ≤ 1), where the effect of the high-frequency
modes may be ignored, χ(ω) may be approximated as follows:

χ(ω)

χ
≈ 1 − iωτint

1 + iωτ
. (556)
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Figure 23. The normalized susceptibility χ(ω)/χ , Eq. (489), versus normalized frequency ωτN
for barrier parameter σ =10, the uniform field parameter ξII = 3 and various spin numbers S. Asterisks:
the two-mode approximation, Eq. (553). Straight dashed lines: the high-frequency asymptote as
rendered by Eq. (491) and the effective relaxation time by Eq. (533). Stars: the classical limit as
rendered by Eq. (491) and the effective relaxation time Eq. (550).

We remark that Garcia-Palacios and Zueco [82] have shown that the two-mode
approximation that was originally developed for classical systems [5, 155] ac-
curately describes the linear response of quantum uniaxial nanomagnets at all
frequencies of interest.

In order to illustrate the accuracy of the two-mode approximation for the
quantum behavior, we plot in Figs. 22 and 23 the real and imaginary parts of
χ(ω)/χ as calculated from the matrix solution, Eq. (489), representing a finite
sum of Lorentzians and the approximate two-mode equation (553) for zero dc
field, ξII = 0 (symmetrical wells) and for nonzero dc field, ξII = 3 (asymmetrical
wells). It is apparent from Figs. 22 and 23 that at low frequencies, no practical
difference exists between the numerical solution and the two-mode approximation
(the maximum relative deviation between the corresponding curves does not
exceed a few percent). In the classical limit, S → ∞, the axially symmetric
Hamiltonian equations (370 or 557) correspond to a free energy Vgiven by Eq.
(522). Here, both τcor and τef can be expressed in closed form, namely Eqs. (552)
and (550). The classical limit is also shown in Figs. 22 and 23 for comparison.



198 YURI P. KALMYKOV, WILLIAM T. COFFEY, AND SERGUEY V. TITOV

We have studied here the transient nonlinear longitudinal relaxation of a
quantum uniaxial nanomagnet of arbitrary spin S in the high-temperature and weak
spin–bath coupling limit. The principal result is that one may once again determine
the transition from quantum elementary spin relaxation to the classical superpara-
magnetic relaxation pertaining to a giant classical spin as a function of the spin
number S. Furthermore, one may accurately estimate the value of S (typically in
the range 20–40) wherein the crossover to classical superparamagnetic behavior
takes place. Thus, one may assign a range of validity as a function of the spin
number S to the classical Néel–Brown treatment of magnetic nanoparticles with
the simplest uniaxial magnetocrystalline anisotropy and Zeeman energy given
earlier. The exact continued fraction solution based on the diagonal elements
of the density matrix yields in closed form the dependence of the longitudinal
spin relaxation function on the spin number S, which is dominated by a single
exponential with time constant the longest relaxation time 1/λ1. Thus, a simple
description of the long-time behavior of the longitudinal relaxation function as a
Bloch equation again holds for the nonlinear response of a quantum nanomagnet
for arbitrary spin S. In linear response, the approach so developed reproduces the
results (with some modifications due to the symmetrized collision kernel used)
previously obtained by Garanin [80] and Garcia-Palacios and Zueco [81, 82].

We have treated the longitudinal relaxation in two superficially distinct ways;
the phase space formalism embodied in the Wigner–Stratonovich bijective map-
ping and the density matrix. The high-temperature and weak spin-bath coupling
limit-being understood in each case. Thus, we have provided a vital check on
the validity of both methods by explicitly demonstrating their equivalence. Again,
we emphasize that a very useful feature of the phase space representation is
that existing powerful computational techniques for the Fokker–Planck equation
may be extended to the quantum domain, which also suggest new closed form
quantum results via corresponding classical ones. For example, the integral and
effective relaxation times, Eqs. (521) and (547), are clearly quantum analogs of
the corresponding classical expressions given by Eqs. (523) and (550).

Next, we shall apply our methods to the nonlinear ac stationary responses
of quantum nanomagnets by generalizing the known solutions for classical
spins driven by a strong ac field to treat quantum effects in their ac nonlinear
response [5, ch. 9]. The investigation is prompted by the fact that it has been
shown experimentally (see e.g., Ref. 163) for the molecular magnet Mn12 with
S = 10 that the nonlinear susceptibility of quantum nanomagnets differs from that
of classical spins.

3. Nonlinear Longitudinal Relaxation in Superimposed
ac and dc Magnetic Fields

Now the spin reversal process in quantum systems with finite spin number S has
a strong field dependence causing nonlinear effects in the dynamic susceptibility
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[68], stochastic resonance [69], and so on. In general, the nonlinear response to
an external field poses an extremely difficult problem because the response now
always depends on the precise nature of the stimulus [5]. Thus, no unique response
function valid for all stimuli exists unlike in linear response. These difficulties
are compounded in quantum systems so that the literature available on them is
relatively sparse. The nonlinear longitudinal relaxation of a quantum nanomagnet
arising from a sudden change in the magnitude of a strong external dc field was
treated in Section III.C.2 using an evolution equation for the reduced density
matrix. The solution of the evolution equation was then written as a finite series of
the polarization operators, where the coefficients of the series (statistical averages
of the polarization operators) were found from differential recurrence relations.
Moreover, it was shown that the matrix solution simplifies for axially symmetric
Hamiltonians Eq. (557) because the diagonal terms of the density matrix decouple
from the non-diagonal ones so that only the former partake in the time evolution.
We now show how this technique is also applied to the nonlinear dynamic magnetic
susceptibility of a quantum nanomagnet with arbitrary S in superimposed ac and dc
magnetic uniform fields amounting to the calculation of the nonlinear ac stationary
response of the nanomagnet to an arbitrary ac field in the presence of the thermal
agitation. Now calculations of the nonlinear ac response of quantum uniaxial
nanomagnets have hitherto been made via perturbation theory (e.g., Ref. 163)
by supposing that the potential energy of a spin in external magnetic fields is
less than the thermal energy so that a small parameter exists. In the response to
an ac field of arbitrary strength, however, such small parameters do not exist.
The approach we shall use is, in some respects, analogous to that used in Ref.
164 for nonlinear dielectric relaxation behavior of polar molecules in a strong ac
electric field and in Refs. 165 and 166 for the nonlinear magnetization relaxation of
magnetic nanoparticles in superimposed ac and dc magnetic fields. The difference
as usual is that for a finite spin number S the solution of the evolution equation is
rendered as a finite sum of spherical harmonics in contrast to the classical case,
where the solution of the evolution equation involves an infinite sum of them. We
shall, in particular, demonstrate that our quantum results in the classical limit,
S → ∞, correspond to those of Ref. 165. Moreover, for small values of the
ac applied fields (linear response), they agree with the results of Section III.C.2
calculated via the switch-off of a small longitudinal uniform field.

As an explicit example, we consider a uniaxial nanomagnet of arbitrary spin
number Ssubjected to both a uniform external magnetic field H0 and to an ac
external field H(t) applied along the Z-axis, that is, the axis of symmetry. The
Hamiltonian ĤS has the axially symmetric form (cf. Eq. 370)

βĤS(t) = − σ

S2
Ŝ2

Z − ξ0 + ξ cos ωt

S
ŜZ , (557)

where σ is again the dimensionless anisotropy parameter, and ξ0 = βSh̄γ H0 and
ξ = βSh̄γ H are the dc bias and ac field parameters, respectively. This Hamiltonian
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as before comprises a uniaxial anisotropy term plus the Zeeman term, representing
as usual a generic model for quantum spin relaxation phenomena in molecular
magnets, nanoclusters, and so on.

The density matrix evolution equation describing the longitudinal relaxation
of a uniaxial nanomagnet with the Hamiltonian defined by Eq. (557) is similar to
Eq. (463) and is given by

∂ρ̂S

∂t
= − 1

τN

{
e
− σ

2S2 − ξ0+ξ cosωt
2S

[
Ŝ−1e

− σ

S2 Ŝ0 ρ̂S, Ŝ+1

]

+ e
σ

2S2 + ξ0+ξ cosωt
2S

[
Ŝ+1e

σ

S2 Ŝ0 ρ̂S, Ŝ−1

]}
. (558)

For our purposes, the use of the symmetrized form of collision kernel equation
(558) is very significant as it allows a correct description of the harmonics of
spectral moments in the nonlinear response when an ac stimulus is imposed,
namely the absence of the even harmonics for symmetric double-well potentials.
Here, the magnitude of the ac field ξ is supposed to be so large that the energy of
a spin is either comparable to or higher than the thermal energy kT, that is, ξ ≥ 1,
so that one always faces with an intrinsically nonlinear problem which is solved
as follows.

We recall that for axially symmetric Hamiltonians such as that given by
Eq. (557), the transformation of the evolution equation for the density matrix
ρ̂S into differential recurrence equations for its individual matrix elements can
be radically simplified because the diagonal entries of ρ̂S decouple from the
non-diagonal ones. Hence, only the former contribute to the longitudinal spin
relaxation. As before, we have from Eq. (558) the following three-term differential
recurrence equation for the diagonal entries ρm = ρmm (cf. Eqs. 496–498)

τN
dρm(t)

dt
= q−

m(t)ρm−1(t) + qm(t)ρm(t) + q+
m(t)ρm+1(t), (559)

where m = −S, −S+1, . . . , S, τN = (2D⊥)−1 is the characteristic (free diffusion)
time, and now the time-dependent coefficients are as follows:

qm(t) = −a−
me

−(2m−1) σ

2S2 − ξ0+ξ cosωt
2S − a+

me
(2m+1) σ

2S2 + ξ0+ξ cosωt
2S , (560)

q±
m(t) = a±

me
∓(2m±1) σ

2S2 ∓ ξ0+ξ cosωt
2S , (561)

a±
m = (S ∓ m)(S ± m + 1)/2. (562)

Since we are solely concerned with the ac response corresponding to the stationary
state, which is independent of the initial conditions, in calculating the longitudinal
component of the magnetization defined as
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〈
ŜZ

〉
(t) =

S∑
m=−S

mρm(t), (563)

we may seek the diagonal elements ρm(t) as the Fourier series, namely,

ρm(t) =
∞∑

k=−∞
ρk

m(ω)eikωt. (564)

According to Eqs. (563) and (564),
〈
ŜZ

〉
(t) is then automatically rendered as a

Fourier series, namely,

〈
ŜZ

〉
(t) =

∞∑
k=−∞

Sk
Z(ω)eikωt, (565)

where the amplitudes Sk
Z(ω) are themselves given by the finite series

Sk
Z(ω) =

S∑
m=−S

mρk
m(ω). (566)

Next, the time-dependent coefficients qm(t) and q±
m(t) in Eqs. (560) and (561) can

also be expanded into the Fourier series using the known Fourier–Bessel expansion
[105]

e± ξ
2S cosωt =

∞∑
k=−∞

Ik

(
± ξ

2S

)
eikωt, (567)

where Ik(z) are the modified Bessel functions of the first kind [105]. Thus, by direct
substitution of Eq. (564) and the Fourier series for qm(t) and q±

m(t) into Eq. (559),
we obtain a recurrence relation between the Fourier coefficients ρk

m(ω), namely,

ikωτNρk
m(ω) =

∞∑
k′=−∞

{
a−

me
σ(2m−1)

2S2 + ξ0
2S Ik−k′

(
ξ

2S

)
ρk′

m−1(ω)

+ a+
me

− σ(2m+1)

2S2 − ξ0
2S Ik−k′

(
− ξ

2S

)
ρk′

m+1(ω)

−
[

a−
me

− σ(2m−1)

2S2 − ξ0
2S Ik−k′

(
− ξ

2S

)

+ a+
me

σ(2m+1)

2S2 + ξ0
2S Ik−k′

(
ξ

2S

)]
ρk′

m (ω)

}
. (568)
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The recurrence relation given by Eq. (568) can be solved exactly for ρk
m(ω) via

matrix continued fractions as follows. By introducing the column vector

ρn =

⎛
⎜⎜⎜⎜⎜⎜⎝

...
ρ−1

n (ω)

ρ0
n(ω)

ρ1
n(ω)

...

⎞
⎟⎟⎟⎟⎟⎟⎠

, (569)

(n = m + S), we have the following matrix recurrence equation between the ρn,
namely,

Q−
n ρn−1 + Qnρn + Q+

n ρn+1 = 0, (570)

where the matrix elements of the infinite matrices Qn and Q±
n are given by

[Qn]k,k′ = −iωτNkδkk′ − a+
n e

(2n−2S+1) σ

S2 + ξ0
S Ik−k′

(
ξ

2S

)

− a−
n e

−(2n−2S−1) σ

2S2 − ξ0
2S Ik−k′

(
− ξ

2S

)
,

[
Q±

n

]
k,k′ = a±

n e
∓(2n−2S±1) σ

2S2 ∓ ξ0
2S Ik−k′

(
∓ ξ

2S

)
.

Now according to the general method of solution of three-term recurrence relations
[5, 71], all higher order column vectors ρn defined by Eq. (569) can be expressed
in terms of the lowest order column vector ρ0 as

ρn = SnSn−1 . . . S1ρ0, (571)

where the Sm are finite matrix continued fractions defined by the matrix recurrence
relation

Sm = [−Qm + Q+
mSm+1

]−1 Q−
m . (572)

Now the zero-order column vector ρ0 itself can be found from the normalization
condition for the density matrix elements, namely,

2S∑
n=0

ρn(t) =
∞∑

k=−∞

2S∑
n=0

ρk
n(ω) eiωkt = 1 (573)

thereby immediately yielding the inhomogeneous equation for ρ0, namely,

2S∑
n=0

ρn = (I + S1 + S2S1 + · · · + S2S · · · S2S1)ρ0 = v, (574)
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where I is the unit matrix and the infinite column vector v has only the single
nonvanishing element vk = δk0, −∞ < k < ∞. Consequently, we have

ρ0 = (I + S1 + S2S1 + . . . + S2S . . . S2S1)
−1 v. (575)

Having calculated the zero-order column vector ρ0, we can then determine via Eq.
(571) all the other column vectors ρn, and thus we can evaluate, all the Sk

Z(ω) from
Eq. (566) yielding the nonlinear stationary ac response of a uniaxial nanomagnet.

Initially, we treat the frequency-dependent fundamental component of the
magnetization S1

Z(ω) in Eq. (565). For a weak ac field, ξ → 0, the normal-
ized fundamental component S1

Z(ω)/S1
Z(0) yields the normalized linear dynamic

susceptibility, namely,

S1
Z(ω)

S1
Z(0)

→ χ(ω)

χ
, (576)

concurring with the linear-response solution given in Section III.C.3. In strong
ac fields, ξ > 1, like in linear response, two distinct absorption bands again
appear in the spectrum of −Im[S1

Z(ω)/S1
Z(0)] so that two accompanying disper-

sion regions occur in the spectrum of Re[S1
Z(ω)/S1

Z(0)]. However, due to the
pronounced nonlinear effects, the low-frequency parts of Re[S1

Z(ω)/S1
Z(0)] and

−Im[S1
Z(ω)/S1

Z(0)] may no longer be approximated by a single Lorentzian (see
Fig. 24). Nevertheless, the frequency ωmax of the maximum loss and/or the half-
width �ω of the spectrum of Re[S1

Z(ω)/S1
Z(0)] may still be used to estimate an

effective reversal time τ as defined in Eq. (555). The behavior of the low-frequency
peak of −Im[S1

Z(ω)/S1
Z(0)] as a function of the ac field amplitude crucially

depends on whether or not a dc field is applied. For strong dc bias, ξ0 > 1 (see
Fig. 24), the low-frequency peak shifts to lower frequencies reaching a maximum
at ξ ∼ ξ0, thereafter shifting to higher frequencies with increasing ξ0. In other
words, as the dc field increases, the reversal time of the spin initially increases and
having attained its maximum at some critical value ξ ∼ ξ0 thereafter decreases.
For small dc bias, ξ0 < 0.5, the low-frequency peak shifts monotonically to higher
frequencies with increasing ξ . This behavior is very similar to that that observed
in the classical case [165, 166].

Now a striking feature of the nonlinear response is that the effective reversal
time may also be evaluated from either the spectrum of the (now) frequency-
dependent dc component S0

Z(ω) (only for nonzero dc bias, ξ0 = 0) or those of
the higher order harmonics Sk

Z(ω) with k > 1 because the low-frequency parts
of these spectra are themselves, like the spectra of the fundamental, dominated
by overbarrier relaxation processes. For illustration, the real and imaginary parts
of the normalized second and third harmonic components S2

Z(ω)/S2
Z(0) and

S3
Z(ω)/S3

Z(0) are shown in Fig. 25. Like the fundamental, the behavior of both
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−Im
[
S2

Z(ω)/S2
Z(0)

]
and −Im

[
S3

Z(ω)/S3
Z(0)

]
depends on whether or not a dc field

is applied. For weak dc bias, ξ0 < 0.5, on the one hand, the low-frequency peak
shifts monotonically to higher frequencies. For strong dc bias, ξ0 > 1, on the other
hand, the low-frequency peak shifts to lower frequencies reaching a maximum at
ξ ∼ ξ0, thereafter decreasing with increasing ξ .

Thus, in the nonlinear relaxation of a uniaxial quantum nanomagnet with
arbitrary spin number S subjected to superimposed ac and dc magnetic fields in
the high-temperature and weak spin–bath coupling limit, we may determine once
again the transition from elementary spin relaxation to that pertaining to a giant
spin as a function of the spin number S. Here, only uniaxial nanomagnets have
been treated. Those with nonaxially symmetric anisotropies (cubic, biaxial, and so
on.) can be considered in a like manner but with considerably more mathematical
manipulation.

4. Dynamic Magnetic Hysteresis

We recall that nanoparticle magnetism has many novel applications, particularly
in the (applied) area of information storage [167] and in medicine, for example, in
hyperthermia occasioned by induction heating of nanoparticles [168, 169] with the
dynamic magnetic hysteresis (DMH) induced in nanomagnets by an external ac
field constituting a topic of special interest, which we now study in the quantum
case. Here, the temperature directly influences the re-magnetization conditions,
strongly affecting the effective rates, so altering the loop shape, coercive force,
and specific power loss in nanomagnets. The theory of DMH in single-domain
magnetically isotropic nanoparticles subjected to thermal fluctuations having
been proposed by Ignachenko and Gekht, [170] was later extended to uniaxial
superparamagnetic particles with moderate to high internal barriers [171–175].
Our approach as applied to quantum spins is analogous to that of Refs. [174]
and [175] for DMH of single-domain ferromagnetic particles, where perturbation
theory cannot be used. For purposes of exposition, we take a uniaxial nanomagnet
of arbitrary spin number Ssubjected to uniform external magnetic field H0 and ac
external field H(t) applied along the Z-axis, that is, the axis of symmetry, with the
Hamiltonian ĤS given by the axially symmetric equation (557). Again, our results
will coincide with the classical ones in the limit S → ∞.

The stationary ac response of the longitudinal component
〈
ŜZ
〉
(t) was treated in

Section III.C.3 and is given by Eq. (565). Now, the DMH loop represents a para-
metric plot of the normalized magnetization as a function of the ac field, that is,

m(t) =
〈
ŜZ

〉
(t)/S vs. h(t) = H (t) /H = cos ωt.

Just as in the classical case [172–174], the normalized area of the DMH loop An

(which is the energy loss per particle and per cycle of the AC field) is given by
the exact equation
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An = 1

4H

�
m(t)dH(t) = − π

2S
Im
[
S1

Z(ω)
]

. (577)

In Figs. 26–32, we show the effects of ac and dc bias magnetic fields on the DMH
loops in a uniaxial nanomagnet with arbitrary S. For a weak ac field, ξ → 0,
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various spin numbers S =3/2 (1: short-dashed lines), 4 (2: solid lines), 10 (3: dashed-dotted lines), 20
(4: dashed lines), and ∞ (asterisks) at ωτN = 10−4, ξ0 = 0, and ξ = 9 (Color on line).
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and low frequencies, ωτ ≤ 1, the DMH loops are ellipses with normalized area
An given by Eq. (577), with the behavior of An ∼ −Im

[
S1

Z(ω)
] ∼ χ ′′(ω) being

similar (cf. Eq. 577) to that of χ ′′(ω) (see Figs. 22 and 23). Indeed, the two-mode
approximation for the susceptibility given by Eq. (553) implies that the overall
relaxation process consists of two distinct entities, namely, the slow thermally
activated overbarrier (or interwell) process and the fast intrawell relaxation in the
wells. Now, at low frequencies and for large barriers between the wells, only the
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first term on the right-hand side in Eq. (556) for −Im
[
S1

Z(ω)
]

need be considered.
Furthermore, for weak dc bias fields, ξ0/(2σ) << 1, the approximation δ ≈ 1
may always be used in Eq. (553) so that the normalized magnetization m(t) =〈
ŜZ

〉
(t)/S is given by the simple linear-response formula [174]

m (t) = 1

S

〈
ŜZ

〉
0
+ χξ

S

cos ωt + ωτ sin ωt

1 + ω2τ 2
. (578)
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If we introduce the variables x and y defined as

x = h(t) = cos ωt and y =
Sm(t) −

〈
ŜZ

〉
0

χξ
,

we can then conclude from Eq. (578) that in the linear-response approximation, a
low-frequency DMH loop in the (x, y) plane is an ellipse, namely, [174]

x2 + 1

ω2τ 2

[(
1 + ω2τ 2

)
y − x

]2 = 1. (579)

This ellipse is centered at (0, 0) and its major axis is inclined to the x-axis at an
angle 1

2 arctan
[
2/(ωτ)2

]
.

For moderate ac fields, 0.5 < ξ ≤ 1, the DMH loops still have approximately
an ellipsoidal shape implying that only a few harmonics actually contribute to
the weakly nonlinear response. In contrast, in strong ac fields, ξ > 1, the shape
alters substantially, and so the normalized area An now exhibits a pronounced
dependence on the frequency ω and the ac and dc bias field amplitudes ξ and ξ0
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as well as on the anisotropy parameter σ and the spin number S (see Figs. 26–29).
In this regime, the external ac field is able to saturate the paramagnet magnetic
moment as well as induce its inversion (i.e., switching between the directions of
the easy axis). In Figs. 25 and 26, we plot the loops for various S and anisotropy (σ)

and ac field (ξ) parameters exemplifying how their shapes (and consequently their
areas) alter as these parameters vary. Clearly, the re-magnetization time is highly
sensitive to variations of these parameters. For example, with a strong ac driving
field, the Arrhenius dependence of the reversal time on temperature log τ ∝ 1/T ,
which accurately accounts for the linear-response regime, is modified because the
strong ac field intervenes so drastically reducing the effective response time of the
nanomagnet. Thus, the nonlinear behavior facilitates re-magnetization regimes,
which are never attainable with weak ac fields, the reason being that the dc bias
component under the appropriate conditions efficiently tunes this effect by either
enhancing or blocking the action of the strong ac field. The pronounced frequency
dependence of the loops is highlighted in Fig. 28 for various S. At low frequencies,
the field changes are quasiadiabatic, so that the magnetization reverses due to the
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cooperative shuttling action of thermal agitation combined with the ac field. The
dc bias field effects on the DMH are illustrated in Fig. 29 showing the changes in
the DMH caused by varying ξ0 for various spin numbers S. In order to understand
the effect of the dc bias field on the loop area, one must first recall that the
magnetic relaxation time depends on the actual value of the applied field. Under
the conditions of Fig. 29, the positive limiting (saturation) value of m(t) → 1
corresponds to a total field H0 + H, thus favoring the magnetization relaxation to
the positive saturation value m(t) → 1. However, for negative h(t), the total field
H0 −H is much weaker, and so cannot induce relaxation to the negative saturation
value m(t) → −1. Therefore, the “center of area” of the loop moves upward. In
the classical limit, S → ∞, our results concur with those for classical uniaxial
nanomagnets [175].

The temperature dependence of the DMH is governed by the dimensionless
anisotropy (inverse temperature) parameter σ ∝ 1/T . The normalized DMH area
An as a function of σ−1 is shown in Fig. 30 for various S, showing that the tuning
action of the dc bias field described before is effective over a certain temperature
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interval. This conclusion once again indicates that the relaxation of the magnetiza-
tion is mostly caused by thermal fluctuations, implying that the magnetic response
time still retains a corresponding strong temperature dependence. The normalized
area as a function of the frequency ω and ac field parameter ξ/(2σ) is shown
in Figs. 31 and 32, respectively. Clearly, An can invariably be represented as a
nonmonotonic curve with a maximum the position of which is determined by S as
well as by the other model parameters. The peak in An (Fig. 31) is caused by the
field-induced modifications of the reversal time as strongly tuned by the dc bias
field. As in Fig. 31, variation of the dc field strength shifts the frequency, where the
maximum is attained, by several orders of magnitude. The normalized loop area
presented in Fig. 32 illustrates the dependence of An on the ac field amplitude,
which is similar to that of classical nanomagnets.

The DMH in uniaxial nanomagnets has been treated already without any
a priori assumptions regarding the potential barrier height, temperature, the
magnetizing field strength, and/or spin number S. In general, it appears that
given appropriate conditions, a small bias dc field (in comparison with the
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internal anisotropy field) can profoundly affect the shape of the DMH loops in
nanomagnets accompanied by a strong dependence on the spin number S.

5. Quantum Effects in Stochastic Resonance

Yet another aspect of the Brownian motion of particles and spins in a potential is
the stochastic resonance (SR) [175] whereby a weak periodic forcing synchronized
with the thermally activated hopping of particles or spins between the wells greatly
enhances the rate of switching between them. The archetypal theoretical model
of SR [5, 176] is the motion of a heavily damped (so that inertial effects can
be ignored) Brownian particle in a bistable potential V(q) subjected to noise
arising from a thermal bath (see Fig. 33). If we now apply a weak periodic
forcing f0 cos �t of frequency �, the double-well potential will be tilted up and
down, thereby periodically raising and lowering the potential barriers �V [176].
Consequently, if � is close to the rate of transitions (escape rates) between the
wells despite the fact that the amplitude of the periodic forcing is insufficient to
induce the transitions by itself alone, noise-induced hopping between potential
wells may become synchronized with it so facilitating the transition. This statistical
synchronization takes place when the average waiting (escape) time between two
noise-induced transitions is comparable with half the period τ� = 2π/� of
the periodic forcing. Consequently, switching may occur only by the combined
effect of the regular ac force and the noise. The spectral density �(ω) of the
motion at the forcing frequency ω = � is then evaluated, and the resulting
SNR (or the spectral power amplification coefficient) is analyzed as a function
of the noise intensity D. Now, the curve of SNR versus D has a bell-like
shape, that is, it passes through a maximum thus exhibiting stochastic resonance.
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Figure 33. Double-well potential as used in stochastic resonance [5]. The minima are located
at A and B. In the absence of a periodic forcing function (b), the barrier heights �V1 and �V2 are
equal to �V , so that the potential is symmetric. The periodic forcing function causes the double-well
potential to tilt back and forth, thereby raising and lowering the potential barriers of the right and left
wells, respectively, in an antisymmetric cyclic fashion: (a) and (c).
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The maximum in the SNR is interpreted as being due to the remarkable ability of
noise to enhance the intensity of the interwell hopping in the system. Stochastic
resonance is, therefore, an important effect allowing one to control the behavior
of periodic signals passing through noisy systems. As a manifestation of cross-
coupling between stochastic and regular motions, the SR effect is universal in
physics (e.g., optics, mechanics of solids, superconductivity, and surface science),
communications engineering (optimal detection and tracing of signals) as well as
in various branches of chemistry and biology. Comprehensive reviews of diverse
aspects of SR are available in Refs. 176–178.

Now the behavior of magnetic nanosystems (i.e., magnetic nanoparticles,
nanoclusters, and molecular magnets) forced by a weak ac magnetic field is yet
another important manifestation of SR. Here, the magnetic anisotropy provides
the multistable states for the magnetization M, while the thermal fluctuations
or random field due to the bath, which is in perpetual thermal equilibrium at
temperature T , are the source of the noise. These conditions give rise to magnetic
stochastic resonance which again may be defined as the enhancement of the SNR
due to noise [179]. The magnetic SR was first predicted theoretically [180–182]
and shortly afterward observed experimentally [183]. The SNR of the magnetic
moment fluctuations is of some interest in information storage and in the crossover
between classical and quantum behavior of the magnetization since we saw
that single-domain particles exhibit essentially classical behavior, while smaller
entities such as free nanoclusters made of many atoms, molecular clusters, and
molecular magnets exhibit pronounced quantum behavior.

The main features of the magnetic SR in single-domain particles (classical
spins) [184–188] may be completely understood in terms of the classical Brown
(macrospin) model [23, 24]. Here, each particle behaves like a paramagnetic atom
having a magnetic moment ∼104 – 105μB, that is., S ∼ 104 −105. In the presence
of a dc bias field H0, the normalized magnetic free energy density V of a uniaxial
nanomagnet is given by the asymmetric bistable potential

βV(ϑ) = −σ
(
cos2 ϑ + 2h cos ϑ

)
, (580)

where σ = vK/(kT) is the dimensionless barrier height parameter, v is the volume
of the particle, K is the anisotropy constant, and h = μ0MSH0/(2K) is the bias
field parameter (MS is the saturation magnetization). Without the dc field, the
magnetization of the uniaxial particle has two equivalent stable orientations at
ϑ = 0 and ϑ = π , so that it is an ideal example of a bistable system subjected to
noise. Here, the reversal of the classical spin is due to thermal activation and the
rate of transitions between the potential wells is controlled by the anisotropy or
inverse temperature parameter σ . Thus, one may regard 1/σ as the dimensionless
temperature, that is, the noise intensity. A dc bias field H0 when applied to
the particle parallel to its anisotropy axis breaks the bidirectional symmetry of
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the potential. However, an asymmetric two-minima profile of the potential V(ϑ)

survives as long as the bias field parameter h ≤ 1. Now for h = 0, the basic
concept of magnetic stochastic resonance has been well described by Raikher and
Stepanov [184]. In the presence of noise, a weak alternating spatially uniform
field of frequency � favoring the transitions between two equilibrium positions at
ϑ = 0, π is applied. Under these conditions, the SNR determined from the spectral
density �M(ω) of the magnetic moment (i.e., the frequency response to the applied
field), evaluated at the frequency � of the weak applied ac field, first increases with
increasing noise strength kT, then on attaining a pronounced maximum, finally
decreases again. This is the (magnetic) stochastic resonance effect, whereby the
periodic response in both amplitude and phase may be manipulated by altering the
noise strength.

In contrast to the classical case, in magnetic SR of nanomagnets with smaller
spin numbers S ∼ 10–100 both quantum effects and quantum-classical crossover
appear. Here, the spin reversal is either due to thermal activation or tunneling or
a combination of both. The quantum effects are not the same as those in the SR
for translational Brownian motion (see, e.g., Refs. 189, 190 and references cited
therein) because despite some analogies the quantum spin dynamics essentially
differs from those of Brownian particles owing to the different symmetries of the
rotational and translational groups. Here, we shall treat quantum effects in the
SR for magnetic spin systems modeled by a uniaxial nanomagnet of arbitrary
S in superimposed dc and ac external uniform magnetic fields H0 + H cos �t
applied along the Z-axis, that is, the axis of symmetry, so that the time-dependent
Hamiltonian ĤS is (cf. Eq. 557)

βĤS(t) = − σ

S2 Ŝ2
Z − ξ0 + ξ cos �t

S
ŜZ , (581)

where σ is the anisotropy constant, ξ0 and ξ are the external dc and ac magnetic
field parameters. The longitudinal relaxation of uniaxial nanomagnets interacting
with a thermal bath has been treated in Section III.C via the respective evolution
equations for the reduced density matrix and phase space distribution function
using the methods already available for classical spins. In the large spin limit, we
also saw in Section III.C that the quantum solutions reduce to those of the Fokker–
Planck equation for a classical uniaxial nanomagnet, while for linear response and
finite S, the results agree with those predicted by the solutions of Garanin [80] and
García-Palacios and Zueco [81, 82]. Here, we apply these findings to the SNR for
uniaxial quantum nanomagnets.

Now, we saw in Section III.C that the normalized longitudinal dynamic suscep-
tibility of a quantum nanomagnet is defined in linear response as

χ(�)

χ
= 1 − i�

∞�
0

C(t) e−i�tdt, (582)
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where C(t) is the normalized equilibrium correlation function defined by Eq.
(484), χ = βμ0μ

2Nχ0 is the static susceptibility, N is the number of nanomagnets
per unit volume,

χ0 = 1

S2

[〈
Ŝ2

Z

〉
0
−
〈
ŜZ

〉2
0

]

= 1

S2

⎡
⎣ S∑

m=−S

m2ρm −
(

S∑
m=−S

mρm

)2⎤⎦ (583)

is the normalized static susceptibility,

ρm = eσ
(
m2/S2+2hm/S

)
∑S

m=−S eσ(m2/S2+2hm/S)
(584)

and h = ξ0/(2σ). For a uniaxial nanomagnet, both C(t) and χ(�) have been
calculated in Section III.C.3. In particular, we recall that C(t) may formally be
written as the finite discrete set of relaxation modes, namely, (cf. Eq. 456)

C(t) =
2S∑

k=1

cke−λkt, (585)

where λk are the eigenvalues of the system matrix X, Eq. (470), with the
replacement ξII → ξ0. Consequently, Eqs. (582) and (585) allow us to formally
write χ(�) as the finite discrete set of Lorentzians (cf. Eq. 489)

χ(�)

χ
=

2S∑
k=1

ck

1 + i�/λk
. (586)

The asymptotic behavior of χ(�) in the extreme cases of very low and very high
frequencies is given as before by Eqs. (490) and (491), namely,

χ(�)

χ
∼
{

1 − i�τcor + · · · , � → 0

−i
(
�τef

)−1 + · · · , � → ∞ , (587)

where τcor is the integral relaxation time and τef is the effective relaxation time
defined in terms of the eigenvalues λk as follows:

τcor =
2S∑

k=1

ck/λk and τef =
(

2S∑
k=1

ckλk

)−1

. (588)

Furthermore, the smallest nonvanishing eigenvalue λ1 may as usual be associated
with the long-time behavior of C(t) ∼ et/τ , t >> τ = 1/λ1, which is character-
ized by the longest relaxation (or the reversal) time τ . Now in Section III.C.3, it has
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been shown that all these times are given by simple analytic formulas, Eqs. (531),
(533), and (546), respectively.

Again (see Section III.C.3), two distinct bands appear in the spectrum of the
imaginary part χ ′′(�) of the susceptibility for a uniaxial quantum nanomagnet. As
usual the low-frequency band is due to the slowest “interwell” relaxation mode.
The characteristic frequency and the half-width of this band are determined by the
smallest nonvanishing eigenvalue λ1, and as usual the latter is associated with
the long-time behavior of C(t) ∼ e−t/τ , t >> τ , which is dominated by the
longest relaxation (or the reversal) time τ . The high-frequency band in χ ′′(�) is
due to the individual near-degenerate high-frequency modes corresponding to the
eigenvalues λk >> λ1 (2S ≥ k ≥ 2). Thus, if one is interested solely in the
low-frequency region (�τ ≤ 1), where their effect may be ignored, χ(�) may be
approximated as the single Lorentzian [69] (cf. Eq. 556)

χ(�)

χ
≈ 1 − i�τcor

1 + i�τ
, (589)

where τcor and τ are defined by Eqs. (531) and (545), respectively.
Now, magnetic SR may be generally described using linear-response theory

as follows [5]. The Fourier component Mω of the longitudinal components of the
magnetic moment is related to that of the applied ac field Hω via the complex
magnetic susceptibility χ(ω) as follows:

Mω = χ(ω)Hω. (590)

The spectral density �
(s)
M (�) of the forced magnetic oscillations in the ac field

H(t) = H cos �t at the excitation frequency � is [175]:

�
(s)
M (�) = 1

2
lim

��→0

�+���
�−��

(Hχ0 |χ(�)|)2 [δ(ω + �) + δ(ω − �)] dω,

where the parity condition χ∗(ω) = χ(−ω) is used. The noise-induced part
�

(n)
M (�) is obtained using the fluctuation–dissipation theorem as follows [184]:

�
(n)
M (�) = χ ′′(�)

πβ �
.

Thus on combining these equations, we have the SNR of the magnetic moment
fluctuations, namely,

SNR = �
(s)
M (�)

�
(n)
M (�)

= βπ �H2 |χ(�)|2
2χ ′′(�)

. (591)
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The linear-response theory result given by Eq. (591) is very useful on account of
its generality because it automatically reduces the calculation of the SNR to that
of the dynamic susceptibility, which is a fundamental dynamical characteristic of
any relaxing system. By analogy with the SNR for a classical nanomagnet [5, 184],
Eq. (591) can be written as

SNR = πβχ0H2

2τNσ
R�, (592)

where the dimensionless SNR factor R� is given by

R� = στN� |χ(�)|2
χ ′′(�)

. (593)

Thus, the relevant quantity is R�. In general, R�, besides the obvious dependence
on the noise intensity (temperature), the constant (bias) field strength parameter h,
and the frequency of the exciting field �, depends on the spin number S. On the
one hand, in the adiabatic limit, � → 0, with Eqs. (586), (588), and the correlation
time equation (531), the SNR factor equation (593) simplifies yielding

R0 = τNσχ0

τcor
=

σ
2S2

⎡
⎣ S∑

m=−S
m2ρm −

(
S∑

m=−S
mρm

)2
⎤
⎦2

S∑
k=1−S

(
S∑

m=k

(
m−

S∑
n=−S

nρn

)
ρm

)2

[S(S+1)−k(k−1)]√ρkρk−1

. (594)

On the other hand, in the opposite very high-frequency limit, � → ∞, Eq. (593)
reduces to

R�→∞ = τNσχ0

τef
= σ

2S2

S∑
m=1−S

[S(S + 1) − m(m − 1)]
√

ρmρm−1 (595)

with Eqs. (550), (586), and (588). In the classical limit, S → ∞, the normalized
χ(�) is also given by the linear-response equation (582), where χ0 = 〈cos2 ϑ

〉
0 −

〈cos ϑ〉2
0 and the correlation function C(t) becomes

C(t) = 〈cos ϑ(t) cos ϑ(0)〉0 − 〈cos ϑ〉2
0〈

cos2 ϑ
〉
0 − 〈cos ϑ〉2

0

. (596)

Here,

〈cos ϑ〉0 = 1

Z

1�
−1

xeσ(x2+2hx)dx
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and

〈cos2 ϑ〉0 = 1

Z

1�
−1

x2eσ(x2+2hx)dx

are given by the analytical equations (524 and 551), respectively. The classical
analogs of the quantum equations (594 and 595) are simply

R0 = τNσ

τcor

(〈
cos2 ϑ

〉
0
− 〈cos ϑ〉2

0

)
, (597)

R∞ = τNσ

τef

(〈
cos2 ϑ

〉
0
− 〈cos ϑ〉2

0

)
. (598)

Here, the classical relaxation times τef and τcor are given by Eqs. (550) and (552).
The SNR factor R0 in the adiabatic limit � = 0 as a function of the dimen-

sionless temperature parameter σ−1 is shown in Figs. 34 and 35 for various spin
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Figure 34. Signal-to-noise ratio R0 versus the dimensionless temperature parameter σ−1 (a) for
various spin numbers S in the absence of the dc bias field (h = 0) and (b) for various field parameters
h and S = 3/2 in the adiabatic limit � = 0. Asterisks: classical limit S → ∞ (Color on line).
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Figure 35. SNR R0 as a function of dimensionless temperature σ−1 for nonzero values of the
applied constant field (a) for various values of h and S = 10 and (b) for various values of S and h = 0.3
in the adiabatic limit � = 0. Solid lines: exact solution. Asterisks: classical limit S → ∞ (Color on
line).

numbers S and field parameter h. Usually, the maximum of R0 is attained in the
range σ−1 ∼ 0.3−0.5 (corresponding to T ∼ 30 K for the molecular magnet Mn12
acetate with S = 10). Moreover, that maximum shifts to higher temperatures with
increasing h because the bias field radically alters the temperature dependence
of the static susceptibility. In a nonzero bias field, the effect of saturation of the
magnetization is crucial causing R0 to tend to zero at zero temperature. Although in
the low-temperature limit, σ−1 → 0, R0 → 0 for both small S and h; nevertheless,
as long as S increases at finite h or as h increases at finite S, R0 → constant (see
Fig. 35). This is due to the temperature dependence of τcor, which causes the latter
to progressively lose its Arrhenius character with increasing h. In general, the
quantum effects can lead to both amplification and attenuation of the SNR. The
frequency-dependent SNR R� versus the dimensionless temperature parameter
σ−1 is shown in Figs. 36 for various spin numbers S and finite values of the forcing
frequency �. Clearly, this figure exemplifies the quantum effects via a pronounced
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Figure 36. SNR R� versus the dimensionless temperature σ−1 (a) for various normalized
frequencies �τN and S = 10 and (b) for various S and �τN = 1 in the absence of the dc bias field
(h = 0). Solid lines: exact solution, Eqs. (582)–(588), and (593), Asterisks: classical limit, S → ∞
(Color on line).

deviation of the quantum SNR curves from the corresponding classical ones (up to
several orders of magnitude at low temperatures). Now, the SNR as a function of
the dimensionless forcing frequency �τN is also presented in Figs. 37. Here, the
SNR monotonically increases from its low-frequency limit given by Eq. (594) to
its plateau value given by Eq. (595).

We have studied the magnetic SR of a quantum uniaxial nanomagnet of
arbitrary spin S in the high-temperature and weak spin–bath coupling limit. The
principal result is that one may determine the transition from the SR corresponding
to quantum elementary spin relaxation to that pertaining to a giant spin as a
function of the spin size S. Hence, one may accurately estimate the value of S
(typically in the range 20–40) at which the crossover from quantum to classical
behavior takes place. Thus, one may assign a range of validity to the classical
Néel–Brown treatment of a nanomagnet with the simplest uniaxial anisotropy
and Zeeman energy. The relatively elementary calculation outlined before is
also fundamental toward gaining an understanding of the SR of spin systems
characterized by nonaxially symmetric Hamiltonians. The extension to particular
nonaxially symmetric spin systems such as biaxial, cubic, etc., would also allow
one to include spin number effects in important technological applications of
magnetic relaxation such as the magnetization reversal time, the switching field
and hysteresis curves, and so on.
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Figure 37. SNR R� versus the normalized frequency �τN (a) for various σ , S = 10, and h = 0,
(b) for various S, σ = 10, and h = 0, and (c) for various h, S = 10 and σ = 10. Solid lines: exact
solution. Dashed lines: the low-frequency asymptote, Eqs. (593) and (589). Dashed-dotted lines: the
adiabatic limit � = 0, Eq. (594). Dotted lines: the high-frequency limit given by Eq. (595).

IV. MASTER EQUATION IN PHASE SPACE FOR NONAXIALLY
SYMMETRIC SYSTEMS

A. Uniaxial Nanomagnet Subjected to a dc Bias Field of
Arbitrary Orientation

Clearly, the analogy between the quantum and classical formulations provided by
the phase space representation via the Wigner–Stratonovich map will also enable
the powerful statistical moment method for classical Fokker–Planck equations
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[5, 71] for an arbitrary Hamiltonian (which may be expanded in spherical
harmonics) to be carried over into the quantum domain. Here, our objective
is to illustrate this method for the formal phase space master equation (252)
pertaining to a Hamiltonian ĤS as accomplished for the Fokker–Planck equation
for classical spins for arbitrary magnetocrystalline anisotropy–Zeeman energy
potentials [5, 144]. We shall illustrate how the magnetization and its relaxation
times may be evaluated in the linear-response approximation and how the solution
of the corresponding classical problem [5, 6] carries over into the quantum domain.
In view of the formal difficulties associated with both the derivation and the direct
solution of phase space master equation, we will again proceed indirectly using
the method of Section II.C. In this way, the explicit solution is written for an
arbitrary spin Hamiltonian ĤS as a finite series of spherical harmonics analogous
to the (infinite) Fourier series representation of the classical case governed by
the Fokker–Planck equation (3). Therefore, the expansion coefficients, that is,
the statistical averages of the spherical harmonics, may be determined as before
from a differential recurrence relation yielding the stochastic spin dynamics for
arbitrary spin number S. For large S, the differential recurrence relations reduce to
those generated by the Fokker–Planck equation. Thus, the spin dynamics may once
again be treated in a manner transparently linking to the classical representations,
thereby providing quantum corrections to classical averages.

1. Differential Recurrence Equations for Statistical Moments

In accordance with the Wigner–Stratonovich map, the formal solution of the phase
space master equation (252) for arbitrary ĤS may be written as a finite linear
combination of the spherical harmonics YL,M(ϑ , ϕ) embodied in the phase space
distribution Eq. (231). As shown in Section II.C.3, by substituting Eq. (231)
into the master equation (252), we then formally have a finite set of differential
recurrence relations for the statistical moments 〈YLM〉 (t) which becomes for s =
−1 (i.e., for the Q-function) (cf. Eq. 256)

d

dt
〈YLM〉 (t) =

∑
L′,M′

p′
L′M′;LM 〈YL′M′ 〉 (t), (599)

where

p′
L′M′;LM = (−1)M−M′

√
(2S − L′)!(2S + L′ + 1)!
(2S − L)!(2S + L + 1)! gL′−M′;L−M (600)

with the expansion coefficients gL′M′;LM given by Eq. (76). In the classical limit,
S → ∞, Eq. (599) reduces to the classical hierarchy, that is, the recurrence relation
given by Eq. (D.18) [5, 144]. Now the differential recurrence relations given by Eq.
(599) can be solved by direct matrix diagonalization, involving the calculation of
the eigenvalues and eigenvectors of the system matrix. Thus, it is evident that it is
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relatively easy to generalize the phase space formalism to non-axially symmetric
problems for an arbitrary spin Hamiltonian in a manner exactly analogous to that
given for the classical Fokker–Planck equation (3) in Ref. 144.

Here, we shall take, as an illustrative example, a uniaxial nanomagnet of
arbitrary Sin an external dc magnetic field H0 at an arbitrary angle to the
Z-axis (i.e., the easy axis), which is a quantum analog of the most basic nonaxially
symmetric model in superparamagnetism. Thus, the Hamiltonian ĤS has the
nonaxially symmetric form

ĤS = −vKŜ2
Z − γ h̄

(
H0 · Ŝ

)
. (601)

Without the loss of generality, we may suppose that H0 lies in the XZ plane of the
laboratory coordinate system so that the spin Hamiltonian (601) becomes

βĤS = − σ

S2 Ŝ2
Z − ξ

S

(
cos ψ ŜZ + sin ψ ŜX

)
, (602)

where

ξ = βμ0μH0 and σ = βvKS2

are the dimensionless precession frequency and anisotropy constant, and ψ is the
angle between the constant field H0 and the Z-axis taken as the easy axis of the
nanomagnet. Using MATHEMATICA for the matrix algebra with the polarization
and spin operators as defined in Appendix B, the expansion coefficients p′

L′M′;LM
in Eq. (599) can then be evaluated from the symmetrized Hubbard form of the
collision operator equation (76) and consequently Eq. (600) as specialized to
Eq. (602).

The calculation of the observables proceeds by solving the corresponding
hierarchy of moment equations, Eq. (599). That hierarchy can conveniently be
rewritten for the relaxation functions cL,M(t) = 〈YLM〉 (t) − 〈YLM〉0 as

d

dt
cL,M(t) =

∑
L′,M′

p′
L′M′;LMcL′,M′(t) (603)

because the equilibrium averages 〈YLM〉0 themselves satisfy the homogeneous
recurrence relation ∑

L′,M′
p′

L′M′;LM 〈YLM〉0 = 0. (604)

Here, the angular brackets 〈 〉0 designate the equilibrium average defined by

〈YLM〉0 = 2S + 1

4π

π�
0

2π�
0

YLM(ϑ , ϕ)Weq
S (ϑ , ϕ) sin ϑdϑdϕ, (605)
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where Weq
S (ϑ , ϕ) is the equilibrium quasiprobability distribution which can then

be evaluated explicitly as described in Section II.D.2). Alternatively, 〈YLM〉0 can
be evaluated directly via the average polarization operators as

〈YLM〉0 =
√

2S + 1

4π
CSS

SSL0

〈
T̂(S)

LM

〉
0

=
√

2S + 1

4π
CSS

SSL0Tr
(
ρ̂eqT̂(S)

LM

)
, (606)

where the equilibrium density matrix ρ̂eq is given by

ρ̂eq = e
σ

S2 Ŝ2
Z+ ξ

S

(
cosψ ŜZ+sinψ ŜX

)

Tr

{
e

σ

S2 Ŝ2
Z+ ξ

S

(
cosψ ŜZ+sinψ ŜX

)} . (607)

We note that for the axially symmetric case ψ = 0, the hierarchy defined by
Eq. (603) reduces to the particular recurrence relation given by Eq. (391) already
derived in Section III.A.2. For another particular case, namely, an individual spin
in an external uniform magnetic field H0 directed along the Z-axis of the laboratory
coordinate system, where βĤS = −ξ ŜZ/S, Eq. (603) also yields the very simple
three-term differential recurrence relation given by Eq. (418) for the relaxation
functions cL,M(t), which decouple for different m and, as shown in Section III.B.3,
can be solved exactly using continued fractions [62].

In the classical limit, S → ∞ and h̄S → constant, the hierarchy given by Eq.
(603) associated with Eq. (602) reduces to the differential recurrence equations for
a classical uniaxial nanomagnet subjected to a dc bias field of arbitrary orientation
(see Refs. 166, 175, and 191–194 for details). Here, the number of recurring
equations is infinite (S → ∞) again constituting the principal difference between
the hierarchies for classical and quantum spins; in the latter case, the number of
equations is finite. Actually, in the classical limit, S → ∞, the Hamiltonian (602)
corresponds to a free energy Vgiven by

V(ϑ , ϕ)

kT
= −σ cos2 ϑ − ξ(cosϑ cos ψ + sin ψ sin ϑ cos ϕ). (608)

To describe the stochastic dynamics of a classical spin with magnetic moment μ,
we may use Gilbert’s equation [26] for the motion of the magnetic moment
augmented by a random field, Eq. (2). In the weak coupling limit, α << 1, the
solution of the stochastic differential equation (2) with Vdefined by Eq. (608)
reduces to the solution of the infinite hierarchy of moment equations for the
relaxation functions cl,m(t) = 〈Ylm〉(t) − 〈Ylm〉0, namely, [5, 191, 192]
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τN
d

dt
cn,m(t) +

[
n(n + 1)

2
+ iξm

2α
cos ψ − σ

n(n + 1) − 3m2

(2n − 1)(2n + 3)

]
cn,m(t)

=
(

ξ
n + 1

2
cos ψ − imσ

α

)√
n2 − m2

4n2 − 1
cn−1,m(t)

−
(

ξ
n

2
cos ψ + imσ

α

)√
(n + 1)2 − m2

(2n + 3)(2n + 1)
cn+1,m(t)

− ξ sin ψ

4

[
n

√
(n − m + 1)(n − m + 2)

(2n + 3)(2n + 1)
cn+1,m−1(t)

+ i

√
(n − m + 1)(n + m)

α
cn,m−1(t)

+(n + 1)

√
(n + m)(n + m − 1)

4n2 − 1
cn−1,m−1(t)

]

+ ξ sin ψ

4

[
n

√
(n + m + 1)(n + m + 2)

(2n + 3)(2n + 1)
cn+1,m+1(t)

− i

√
(n + m + 1)(n − m)

α
cn,m+1(t)

+(n + 1)

√
(n − m)(n − m − 1)

4n2 − 1
cn−1,m+1(t)

]

+ σ(n + 1)

2n − 1

√
(n2 − m2)[(n − 1)2 − m2]

(2n − 3)(2n + 1)
cn−2,m(t)

− nσ

2n + 3

√
[(n + 2)2 − m2][(n + 1)2 − m2]

(2n + 5)(2n + 1)
cn+2,m(t). (609)

For S → ∞, the hierarchy of quantum relaxation equations (603) reduces to
the classical equation (609) so that all the quantum results agree with the classical
ones. By solving Eq. (609) for the one-sided Fourier transforms of c1,0(t) and
c1,±1(t) as described in detail in Refs. 5 and 192, we can determine all relevant
observables (see, e.g., Figs. 39–41). We shall compare later the predictions of the
classical model with those of the quantum one with finite S.

2. Characteristic Relaxation Times and Dynamic Susceptibility

We now evaluate the linear response of the uniaxial nanomagnet with the Hamil-
tonian equation (601) due to infinitesimally small changes in the magnitude of
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the dc field. Thus, we suppose as usual that a small probing field H (H ‖ H0),
having been applied to the nonaxially symmetric system in the distant past (t =
−∞) so that equilibrium conditions obtain at time t = 0, is switched off at
t = 0. By solving the hierarchy in (603) for c1,0(t) and c1,±1(t), we then have
all relevant quantities, namely the integral, effective, and reversal times of the
magnetization, the dynamic susceptibility, DMH loops, and so on. This conclusion
again follows from linear response theory. Here, the decay of the magnetization
〈MH〉 (t) defined as

〈MH〉 (t) ∼ γ h̄
〈(

H · Ŝ
)〉

(t)

when a small uniform external field H parallel to H0, βμ0μH << 1, has been
switched off at time t = 0, is given by

〈MH〉 (t) − 〈MH〉0 = χHC(t). (610)

In Eq. (610), C(t) is the normalized relaxation function defined in this particular
instance as

C(t) =
√

2 cos ψc1,0(t) + sin ψ[c1,−1(t) − c1,1(t)]√
2 cos ψc1,0(0) + sin ψ[c1,−1(0) − c1,1(0)] , (611)

and χ is the static magnetic susceptibility, given by

χ =
√

2π

3

{√
2 cos ψc1,0(0) + sin ψ[c1,−1(0) − c1,1(0)]

} γ h̄(S + 1)

H
. (612)

Furthermore, in writing Eqs. (610)–(612), we have again used the correspondence
rules of spin operators and c-numbers (cf. the Weyl symbols given by Eqs. (239)
and (241) for s = 1), namely,

ŜZ →
√

4π

3
(S + 1)Y10(ϑ , ϕ)

and

ŜX →
√

2π

3
(S + 1) (Y1−1(ϑ , ϕ) − Y11(ϑ , ϕ)) .

The initial conditions cL,M(0) in Eqs. (611) and (612) are

cL,M(0) = lim
ξ1→0

ξ−1
1

(〈YLM〉ξ1
− 〈YLM〉0

)
=
√

2S + 1

4π
CSS

SSL0 lim
ξ1→0

ξ−1
1

(〈
T̂(S)

LM

〉
ξ1

−
〈
T̂(S)

LM

〉
0

)
. (613)
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Moreover, in calculating the equilibrium averages
〈
T̂(S)

L,M

〉
ξ1

, we have also used

the equilibrium Boltzmann distribution function ρξ1 for the Hamiltonian equation
(602), namely

ρξ1 = e
σ

S2 Ŝ2
Z+ ξ+ξ1

S

(
cosψ ŜZ+sinψ ŜX

)

Tr

{
e

σ

S2 Ŝ2
Z+ ξ+ξ1

S

(
cosψ ŜZ+sinψ ŜX

)} .

The corresponding dynamic susceptibility χ(ω) = χ ′(ω) − iχ ′′(ω) is as usual

χ(ω)

χ
= 1 − iω C̃(ω), (614)

where the spectrum

C̃(ω) =
∞�
0

C(t) e−iωtdt. (615)

We can also evaluate the integral relaxation time τcor = C̃(0) (in linear response
the correlation time of C(t)) and the effective relaxation time τef = −1/Ċ(0). In
the frequency domain, these characteristic times as usual determine the low- and
high-frequency behavior of the dynamic susceptibility χ(ω) via Eqs. (490) and
(491), namely,

χ(ω)

χ
≈
{

1 − iωτcor + · · · , ω → 0
(iωτef )

−1 + · · · , ω → ∞ . (616)

As before, yet another relevant quantity is the inverse of the smallest nonvanishing
eigenvalue λ1 of the transition matrix of the system (Eq. 618), which we recall
is the time constant associated with the long-time behavior of the correlation
function C(t) comprising the slowest (lowest frequency) relaxation mode. Thus,
λ−1

1 may again be associated with the spin reversal time. Furthermore, because the
influence of the high-frequency relaxation modes on the low-frequency relaxation
may often be ignored, λ1 again provides more or less complete information
concerning the low-frequency dynamics of the system and may be extracted
from the eigenvalues of the transition matrix X given by Eq. (618). In the low-
temperature limit and a weak external dc field, the relation between the time
constants defined before is as follows:

λ−1
1 > τcor >> τN >> τef . (617)

Thus, to determine the magnetization kinetics, we require (cf. the response
function given by Eq. (611)) the one-sided Fourier transforms of c1,0(t) and
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c1,±1(t). According to the differential recurrence equation (603), these relaxation
functions are as usual coupled to all the others, so forming (unlike the classical
case) a finite hierarchy of averages as before (because the index L in Eq. (603)
ranges only between 0 and 2S). Once again, the solution of such a multi-term
recurrence relation may always be obtained by rewriting it as a first-order linear
matrix differential equation like Eq. (80) for a column vector C(t) given by Eq.
(79) with a transition supermatrix X of dimension 4S(S+1)×4S(S+1) with matrix
elements

(X)L,L′ = GS
L,L′ ,

[
GS

L,L′
]

M,M′ = −pL′M′;LM . (618)

Having solved the matrix equation (80) as described in detail in Section II.A.4,
we have the relaxation functions c1,0(t) and c1,±1(t), their spectra, and all desired
observables such as characteristic times τcor, τef , τ = 1/λ1, and the dynamic
susceptibility χ(ω). For simplicity, we shall suppose that the diffusion coefficients
are given by D1 = D−1 = 2D0 = 2D (i.e., isotropic diffusion). To compare with
the semiclassical case, we simply write τN = 1/(2D) and α = h̄SβD.

The relaxation time τcor and inverse of the smallest nonvanishing eigen-
value 1/λ1 (the longest relaxation time) as a function of the oblique angle ψ ,
the anisotropy parameter σ , and the dimensionless damping α are plotted in
Figs. 38–40, respectively, for various spin numbers S and of the field parameter
h = ξ/(2σ). The classical solutions [5, 192] corresponding to S → ∞ are also
shown for comparison. Both τcor and τ = 1/λ1 exhibit a pronounced dependence
on the oblique angle ψ , the field h, anisotropy σ , damping α, and spin number S
parameters. It is apparent from Figs. 38–40 that for large S, the quantum solutions
reduce to the corresponding classical ones, while in contrast they differ markedly
from each other for small S. Typical values of S for the quantum classical crossover
are ∼20–40. The smaller the anisotropy σ , the smaller the S value required
for convergence of the quantum results to the classical ones. Now the intrinsic
damping (α) dependence of these characteristic relaxation times for the oblique
field configuration shown in Fig. 39 represents coupling between the longitudinal
and precessional modes of the magnetization. Hence, it should be possible to
determine α by fitting the theory to the experimental dependence of the reversal
time on the angle ψ and dc bias field strength. Here, the sole fitting parameter is
α, which can be determined at different temperatures T , exposing its temperature
dependence. As before, the behavior of τcor and τ = 1/λ1 is similar only for
small external fields, h << 1; in a strong external field, h > 0.2, τ can diverge
exponentially from τcor as for classical spins (see Fig. 40). This effect as we have
previously explained was discovered numerically for classical spins by Coffey
et al. [152] and later interpreted quantitatively by Garanin [153] (see also Ref. 5,
ch. 1 for details).

In Figs. 41–44, we have plotted the real and imaginary parts of χ(ω)/χ versus
normalized frequency ω/D for various model parameter values. Clearly, three
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Figure 38. Correlation time τcor (a) and overbarrier time 1/λ1 (b) versus the oblique angle ψ

for various spin numbers S and anisotropy parameter σ = 10, dimensionless damping α = 0.1, and
field parameter h = 0.1 (Color on line).

bands now appear in χ ′′(ω) two of which are like those in axial symmetry, while
a third resonance band appears due to high-frequency precession of the spin
in the effective field. The low-frequency relaxation band is as usual due to the
slowest relaxation mode where the characteristic frequency and bandwidth are
determined by λ1. Like the classical case, λ1 is sufficient to accurately predict
the behavior of the low-frequency part of χ(ω) as well as the long-time behavior
of C(t). Thus, if one is interested solely in the low-frequency region (ω/λ1 ≤ 1),
where the effect of the high-frequency modes may be ignored, χ(ω) may be again
approximated by the single Lorentzian equation (556), which implies that C(t)
may be approximated for t > 0 by a single exponential with relaxation time
T‖ = 1/λ1. It is apparent from Figs. 41–44 since the influence of the high-
frequency relaxation modes on the low-frequency relaxation may be ignored, that
the simple Lorentzian formula given by Eq. (556) again accurately describes the
entire low-frequency dynamics. The second far weaker high-frequency relaxation



232 YURI P. KALMYKOV, WILLIAM T. COFFEY, AND SERGUEY V. TITOV

10−3 10−2 10−1 100

10−3 10−2 10−1 100

0

100

200

3

(a)

(b)

4

2

1

0

100

200

300

3

4

2

1

h = 0.1
ψ = π/4
σ = 10

h = 0.1
ψ = π/4
σ = 10

1: S = 3/2

2: S = 4

3: S = 10

4: S = Inf

τ c
or

/τ
N

α

α

1/
(τ

N
λ 1

)
1: S = 3/2

2: S = 4

3: S = 10

4: S = Inf

Figure 39. Correlation time τcor (a) and overbarrier time 1/λ1 (b) versus dimensionless
damping α for various spin numbers S and oblique angle ψ = π/4, anisotropy parameter σ = 10, and
field parameter h = 0.1 (Color on line).

band in χ ′′(ω) is once more due to high-frequency longitudinal “intrawell” modes.
The individual “intrawell” modes are indistinguishable in the spectrum of χ ′′(ω)

appearing merely as a single high-frequency Lorentzian band. This “intrawell”
relaxation band is more pronounced when the external field coincides with the
easy axis, that is, for ψ = 0. However, in general, it is masked by the third sharp
resonance band due to excitation of transverse modes having frequencies close
to the precession frequency of the spin which strongly manifests itself at high
frequencies. For ψ = 0, the resonance peak disappears because the transverse
modes are no longer excited. In contrast, it is most pronounced when ψ = π/2.

In this section, we have solved the differential recurrence equation (599) for the
evolution of the statistical moments (average spherical harmonics) for a nonaxially
symmetric spin Hamiltonian, namely, Eq. (602). For purposes of illustration, the
analysis was carried out for a uniaxial nanomagnet subjected to a dc external field
applied at an arbitrary angle to the easy axis. In particular, we have evaluated
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the characteristic relaxation times along with the linear dynamic susceptibility
via obvious generalizations of the methods previously used for classical spins
[5, 191, 192]. Thus, the phase space representation (because it is closely allied to
the classical one) again transparently illustrates how quantum distributions reduce
to the classical ones. When the direction of the external fields coincides with the
easy axis, that is, for ψ = 0, our method reproduces the results for nanomagnets
subjected to a longitudinal field previously obtained in Section III.C.2. The method
may also be extended to other non-axially symmetric multi-well systems such as
biaxial, cubic, mixed, and so on. Furthermore, the model can be generalized to
time-dependent Hamiltonians as in Section III.C.3, so that we can also determine
quantum effects in the nonlinear ac stationary response of quantum nanomagnets
in the nonaxially symmetric problem we have just considered.

V. CONCLUSION

We have treated numerous illustrative examples of spin relaxation problems using
Wigner’s phase space formulation of quantum mechanics of particles and spins.
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the straight dashed lines are the high-frequency asymptotes, Eq. (616) (Color on line).

This formulation, first envisaged for closed spin systems by Stratonovich [49]
formally represents the quantum mechanics of spins as a statistical theory in the
representation space of polar angles (ϑ , ϕ) which has a clear classical meaning.
This procedure effectively generalizes the results of Wigner [41] who represented
the quantum mechanics of a particle with Hamiltonian Ĥ = p̂2/2m + V(q̂) in
Hilbert space as a statistical theory in a classically meaningful phase space with the
canonical variables position and momentum (q, p). Stratonovich [49] proceeded
by introducing a quasiprobability density (Wigner) function on the sphere, defined
as the linear invertible bijective map onto the representation space comprising
the trace of the product of the system density matrix and the irreducible tensor
operators, the analysis being carried out via the finite series in spherical harmonics
embodied in the bijective Wigner–Stratonovich map. Hence, the average value
of a quantum spin operator may be calculated via its Weyl symbol just as
the corresponding classical function in the representation space of polar angles
(ϑ , ϕ). This may be accomplished essentially because the polarization operators
transform under rotation in the same way as the spherical harmonics. Thus, the
Stratonovich representation for spins [49] is well suited to the development of
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semiclassical methods of treatment of spin relaxation phenomena allowing one to
obtain quantum corrections in a manner closely analogous to the classical case.

The merit of the phase space formalism as applied to spin relaxation problems is
that only master equations for the phase space distributions akin to Fokker–Planck
equations for the evolution of classical phase space distributions in configuration
space are involved so that operators are unnecessary. The explicit solution of these
equations can be expanded for an arbitrary spin Hamiltonian in a finite series
of spherical harmonics equation (231) like in the classical case where an infinite
number of spherical harmonics is involved. The expansion coefficients (statistical
moments or averages of the spherical harmonics which are obviously by virtue of
the Wigner–Stratonovich map the averages of the polarization operators) may be
determined from a differential recurrence relation given by Eq. (253) in a manner
similar to the classical case. Although the form of the phase space master equation
is in general very complicated, we can circumvent the problem of determining
differential recurrence relations by directly using the one-to-one correspondence
between averages of polarization operators and those of spherical harmonics
as outlined in Section II.C.3. Moreover, we have described this procedure via
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several illustrative examples. Thus, we still have a method of treating the spin
relaxation for arbitrary spin number S which is closely allied to the classical
one even though a phase space master equation may not be explicitly involved.
In the classical limit, the quantum differential recurrence relation reduces to that
yielded by the classical Fokker–Planck equation for arbitrary magnetocrystalline–
Zeeman energy potentials. Furthermore, the phase space representation via the
Weyl symbol of the relevant spin operator suggests how powerful computation
techniques developed for Fokker–Planck equations (matrix continued fractions,
mean first passage time, integral representation of relaxation times, and so on
[5, 71]) may be transparently extended to the quantum domain indeed suggesting
new closed form quantum results via the corresponding classical ones. A specific
example is the determination of the quantum integral relaxation time for a spin in
a uniform magnetic field of arbitrary strength directed along the Z-axis, Eq. (442).
Therefore, having solved the phase space master equation, one can then, in
principle, evaluate via obvious generalizations of the methods previously used
for classical spins [5, 6] all desired observables. These include the magnetiza-
tion itself, the magnetization reversal time, the linear and nonlinear dynamic
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susceptibilities, the temperature dependence of the switching fields, the dynamic
hysteresis loops, etc). In this way, one can study the transition of the relaxation
behavior from that of an elementary spin to molecular magnets (S ∼ 10), to
nanoclusters (S ∼ 100), and to classical superparamagnets (S ≥ 1000). Thus,
all quantum effects in the spin relaxation phenomena can be treated in a manner
linking directly to the classical representations. Furthermore, by treating a variety
of spin relaxation problems, we have also amply demonstrated that although the
density matrix and phase space methods may yield results in outwardly very
different forms, nevertheless, both approaches yield identical numerical values
for the same physical quantities (i.e., relaxation times and susceptibility). Hence,
we have established a vital corollary between the phase space and the density
matrix methods, thereby demonstrating that they are essentially equivalent while
simultaneously providing an important check on the validity of the phase space
method. Thus, the phase space representation, because it is closely allied to
the classical representation, besides being complementary to the operator one,
transparently illustrates how quantum phase space distributions reduce to the
classical ones in the limit S → ∞.
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APPENDIX A: SPIN AND POLARIZATION OPERATORS

The spin operator Ŝ is Hermitian Ŝ† = Ŝ, and it is usually represented by a set of
three (since the spin vector Ŝ has three components) square (2S + 1) × (2S + 1)

matrixes with S being the spin number [95]. For the Cartesian components of Ŝ,
namely, for the operators ŜX , ŜY , and ŜZ , the Hermitian property takes on the
form Ŝ†

i = Ŝi, (i = X, Y , Z), while for the spherical components Ŝ±1 and Ŝ0

that property becomes Ŝ†
μ = (−1)μŜμ. The relations between the Cartesian and

spherical components of Ŝ are given by [95]

Ŝ+1 = − 1√
2

(
ŜX + iŜY

)
, ŜX = 1√

2

(
Ŝ−1 − Ŝ+1

)
,

Ŝ−1 = 1√
2

(
ŜX − iŜY

)
, ŜY = i√

2

(
Ŝ−1 + Ŝ+1

)
, (A.1)

Ŝ0 = ŜZ , ŜZ = Ŝ0.

Polarization states of particles are described by spin functions χSm = |S, m〉, which
depend on the spin variable σ being the spin projection on the Z-axis. This variable
takes 2S + 1 values, σ = −S, −S + 1, . . . , S − 1, S. The dependence of the spin
functions χSm(σ ) on the spin variable σ is given by χSm(σ ) = δmσ [95]. The
spin functions χSm = |S, m〉 are eigenfunctions of the spin operators Ŝ2 and ŜZ ,
namely, [95]

Ŝ2χSm = S(S + 1)χSm, (A.2)

ŜZχSm = mχSm (A.3)

with m = − S, − S + 1, . . . , S − 1, S. The spin functions each have 2S + 1 compo-
nents and describe polarization states of a particle with definite spin S and spin
projection m onto the Z-axis. They can be rewritten as column matrixes [95]
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χSS =

⎛
⎜⎜⎜⎝

1
0
...
0

⎞
⎟⎟⎟⎠ , χSS−1 =

⎛
⎜⎜⎜⎝

0
1
...
0

⎞
⎟⎟⎟⎠ , . . . , χS−S =

⎛
⎜⎜⎜⎝

0
0
...
1

⎞
⎟⎟⎟⎠ . (A.4)

Furthermore, the vector representation shows that the spin functions χSm constitute
a complete set of functions with the orthonormality and completeness conditions

χ
†
Sm′χSm = δmm′ , (A.5)
S∑

m=−S

χSmχ
†
Sm = Î, (A.6)

where Î is the unit (2S + 1) × (2S + 1) matrix.
Now, the spherical components of the spin operator Ŝ may be expressed using

the Clebsch–Gordan coefficients in terms of the spin functions as [95]

Ŝμ = √S(S + 1)
∑
m,m′

CSm
Sm′1μχSmχ

†
Sm′ , (μ = 0, ±1). (A.7)

The operators Ŝμ satisfy the following commutation relation: [95][
Ŝμ, Ŝv

]
= −√

2C1λ
1μ1vŜλ,

[
Ŝ2, Ŝμ

]
= 0 (μ, v, λ = 0, ±1). (A.8)

The matrix elements of Ŝμ are given by [95][
Ŝμ

]
m′m

= χ
†
Sm′ ŜμχSm = √S(S + 1)CSm′

Sm1μ (A.9)

with the only nonvanishing elements being[
Ŝ0

]
mm

= m, (A.10)[
Ŝ±1

]
m±1m

= ∓ 1√
2

√
(S ∓ m)(S ± m + 1). (A.11)

The Cartesian and spherical components of Ŝ are related by Eq. (A.1). For
example, in the particular case S = 1/2, the operators Ŝi(i = X, Y , Z) and Ŝμ (μ =
0, ±1) are square 2×2 matrixes given by [95]

ŜX = 1

2

(
0 1
1 0

)
, ŜY = i

2

(
0 −1
1 0

)
, ŜZ = 1

2

(
1 0
0 −1

)
, (A.12)

Ŝ+1 = 1√
2

(
0 −1
0 0

)
, Ŝ0 = 1

2

(
1 0
0 −1

)
, Ŝ−1 = 1√

2

(
0 0
1 0

)
, (A.13)
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while for S = 1, these operators are the square 3×3 matrixes given by [95]

ŜX = 1√
2

⎛
⎝0 1 0

1 0 1
0 1 0

⎞
⎠ , ŜY = i√

2

⎛
⎝0 −1 0

1 0 −1
0 1 0

⎞
⎠ ,

ŜZ =
⎛
⎝1 0 0

0 0 0
0 0 −1

⎞
⎠ , (A.14)

Ŝ+1 =
⎛
⎝0 −1 0

0 0 −1
0 0 0

⎞
⎠ , Ŝ0 =

⎛
⎝1 0 0

0 0 0
0 0 −1

⎞
⎠ , Ŝ−1 =

⎛
⎝0 0 0

1 0 0
0 1 0

⎞
⎠ .

(A.15)

Now, in order to describe a polarization (spin) state of a particle, the polarization
operators are often used. These operators denoted by T̂(S)

LM , where L = 0, 1, . . . , 2S
and M = −L, −L + 1, . . . L, are matrixes, which act on spin functions. However,
the explicit form of T̂(S)

LM depends on the representation chosen for the spin

functions. In particular, the matrix elements Tm′m =
[
T̂(S)

LM

]
m′m

of the polarization

operator T̂(S)
LM which has the explicit form

T̂(S)
LM =

⎛
⎜⎝

TSS . . . TS−S
...

. . .
...

T−SS . . . T−S−S

⎞
⎟⎠ (A.16)

are related to those of the spin functions in the spherical basis representation
via [95]

Tm′m = χ
†
Sm′ T̂

(S)
LMχSm =

√
2L + 1

2S + 1
CSm′

SmLM . (A.17)

For example, the operator T̂(S)
00 is proportional to the unit (2S+1)×(2S+1) matrix

T̂(S)
00 = 1√

2S + 1
Î, (A.18)

while for L = 1, the operators T̂(S)
Lμ are proportional to the spherical components

of the spin operator

T̂(S)
1μ = 1√

2a
Ŝμ, (A.19)
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where

a =
√

S(S + 1)(2S + 1)

6
. (A.20)

Likewise, the Cartesian components of Ŝ given by Eq. (A.1) may also be expressed
via the polarization operators T̂(S)

10 and T̂(S)
1±1 as follows:

ŜX = a
(

T̂(S)
1−1 − T̂(S)

11

)
,

ŜY = ia
(

T̂(S)
1−1 + T̂(S)

11

)
, (A.21)

ŜZ = √
2aT̂(S)

10 .

The polarization operators T̂(S)
LM are normalized and satisfy the relations [95]

T̂†(S)
LM = (−1)MT̂(S)

L−M (A.22)

and

Tr
(

T̂(S)
L,M

)
= √(2S + 1)δL0δM0, (A.23)

that is, all T̂(S)
LM have zero trace except of T̂(S)

00 . Furthermore, the operators T̂(S)
LM also

constitute an orthonormal basis in the space of (2S+1)× (2S+1) matrixes with S
integer or half-integer. Hence, it follows that an arbitrary square (2S+1)×(2S+1)

matrix operator Â may be expanded as a series of the polarization operators [95]

Â =
2S∑

L=0

L∑
M=−L

ALMT̂(S)
LM , (A.24)

where the expansion coefficients ALM are given by

ALM = Tr
(

T̂†(S)
LM Â

)
. (A.25)

If the matrix Â is Hermitian (Â† = Â), then

A∗
LM = (−1)MAL−M . (A.26)
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Moreover, the matrix products of the spin functions χSm and χ
†
Sm′ (as arranged

in the form of Eq. A.4) are themselves square (2S + 1) × (2S + 1) matrixes
and, therefore, may also be expanded as a finite series of polarization operators,
namely, [95]

χSmχ
†
Sm′ =

∑
L

√
2L + 1

2S + 1
CSm

Sm′LMT̂(S)
LM . (A.27)

Furthermore, products of two polarization operators may be written in the form of
the Clebsch–Gordan series [95]

T̂(S)
L1M1

T̂(S)
L2M2

= √(2L1 + 1) (2L2 + 1)
∑

L

(−1)2S+L
{

L1L2L
S S S

}
CLM

L1M1L2M2
T̂(S)

LM ,

(A.28)

where

{
L1L2L
S S S

}
is Wigner’s 6j-symbol [95]. The polarization operators also

satisfy the commutation relations [95][
T̂(S)

L1M1
, T̂(S)

L2M2

]
= √(2L1 + 1) (2L2 + 1)

∑
L

(−1)2S+L

×
[
1 − (−1)L1+L2+L

] {L1L2L
S S S

}
CLM

L1M1L2M2
T̂(S)

LM . (A.29)

Equation (A.29) then automatically yields the commutation relation for the
spherical components of the spin operator Ŝμ and polarization operator T̂(S)

LM ,
namely [95],

[Ŝμ, T̂(S)
LM] = √L(L + 1)CLM+μ

LM1μ T̂(S)
LM+μ (A.30)

or

[Ŝ0, T̂(S)
LM] = √L(L + 1)CLM

LM10T̂(S)
LM = MT̂(S)

LM , (A.31)

[Ŝ±1, T̂(S)
LM] = √L(L + 1)CLM±1

LM1±1T̂(S)
LM±1

= ∓
√

L(L + 1) − M(M ± 1)

2
T̂(S)

LM±1. (A.32)

Finally, traces of products of the polarization operators are given by [95]

Tr
(

T̂(S)
L1M1

T̂(S)
L2M2

)
= (−1)M1δL1L2δM1−M2 , (A.33)

Tr
(

T̂†(S)
LM T̂(S)

L′M′
)

= δLL′δMM′ , (A.34)
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Tr
(

T̂(S)
L1M1

T̂(S)
L2M2

T̂(S)
L3M3

)
= (−1)2S+L3+M3

√
(2L1 + 1)(2L2 + 1)

× CL3−M3
L1M1L2M2

{
L1L2L3
S S S

}
, (A.35)

and so on.
Finally, under rotation of coordinate system defined by the Euler angles α, β, γ ,

the basis spin functions χSm′ are transformed by the rotation operator D̂S(α, β, γ )

given by [95]

D̂S(α, β, γ ) = e−iαŜX e−iβŜY e−iγ ŜZ

=
∑

L,M,m,m′

2L + 1

2S + 1
CSm

Sm′LMDS
mm′(α, β, γ )T̂(S)

LM , (A.36)

yielding

χ ′
Sm′ = D̂S(α, β, γ )χSm′ =

∑
m

DS
mm′(α, β, γ )χSm, (A.37)

where χ ′
Sm′ describe quantum states with definite spin S and spin projection m′

on the new Z′-axis and DS
mm′(α, β, γ ) are the Wigner D functions. Similarly,

the polarization operators T̂(S)
LM , which are irreducible tensors of rank L, are

transformed by the operator D̂L(α, β, γ ) given by Eq. (A.36) with S = L.

APPENDIX B: SPHERICAL HARMONICS

A spherical harmonic Ylm(ϑ , ϕ) is a complex function of two arguments, namely,
the colatitude 0 ≤ ϑ ≤ π and the azimuth 0 ≤ ϕ ≤ 2π and may be defined as [95]

Ylm(ϑ , ϕ) =
√

(2l + 1) (l − m)!
4π (l + m)! eimϕPm

l (cos ϑ), (B.1)

Yl−m = (−1)m Y∗
lm, (B.2)

where Pm
l (x) are the associated Legendre functions defined as [95]

Pm
l (cos ϑ) = (−1)m

2ll! (sin ϑ)m dl+m

(d cos ϑ)l+m

(
cos2 ϑ − 1

)l
(B.3)
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with m = l, l − 1, . . . l, and the asterisk denotes the complex conjugate. For the
particular case m = 0, Yl0(ϑ , ϕ) is given by

Yl0(ϑ , ϕ) =
√

2l + 1

4π
Pl(cos ϑ), (B.4)

where Pl(cos ϑ) is the Legendre polynomial of order l [95,105]. In particular,
Eq. (B.1) yields

Y10(ϑ , ϕ) =
√

3

4π
cos ϑ , Y1±1(ϑ , ϕ) = ∓

√
3

8π
e±iϕ sin ϑ , · · · (B.5)

In quantum mechanics, the spherical harmonics Ylm(ϑ , ϕ) play an important role
describing the distribution of particles that move in spherically symmetric field
with the orbital angular momentum l and projection on the quantization axis m
[95]. The spherical harmonics Ylm(ϑ , ϕ) are the eigenfunctions of the square of
the angular momentum operator L̂ and its projection L̂Z onto the Z-axis, namely,

L̂2Ylm(ϑ , ϕ) = l(l + 1)Ylm(ϑ , ϕ), (B.6)

L̂ZYlm(ϑ , ϕ) = mYlm(ϑ , ϕ), (B.7)

where

L̂2 = − 1

sin ϑ

∂

∂ϑ

(
sin ϑ

∂

∂ϑ

)
− 1

sin2 ϑ

∂2

∂ϕ2 (B.8)

and

L̂Z = −i
∂

∂ϕ
. (B.9)

The completeness relation for the spherical harmonics is [95]

∞∑
l=0

l∑
m=−l

Y∗
lm(ϑ , ϕ)Ylm(ϑ ′, ϕ′) = δ(ϕ − ϕ′)δ(cos ϑ − cos ϑ ′), (B.10)

while the normalization and orthogonality relation of the spherical harmonics is
given by [95]

2π�
0

π�
0

Ylm(ϑ , ϕ)Y∗
l′m′(ϑ , ϕ) sin ϑdϑdϕ = δll′δmm′ . (B.11)

Thus, an arbitrary function f (ϑ , ϕ) defined on the interval 0 ≤ ϑ ≤ π and
0 ≤ ϕ ≤ 2π (the unit sphere) which satisfies the square integrability condition

2π�
0

π�
0

|f (ϑ , ϕ)|2 sin ϑdϑdϕ < ∞
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can be expanded in a series of the spherical harmonics as [95]

f (ϑ , ϕ) =
∞∑

l=0

l∑
m=−l

almYlm(ϑ , ϕ), (B.12)

where the expansion coefficients alm are defined by

alm =
2π�
0

π�
0

f (ϑ , ϕ)Y∗
lm(ϑ , ϕ) sin ϑdϑdϕ. (B.13)

Moreover, a product of two spherical harmonics may be expanded in the Clebsch–
Gordan series as follows [95]:

Yl1m1 Yl2m2 =
∑
L,M

√
(2l1 + 1)(2l2 + 1)

4π(2L + 1)
CL0

l10l20CLM
l1m1l2m2

YLM . (B.14)

Some useful recurrence relations for the spherical harmonics are [95]

cos ϑYlm =
√

(l + 1)2 − m2

(2l + 3)(2l + 1)
Yl+1m −

√
l2 − m2

(2l + 1)(2l − 1)
Yl−1m, (B.15)

sin ϑ
∂Ylm

∂ϑ
= l

√
(l + 1)2 − m2

(2l + 3)(2l + 1)
Yl+1m − (l + 1)

√
l2 − m2

(2l + 1)(2l − 1)
Yl−1m.

(B.16)

The second derivative of Yl,m(ϑ , ϕ) is given by [95]

∂2Ylm

∂ϑ2
=
(

m2

sin2 ϑ
− l(l + 1)

)
Ylm − cot ϑ

∂Ylm

∂ϑ
. (B.17)

One of the known trigonometric identities for the spherical harmonics, which has
been used in the main text (cf. Eq. 211) is [95]

Y∗
LM(ϑ , ϕ) = cos4S(ϑ/2)

CSS
SSL0

√
2L + 1

4π

×
S∑

m=−S

(2S)!CSm
Sm−MLM (tan(ϑ/2))2S−2m+M e−iMϕ

√
(S + m − M)!(S − m + M)!(S + m)!(S − m)! . (B.18)

Because the spherical harmonics Ylm(ϑ , ϕ) are components of some irreducible
tensor of rank l, under arbitrary rotation of the coordinate system described by the
Euler angles α, β, γ , the spherical harmonics Ylm(ϑ , ϕ) are transformed according
to the following rule [95] (cf. Eq. A.37):

Ylm′(ϑ ′, ϕ′) =
∑

m

Ylm(ϑ , ϕ)Dl
mm′(α, β, γ ). (B.19)
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Here ϑ , ϕ and ϑ ′, ϕ′ are polar angles of the position vector in the original and final
coordinate systems, and Dl

mm′(α, β, γ ) are the Wigner D functions.

APPENDIX C: DERIVATION OF THE MASTER EQUATION FOR A
UNIAXIAL PARAMAGNET SUBJECTED TO A DC MAGNETIC FIELD

In order to find the phase space representation of the density matrix evolution
equation (371), we must transform the following integrands of Eq. (376) into the
phase space representation, namely,

σ

S2

[
Ŝ2

0, ŵ
]

+ ξ

S

[
Ŝ0, ŵ

]
, (C.1)[

Ŝ0, ŵŜ0

]
+
[
Ŝ0ŵ, Ŝ0

]
, (C.2)[

Ŝ1e
σ

S2 Ŝ0 ŵ, Ŝ−1

]
+
[

Ŝ1, ŵe
σ

S2 Ŝ0 Ŝ−1

]
, (C.3)[

Ŝ−1, ŵe
− σ

S2 Ŝ0 Ŝ1

]
+
[

Ŝ−1e
− σ

S2 Ŝ0ŵ, Ŝ1

]
. (C.4)

We start with the commutation relation
[
Ŝ2

0, ŵ
]

in Eq. (C.1) and its analogous dif-

ferential operator in configuration space. In order to accomplish this, we observe
that we have from the polarization operator expansion given by Eq. (230) of the
Wigner–Stratonovich kernel ŵ, the following commutation relation indicated by
the Liouville term of the integrand of Eq. (376), namely,

[
Ŝ2

0, ŵ
]

=
√

4π

2S + 1

2S∑
L=0

L∑
M=−L

(
CSS

SSL0

)−1
Y∗

LM

[
Ŝ2

0, T̂(S)
LM

]
. (C.5)

However, the spin operator Ŝ2
0 must first be written in terms of the polarization

operators T̂(S)
LM by using Eqs. (A.20) and (A.28), namely,

Ŝ2
0 =

√
S(S + 1)(2S + 1)

3

(√
(2S − 1)(2S + 3)√

5
T(S)

20 +√S(S + 1)T(S)
00

)
. (C.6)

Now, the polarization operator T(S)
0,0 is given by Eq. (A.18) and is proportional to

the unit matrix. However, the commutator of any polarization operator with the
unit matrix is zero. Thus, the last term in Eq. (C.6) can be discarded. Next, we can
use Eq. (A.29) regarding commutators of polarization operators from Appendix A
to get
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[
T̂(S)

20 , T̂(S)
LM

]
= 2
√

5(2L + 1)(−1)2S+L+1

×
({

2LL + 1
S S S

}
CL+1,M

2,0,L,MT̂(S)
L+1,M +

{
2 L L − 1
S S S

}
CL−1M

20LM T̂(S)
L−1M

)

from which we conclude that

[
Ŝ2

0, T̂(S)
LM

]
= M

√
[(L + 1)2 − M2] [(2S + 1)2 − (L + 1)2]

(2L + 3)(2L + 1)
T̂(S)

L+1M

+ M

√
(L2 − M2) [(2S + 1)2 − L2]

(2L − 1)(2L + 1)
T̂(S)

L−1M . (C.7)

Therefore, we have from Eqs. (C.5)–(C.7)

[
Ŝ2

0, ŵ
]

=
√

4π

2S + 1

2S∑
L=0

L∑
M=−L

(
CSS

SSL0

)−1
MY∗

LM

×
⎧⎨
⎩
√

[(L + 1)2 − M2] [(2S + 1)2 − (L + 1)2]
(2L + 3)(2L + 1)

T̂(S)
L+1M

+
√

(L2 − M2) [(2S + 1)2 − L2]
(2L − 1)(2L + 1)

T̂(S)
L−1M

⎫⎬
⎭ . (C.8)

Next, by means of the replacement L±1 → L in Eq. (C.8) and subsequently using
the explicit expression for the Clebsch–Gordan coefficients CS S

S S L 0 from Eq. (212),
we then have

�
WS

[
Ŝ2

0, ŵ
]

d�

=
√

4π

2S + 1

�
WS

2S∑
L=0

(
CS S

S S L 0

)−1 L∑
M=−L

T̂(S)
LMM

×
⎡
⎣L

√
(L + 1)2 − M2

(2L + 3)(2L + 1)
Y∗

L+1M − (L + 1)

√
L2 − M2

4L2 − 1
Y∗

L−1M (C.9)

+2 (S + 1)

⎛
⎝
√

(L + 1)2 − M2

(2L + 3)(2L + 1)
Y∗

L+1M +
√

L2 − M2

4L2 − 1
Y∗

L−1M

⎞
⎠
⎤
⎦ d�.

In Eq. (C.9), the terms containing the spherical harmonics Y2S+1,M are omitted
because they vanish on averaging (due to the orthogonality relations and because
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the quasi-distribution function WS contains only the YLM up to order L = 2S). By
using the recursion relations of the YLM , Eqs. (B.15) and (B.16), we then have the
simplified expression

�
WS

[
Ŝ2

0, ŵ
]

d� =
√

4π

2S + 1

�
WS

2S∑
L=0

(
CS S

S S L 0

)−1 L∑
M=−L

T̂(S)
LMM

×
[
sin ϑ

∂

∂ϑ
Y∗

LM + 2(S + 1) cos ϑY∗
LM

]
d� . (C.10)

Thus, via Eq. (187), we obtain by inspection the closed form

�
WS

[
Ŝ2

0, ŵ
]

d� = i
�

WS

[
sin ϑ

∂

∂ϑ
+ 2(S + 1) cos ϑ

]
∂

∂ϕ
ŵd�, (C.11)

that is, we have found in the configuration representation that the analog of the

commutator
[
Ŝ2

0, ŵ
]

is the differential operator

i [sin ϑ∂ϑ + 2(S + 1) cos ϑ ] ∂ϕŵ.

Finally, using integration by parts in Eq. (C.11) in order to render it in the standard
form of an inverse Wigner–Stratonovich transformation, Eq. (235), we have the
desired transformation via the inverse map of a Weyl symbol

�
WS

[
Ŝ2

0, ŵ
]

d� = i
�

ŵ

[
1

sin ϑ

∂

∂ϑ
sin2 ϑ − 2(S + 1) cos ϑ

]
∂

∂ϕ
WSd�.

(C.12)

This derivation has been given in detail merely as an illustration of how the
inverse Wigner–Stratonovich map, Eq. (235), ultimately leads to the phase space
representation of the density matrix evolution equation via the integrand of
Eq. (C.12) and associated equations, which follow.

Next, we have the following commutation relation indicated by the second

Liouville term
[
Ŝ0, ŵS

]
in Eq. (C.1), namely,

[
Ŝ0, ŵ

]
=
√

4π

2S + 1

2S∑
L=0

L∑
M=−L

(
CS S

S S L 0

)−1
Y∗

LM

[
Ŝ0, T̂(S)

LM

]

=
√

4π

2S + 1

2S∑
L=0

L∑
M=−L

M
(

CS S
S S L 0

)−1
Y∗

LMT̂(S)
LM (C.13)

= i

√
4π

2S + 1

2S∑
L=0

L∑
M=−L

(
CS S

S S L 0

)−1 ∂Y∗
LM

∂ϕ
T̂(S)

LM .
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Here, we used Eqs. (230), (A.1), (A.21), (A.29), (B.7), and (187). Thus, we have
from Eq. (C.13) [

Ŝ0, ŵ
]

= i
∂ŵ

∂ϕ
. (C.14)

Equations (C.13) and (C.14) (again via integration by parts) then yield the
Liouville (deterministic) part of the master equation for WS via the inverse map of
a Weyl symbol�

WS

{
σ

S2

[
Ŝ2

0, ŵ
]

+ ξ

S

[
Ŝ0, ŵ

]}
d�

= i
σ

S2

�
ŵ

(
2S cos ϑ − sin ϑ

∂

∂ϑ
− Sξ

σ

)
∂WS

∂ϕ
d�. (C.15)

Next, we consider the commutator
[
Ŝ0ŵ, Ŝ0

]
+
[
Ŝ0, ŵŜ0

]
and determine its phase

space representation. We have[
Ŝ0ŵ, Ŝ0

]
+
[
Ŝ0, ŵŜ0

]

= −
√

4π

2S + 1

2S∑
L=0

L∑
M=−L

M2
(

CS S
S S L 0

)−1
Y∗

LMT̂(S)
LM (C.16)

=
√

4π

2S + 1

2S∑
L=0

L∑
M=−L

(
CS S

S S L 0

)−1 ∂2Y∗
LM

∂ϕ2 T̂(S)
LM = ∂2ŵ

∂ϕ2

so that integrating by parts, we again obtain the standard inverse map of a Weyl
symbol, namely,

�
WS

[
Ŝ0ŵ, Ŝ0

]
+
[
Ŝ0, ŵŜ0

]
d� =

�
ŵ

∂2WS

∂ϕ2 d�. (C.17)

Now, we consider the remaining commutators (which are more difficult to treat)
in the collision operator St(ŵ), namely,

e
σ

2S2 ± ξ
2S

([
Ŝ±1e

± σ

S2 Ŝ0 ŵ, Ŝ∓1

]
+
[

Ŝ±1, ŵe
± σ

S2 Ŝ0 Ŝ∓1

])

=
[
Ŝ±1P̂(S)

± ŵ, Ŝ∓1

]
+
[
Ŝ±1, ŵP̂(S)

± Ŝ∓1

]
, (C.18)

where for convenience we have introduced the matrix exponential operators P̂(S)
± =

e
σ

2S2 ± ξ
2S e

± σ

S2 Ŝ0 in Eq. (C.18). However, they too can also be expanded as a series
of the polarization operators (see Eq. (A.34) et seq.), namely,

P̂(S)
± = e

σ

2S2 ± ξ
2S

2S∑
l=0

a±
l T̂(S)

l0 , (C.19)
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where the scalar expansion coefficients a±
l can be found using the orthogonality

property, Eq. (A.34) of the polarization operators and the explicit form of their
matrix elements in terms of the Clebsch–Gordan coefficients given by Eq. (A.17)
(see Appendix A). The expansion coefficients are then as usual given by the trace

a±
l = Tr

(
e
± σ

S2 Ŝ0 T̂(S)
l0

)
=
√

2l + 1

2S + 1

S∑
m=−S

CS m
S m l0e

± σ

S2 m
. (C.20)

However, Eq. (C.20) may be further simplified for l = 0 using CS m
S m 0 0 = 1 to yield

the closed form

a±
0 =

√
2l + 1

2S + 1

S∑
m=−S

e
± σ

S2 m = sinh σ(S+1/2)

S2√
2S + 1 sinh σ

2S2

. (C.21)

The higher order expansion coefficients may now be found because differential
recurrence relations, which allow one to determine a±

l may be derived as follows.
We first use Eq. (A.28) concerning products of polarization operators to write

T̂(S)
10 T̂(S)

l−10 = l
√

3(2S − l + 1)(2S + l + 1)

2
√

(2l + 1)(2l − 1)S(S + 1)(2S + 1)
T̂(S)

l0

+ (l − 1)
√

3(2S − l + 2)(2S + l)

2
√

(2l − 3)(2l − 1)S(S + 1)(2S + 1)
T̂(S)

l−20. (C.22)

Next, by substituting T̂(S)
l0 as extracted from Eq. (C.22) into the left-hand side of

Eq. (C.20), we have

a±
l = Tr

(
e
± σ

S2 Ŝ0 T̂(S)
l0

)

= 2
√

(2l + 1)(2l − 1)S(S + 1)(2S + 1)

l
√

3(2S − l + 1)(2S + l + 1)
Tr

(
e
± σ

S2 Ŝ0 T̂(S)
10 T̂(S)

l−10

)
(C.23)

− (l − 1)
√

(2l + 1)(2S − l + 2)(2S + l)

l
√

(2l − 3)(2S − l + 1)(2S + l + 1)
Tr

(
e
± σ

S2 Ŝ0 T̂(S)
l−20

)
.

Now,

e
± σ

S2 Ŝ0 T̂(S)
10 T̂(S)

l−10 = ±S

√
3S

(S + 1)(2S + 1)

∂

∂σ

(
e
± σ

S2 Ŝ0 T̂(S)
l−10

)
, (C.24)

therefore we have the desired differential recurrence relation for the expansion
coefficients

a+
l = 2S2

l

√
4l2 − 1

(2S + 1)2 − l2
∂

∂σ
a+

l−1 + l − 1

l

√
(2l + 1)[(2S + 1)2 − (l − 1)2]

(2l − 3)[(2S + 1)2 − l2] a+
l−2

(C.25)
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with

a+
l = (−1)la−

l . (C.26)

Next, mindful of the matrix exponential operator e
± σ

S2 Ŝ0 embodied in Eq. (C.19)
and prompted by that equation, we may regard the polarization operator T̂(S)

l0 as
a (matrix) operator acting on the transformation kernel ŵ and, consequently, may
denote the corresponding differential operator by P(S)

l and its associated form P̄(S)
l .

Both of these differential operators are defined in obvious fashion via

�
WST̂(S)

l,0 ŵd� =
�

WSP(S)
l ŵd� =

�
ŵP̄(S)

l WSd�. (C.27)

The last term in Eq. (C.27), which serves to define the differential operator P̄(S)
l ,

has now the desired form, namely an inverse Wigner–Stratonovich map. In Eq.
(C.27), the differential operator P̄(S)

l is obtained from the differential operator P(S)
l

using integration by parts in the middle term. The operator expansion defined
by Eq. (C.19) involving P̂(S)

± now allows one to express both of the phase space

differential operators P(S)
± and P̄(S)

± as suggested by that equation in terms of

the phase space differential operators P(S)
l and P̄(S)

l [as defined in Eq. (C.27)]

corresponding to the polarization operators T̂(S)
l,0 as

(
P(S)

±
P̄(S)

±

)
= e

σ

2S2 ± ξ
2S

2S∑
l=0

a±
l

(
P(S)

l

P̄(S)
l

)
(C.28)

with a±
l defined by the recurrence relations: Eqs. (C.25) and (C.26). The differ-

ential operators P(S)
l and P̄(S)

l on the right-hand side of Eq. (C.28) may now be
determined by upward iteration. In order to find them explicitly, we first recall the
expression for the product of the polarization operators embodied in Eq. (C.22),
which may be rearranged as the upward operator recurrence equation

T̂(S)
l0 = Al−1T̂(S)

10 T̂(S)
l−10 − Al−2T̂(S)

l−20,

with coefficients Al−1 and Al−2 given by

Al−1 = 2

l

√
S(S + 1)(2S + 1)(4l2 − 1)

3[(2S + 1)2 − l2] , (C.29)

Al−2 = l − 1

l

√
(2l + 1)[(2S + 1)2 − (l − 1)2]

(2l − 3)[(2S + 1)2 − l2] . (C.30)
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However, by virtue of the correspondence expressed in Eq. (C.27), the phase space
differential operators P(S)

l and P̄(S)
l must also satisfy a similar recurrence equation,

namely, (
P(S)

l

P̄(S)
l

)
= Al−1

(
P(S)

l−1P(S)
1

P̄(S)
1 P̄(S)

l−1

)
− Al−2

(
P(S)

l−2

P̄(S)
l−2

)
(C.31)

so that we have explicitly for the first two members of the hierarchy of operator
recurrence relations

P(S)
0 = P̄(S)

0 (2S + 1)−1/2 (C.32)

and(
P(S)

1
P̄(S)

1

)
= 1

2

√
3

S(S + 1)(2S + 1)

[
(2S + 1 ± 1) cos ϑ ± sin ϑ

∂

∂ϑ
± i

∂

∂ϕ

]
.

(C.33)

Thus, it is now obvious that, in general, differential operators of arbitrary order
will be involved. To establish the second member as in Eq. (C.33), we made the
following steps:

T̂(S)
10 ŵ =

√
4π

2S + 1

2S∑
L=0

L∑
M=−L

(
CS S

S S L 0

)−1
Y∗

LM
1

2

√
3

S(S + 1)(2S + 1)

[
MT̂(S)

LM

+
√

(L − M + 1)(L + M + 1)(2S − L)(2S + L + 2)√
(2L + 3)(2L + 1)

T̂(S)
L+1M (C.34)

+
√

(L − M)(L + M)(2S − L + 1)(2S + L + 1)√
(2L − 1)(2L + 1)

T̂(S)
L−1M

]
.

Next, by the replacement L ± 1 → L in Eq. (C.34), and then using the explicit
expression for the Clebsch–Gordan coefficients CS S

S S L 0 from Eq. (212), we have

T̂(S)
10 ŵ =

√
4π

2S + 1

2S∑
L=0

L∑
M=−L

(
CS S

S S L 0

)−1
T̂(S)

LM

√
3

S(S + 1)(2S + 1)

×
[

M

2
Y∗

LM + 2S − L + 1

2

√
(L − M)(L + M)

(2L + 1)(2L − 1)
Y∗

L−1M

+2S + L + 2

2

√
(L − M + 1)(L + M + 1)

(2L + 1)(2L + 3)
Y∗

L+1M

]
(C.35)

=
√

3

S(S + 1)(2S + 1)

[
(S + 1) cos ϑ + 1

2
sin ϑ

∂

∂ϑ
+ i

2

∂

∂ϕ

]
ŵ

= P(S)
1 ŵ.
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Consequently, by substituting Eq. (C.35) into the defining equation (C.27) and
integrating by parts, we have Eq. (C.33).

Returning to the phase space representation of the commutators in Eq. (C.18),
the matrix exponential operators P̂(S)

± , act on the polarization operators in the

expansion of transformation kernel ŵ, while its phase space correspondents P(S)
±

from Eq. (C.28), in contrast, represent sets of differential operators acting on the
spherical harmonics in ŵ leading in the end to the same result, namely,

�
WS[Ŝ±1P̂(S)

± ŵ, Ŝ∓1]d� =
�

P̄(S)
± WS[Ŝ±1ŵ, Ŝ∓1]d�. (C.36)

Because the commutator [Ŝ±1P̂(S)
± ŵ, Ŝ∓1] gives the differential operator, which is

complex conjugate to that corresponding to [Ŝ±1, P̂(S)
± ŵŜ∓1] in the right-hand side

of Eq. (C.18), we need to consider only the commutator [Ŝ±1P̂(S)
± ŵ, Ŝ∓1]. We have

[Ŝ±1ŵ, Ŝ∓1] =
√

4π√
2S + 1

2S∑
L=0

L∑
M=−L

(
CS S

S S L 0

)−1
Y∗

LM(ϑ , ϕ)
[
Ŝ±1T̂(S)

LM , Ŝ∓1

]
,

(C.37)

where[
Ŝ±1T̂(S)

LM , Ŝ∓1

]
= −1

4

[
(L ∓ M)(L ± M + 1)T̂(S)

LM

∓ (L ± M + 2)
√

(L + M + 1)(L − M + 1)(2S − L)(2S + L + 2)√
(2L + 3)(2L + 1)

T̂(S)
L+1M

(C.38)

± (L ∓ M − 1)
√

(L + M)(L − M)(2S − L + 1)(2S + L + 1)√
(2L − 1)(2L + 1)

T̂(S)
L−1M

]
.

Next, via the replacement L ± 1 → L in Eq. (C.8) and then using the explicit
expression for the Clebsch–Gordan coefficients CS S

S S L 0 from Eq. (212), we have

[Ŝ±1ŵ, Ŝ∓1] = − 1

4

√
4π√

2S + 1

2S∑
L=0

L∑
M=−L

(
CS S

S S L 0

)−1
T̂(S)

LM

[
(L ∓ M)(L ± M + 1)Y∗

LM

∓ (2S + L + 2)(L ± M + 1)
√

(L + M + 1)(L − M + 1)√
(2L − 1)(2L + 1)

Y∗
L−1M

± (2S − L + 1)(L ∓ M)
√

(L + M)(L − M)√
(2L + 3)(2L + 1)

Y∗
L+1M

]
. (C.39)
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Now, we can ultimately write Eq. (C.39) in differential form using properties of
the angular momentum operators Lμ and L̂2 (see Appendix B), namely,

L̂2Y∗
LM = −

[
1

sin θ

∂

∂ϑ

(
sin ϑ

∂

∂ϑ

)
+ 1

sin2 ϑ

∂2

∂2ϕ

]
Y∗

LM (C.40)

= L(L + 1)Y∗
LM ,

L̂0Y∗
LM = −i

∂

∂ϕ
Y∗

LM = −MY∗
LM , (C.41)

L̂±1Y∗
LM = − 1√

2
e±iϕ

(
∂

∂ϑ
± i cot ϑ

∂

∂ϕ

)
Y∗

LM∓1

= ±
√

L(L + 1) − M(M ∓ 1)

2
Y∗

LM∓1, (C.42)

and

L̂±L̂∓Y∗
LM = 1

2

(
∂2

∂ϑ2 + cot ϑ
∂

∂ϑ
± i

∂

∂ϕ
+ cot2 ϑ

∂2

∂2ϕ

)
Y∗

LM

= −1

2
(L ∓ M)(L ± M + 1)Y∗

LM . (C.43)

Thus, we can rearrange the commutator given by Eq. (C.37) as the differential
form

[Ŝ±1ŵ, Ŝ∓1] =
√

π

2S + 1

2S∑
L=0

L∑
M=−L

(
CS S

S S L 0

)−1
T̂(S)

LM

×
[

1

2

(
∂2

∂ϑ2 + cot ϑ
∂

∂ϑ
± i

∂

∂ϕ
+ cot2 ϑ

∂2

∂2ϕ

)

+ i(S + 1) cos ϑ
∂

∂ϕ
−
(

S + 1

2

)
sin ϑ

∂

∂ϑ
+ i

2
sin ϑ

∂

∂ϑ

∂

∂ϕ

(C.44)

−1

2
cos ϑ

[
1

sin θ

∂

∂ϑ

(
sin ϑ

∂

∂ϑ

)
+ 1

sin2 ϑ

∂2

∂2ϕ

]]
Y∗

LM .

By substituting Eq. (C.44) into Eq. (C.36) and integrating the latter by parts, we
then have that equation rendered as the inverse map of a Weyl symbol, namely,

�
WS[Ŝ±1P̂(S)

± ŵ, Ŝ∓1]d� = −1

4

�
ŵ

{
i

(
sin ϑ

∂

∂ϑ
− 2S cos ϑ ∓ 1

)
∂

∂ϕ

+ 1

sin ϑ

[
∂

∂ϑ

(
sin ϑ(1 ± cos ϑ)

∂

∂ϑ
± 2S sin2 ϑ

)

+ cot ϑ (cos ϑ ± 1)
∂2

∂ϕ2

]}
P̄(S)

± WSd�. (C.45)
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In the derivation of Eq. (C.45), the recurrence properties of the spherical harmonics
given in Appendix B, namely, Eqs. (C.14)–C.17), have been used. Finally, because
the commutator [Ŝ±1P̂(S)

± ŵ, Ŝ∓1] gives the differential operator which is complex

conjugate to that corresponding to [Ŝ±1, P̂(S)
± ŵŜ∓1], we have once again the

standard inverse Wigner–Stratonovich map of a Weyl symbol via�
WS

(
[Ŝ±1P̂(S)

± ŵ, Ŝ∓1] + [Ŝ±1, ŵP̂(S)
± Ŝ∓1]

)
d�

= e
σ

2S2 ± ξ
2S

�
WS

(
[Ŝ±1e

± σ

S2 Ŝ0ŵ, Ŝ∓1] + [Ŝ±1, ŵe
± σ

S2 Ŝ0 Ŝ∓1]
)

d�

= −1

2

�
ŵRe

{[
1

sin ϑ

∂

∂ϑ

(
sin ϑ(1 ± cos ϑ)

∂

∂ϑ
± 2S sin2 ϑ

)
(C.46)

+ 1

sin ϑ
cot ϑ (cos ϑ ± 1)

∂2

∂ϕ2

+ i

(
sin ϑ

∂

∂ϑ
− 2S cos ϑ ∓ 1

)
∂

∂ϕ

]
P̄(S)

±
}

WSd�.

Then due to Eq. (376), we have from the Weyl symbols of Eqs. (C.15), (C.17), and
(C.46) the master equation for the phase space distribution WS(ϑ , ϕ, t), namely,

∂WS

∂t
− σ

h̄βS2

(
2S cos ϑ − sin ϑ

∂

∂ϑ
− Sξ

σ

)
∂WS

∂ϕ
= St {WS} , (C.47)

where the collision kernel St {WS} is

St {WS} = D‖
∂2

∂2ϕ
WS + D⊥

cot ϑ

sin ϑ

(
cos ϑ

∂2

∂2ϕ
R′(S)

+ + ∂2

∂2ϕ
R′(S)

−
)

WS

+ D⊥
sin ϑ

[
∂

∂ϑ
sin ϑ

(
∂

∂ϑ
R′(S)

+ + cos ϑ
∂

∂ϑ
R′(S)

− + 2S sin ϑR′(S)
−
)]

WS

(C.48)

+ D⊥
[(

sin ϑ
∂

∂ϑ
− 2S cos ϑ

)
∂

∂ϕ
R′′(S)

+ − ∂

∂ϕ
R′′(S)

−
]

WS

with the phase space differential operators R(S)
± generally involving differential

operators of arbitrary order (cf. Eq. (C.28)) defined as follows:

R(S)
± = R′(S)

± + iR′′(S)
± = P̄(S)

+ ± P̄(S)
− . (C.49)

In the classical limit, we see that since all the terms involving derivatives in the
differential operator expansion (Eq. (C.28) et seq.) now vanish, the operator P̄(S)

l
simply reduces to the Legendre polynomial of order l

P̄(S>>1)
l → Yl0(ϑ , ϕ)

√
4π

2S + 1
. (C.50)
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Thus, in this limit by substituting the Legendre polynomials into the operator series
equation (C.28), we must then have

P̄(S→∞)
± = e

σ

2S2 ± ξ
2S

√
4π

2S + 1

2S∑
l=0

a±
l Yl0(ϑ , ϕ) = e

σ

2S2 ± ξ
2S F(0)

± (ϑ , ϕ),

in which the series

F(s)
± (ϑ , ϕ) =

√
4π

2S + 1

2S∑
l=0

(
CS S

S S L 0

)−s
a±

l Yl0(ϑ , ϕ)

represents the Weyl symbol of the Hilbert space operator e±σ Ŝ0/S2
. For large S,

F(s)
± (ϑ , ϕ) → e±(σ/S) cosϑ

so that proceeding to the limit S → ∞, we have

lim
S→∞ S

(
e[σ cosϑ+(σ/S+ξ)/2]/S − e[−σ cosϑ+(σ/S−ξ)/2]/S

)
= ξ + 2σ cos ϑ

and

lim
S→∞ e(ξ+σ/S+2σ cosϑ)/S = 1.

Hence, it follows that in the classical limit, S → ∞, Eq. (C.47), reduces to the
corresponding classical Fokker–Planck equations for isotropic rotational diffusion
of a magnetic dipole in the uniaxial potential [5] (if D⊥ = D‖)
∂W

∂t
= γ

μ sin ϑ

∂V

∂ϑ

∂W

∂ϕ

+ D⊥
[

1

sin ϑ

∂

∂ϑ

(
sin ϑ

∂W

∂ϑ

)
+ 1

sin2 ϑ

∂2W

∂ϕ2
+ β

sin ϑ

∂

∂ϑ

(
sin ϑW

∂V

∂ϑ

)]
,

(C.51)

where μ = γ h̄S/μ0 is the magnetic dipole moment and

βV(ϑ) = −σ cos2 ϑ − ξ cos ϑ

is the normalized free energy density.
The master equation (C.47) for the evolution of the phase space quasiprobabil-

ity distribution WS(ϑ , ϕ, t) for a uniaxial spin system in contact with a heat bath at
temperature T was derived in the weak coupling limit, that is, it was supposed
that the correlation time characterizing the bath is so short that the stochastic
process originating from it is Markovian so that one may assume frequency-
independent damping. This has been accomplished by expressing the reduced
density matrix master equation (371) in terms of the inverse Wigner–Stratonovich
transformation. In order to achieve this objective, various commutators involving
the spin operators occurring in the integrand of Eq. (376) have then been evaluated
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by means of the orthogonality and recurrence properties of the polarization
operators and the corresponding spherical harmonics to yield their analogs in
phase space. Thus, we have expressed the master equation as a partial differential
equation for the distribution function in the phase space of the polar angles.
Despite the superficial resemblance of the quantum diffusion equation (C.47)
to the corresponding classical Fokker–Planck equation for a classical spin in
a uniaxial potential equation (C.51), it is in reality much more complicated.
The complications arise because Eq. (C.47) involves the complicated differential
operators R(S)

± only simplifying for large spin numbers (S → ∞) when the higher

order derivatives, as indicated by Eq. (C.49), occurring in the operators R(S)
± may be

ignored. Consequently, it is often much easier to use the density matrix formulation
where for axially symmetric problems only the diagonal terms partake in the time
evolution.

APPENDIX D: BROWN’S THEORY OF THE BROWNIAN MOTION OF
A CLASSICAL SPIN

The rigorous treatment of the magnetization dynamics of fine magnetic particles
in the presence of thermal agitation was set in the context of the general theory
of stochastic processes by W.F. Brown [23, 24] via the classical theory of the
Brownian motion using by analogy ideas originating in the Debye theory of
dielectric relaxation of polar dielectrics [7, 8]. The starting point of Brown’s
treatment [23, 24] of the dynamical behavior of the magnetization M for a single-
domain particle was Gilbert’s equation [26], namely, (cf. Eq. (2))

u̇ = γ
[
u × (Hef − αu̇/γ

)]
(D.1)

(here u = M−1
S M is a unit vector in the direction of M). In general,

Hef = −∂V/∂M and − αu̇/γ (D.2)

represent the conservative and dissipative parts of an “effective field,” respectively.
Brown now supposes in order to treat thermal agitation that the dissipative “effec-
tive field” −αu̇/γ describes only the statistical average of the rapidly fluctuating
random field due to thermal agitation, and that this term for an individual particle
must become

−αu̇/γ → −αu̇/γ + h(t),

where the random field h(t) has the white noise properties

hi(t) = 0, hi(t1)hj(t2) = 2kTα

vγμ0MS
δijδ (t1 − t2) . (D.3)
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Here, the indices i, j = 1, 2, 3 in Kronecker’s delta δij and hi correspond to the
Cartesian axes X,Y ,Z of the laboratory coordinate system OXYZ, δ(t) is the Dirac
delta function, and the overbar means the statistical average over an ensemble
of particles that all have at time t the same magnetization M. The random field
accounts for the thermal fluctuations of the magnetization of an individual particle
without which the random orientational motion would not be sustained.

Brown was then able to derive, after a long and tedious calculation using the
methods of Wang and Uhlenbeck [195], the Fokker–Planck equation (3) for the
distribution function W(ϑ , ϕ, t) of the orientations of the magnetic moment vector
μ = vM (v is the volume of the particle) on the surface of the unit sphere.
This lengthy procedure may be circumvented, however, by using an alternative
approach also given by him [23], which appears to be based on an argument
originally due to Einstein [196] in order to heuristically derive the Smoluchowski
equation for point particles. Einstein accomplished this by adding a diffusion
current representing the effect of the heat bath on the deterministic drift current
due to an external force. In order to illustrate this method, we first write (cross-
multiplying vectorially by u and using the triple vector product formula) Gilbert’s
equation in the absence of thermal agitation (noiseless equation) as an explicit
equation for (D.1) u̇. Transposing the α term, we have

u̇ + α [u × u̇] = γ
[
u × Hef

]
. (D.4)

Cross-multiplying vectorially by u in Eq. (D.4), using the triple vector product
formula

[[u × u̇] × u] = u̇ − u(u · u̇), (D.5)

we obtain

[u̇ × u] = −αu̇+γ
[[

u × Hef
]× u

]
(D.6)

because (u · u̇) = 0. Substituting Eq. (D.6) into Eq. (D.4) yields the explicit
solution for u̇ in the Landau-Lifshitz form [25, 94]

u̇ = α−1h′MS
[
u × Hef

]+ h′MS
[[

u × Hef
]× u

]
, (D.7)

where h′ is Brown’s parameter defined as h′ = γ /[(α +α−1)MS]. With Eq. (D.2),
Eq. (D.7) becomes

u̇ = −h′

α

[
u × ∂V

∂u

]
+ h′

[
u ×

[
u × ∂V

∂u

]]
. (D.8)

Now the instantaneous orientation (ϑ , ϕ) of the magnetization M of a single-
domain particle may be represented by a point on the unit sphere (1, ϑ , ϕ). As
the magnetization changes its direction, the representative point moves over the
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Figure D.1. Spherical polar coordinate system.

surface of the sphere. Following Refs. 5 and 23, consider now a statistical ensemble
of identical particles and let W(ϑ , ϕ, t)d� be the probability that u has orientation
(ϑ , ϕ) within the solid angle d� = sin ϑdϑdϕ (see Fig. D.1). The time derivative
of W(ϑ , ϕ, t) is then related to the probability current J of such representative
points swarming over the surface S of the sphere by the continuity equation

Ẇ + divJ = 0. (D.9)

Equation (D.9) states that the swarming representative points are neither created
nor destroyed, merely moving to new positions on the surface of the sphere. Now,
in the absence of thermal agitation, we have the deterministic drift current J = Wu̇,
where u̇ is given by Eq. (D.8). Next, add to this deterministic J a diffusion term
−k′∂uW (k′ is a proportionality constant to be determined later), which represents
the effect of thermal agitation; its tendency is to smooth out the distribution, that
is, to make it more uniform. Recall the alternative and equivalent Langevin picture
of a systematic retarding torque tending to slow down the spin superimposed on a
rapidly fluctuating white noise random torque maintaining the rotational motion.
This intuitive procedure essentially due to Einstein gives for the components of
J (on evaluating [u × ∂uV], etc, in spherical polar coordinates)

Jϑ = −h′
[(

∂V

∂ϑ
− 1

α sin ϑ

∂V

∂ϕ

)
W + k′

h′
∂W

∂ϑ

]
, (D.10)

Jϕ = −h′
[(

1

α

∂V

∂ϑ
+ 1

sin ϑ

∂V

∂ϕ

)
W + k′

h′ sin ϑ

∂W

∂ϕ

]
. (D.11)
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Equations (D.10) and (D.11), when substituted into the continuity equation (D.9),
now yield Brown’s Fokker–Planck equation for the surface density of magnetic
moment orientations on the unit sphere, which may be written as

∂W

∂t
= 1

2τN sin ϑ

{[
∂

∂ϑ

(
sin ϑ

∂

∂ϑ
W

)
+ 1

sin ϑ

∂2W

∂ϕ2

]

+ v

kT

[
∂

∂ϑ

(
sin ϑ

∂V

∂ϑ
− α−1 ∂V

∂ϕ

)
W + ∂

∂ϕ

(
α−1 ∂V

∂ϑ
+ 1

sin ϑ

∂V

∂ϕ

)
W

]}
,

(D.12)

or, equivalently, in the compact vector form of Eq. (3). Here,

τN = vμ0MS(α + α−1)

2γ kT

is the free diffusion time and the constant k′ = kTh′/v = (2τN)−1 was evaluated
by requiring that the Boltzmann distribution Weq(ϑ , ϕ) = Ae−vV(ϑ ,ϕ)/(kT) of
orientations (A is a normalizing constant) should be the stationary (equilibrium)
solution of the Fokker–Planck equation (D.12). Here, we have given Brown’s
intuitive derivation of his magnetic Fokker–Planck equation (D.2), for the isotropic
Brownian motion of the classical spin. A rigorous derivation of that equation from
the Gilbert–Langevin equation is given elsewhere [5, 23, 193].

Now, Brown’s Fokker–Planck equation for the probability density function
W(ϑ , ϕ, t) of orientations of the unit vector u in configuration space (ϑ , ϕ) can be
solved by separation of the variables. This gives rise to a Sturm–Liouville problem
so that W(ϑ , ϕ, t) can be written as

W(ϑ , ϕ, t) = W0(ϑ , ϕ) +
∞∑

k=1

�k(ϑ , ϕ) e−λkt, (D.13)

where �k(ϑ , ϕ) and λk are the eigenfunctions and eigenvalues of the Fokker–
Planck operator LFP and W0(ϑ , ϕ) is the stationary solution of that equation, that
is, LFPW0 = 0, corresponding to the Boltzmann equilibrium. Then, the reversal
time of the magnetization τ can be estimated [5, 6] via the inverse of the smallest
nonvanishing eigenvalue λ1 of the operator LFP in Eq. (2), namely,

τ = 1

λ1
. (D.14)

An alternative method involving the observables directly is to expand W(ϑ , ϕ, t)
as a Fourier series of appropriate orthogonal functions forming an orthonormal
basis related to them; here, these are the spherical harmonics Ylm(ϑ , ϕ) (see
Appendix B), namely,

W(ϑ , ϕ, t) =
∞∑

l=0

l∑
m=−l

Y∗
lm(ϑ , ϕ) 〈Ylm〉 (t) , (D.15)
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where by orthogonality the expectation values of the spherical harmonics are
given by

〈Ylm〉 (t) =
2π�
0

π�
0

W(ϑ , ϕ, t)Ylm(ϑ , ϕ) sin ϑdϑdϕ. (D.16)

Moreover, for arbitrary magnetocrystalline anisotropy, which can be expressed in
terms of spherical harmonics as

vV(ϑ , ϕ)

kT
=

∞∑
R=1

R∑
S=−R

AR,SYRS(ϑ , ϕ), (D.17)

we have by assuming a solution in the form of the Fourier expansion equation
(D.15) for the Fokker–Planck equation (2), an infinite hierarchy of differential
recurrence equations for the statistical moments 〈Ylm〉 (t), namely, (details are in
Refs. 5 and 144)

τN
d

dt
〈Ylm〉 (t) =

∑
s,r

el,m,l+r,m+s 〈Yl+rm+s〉 (t). (D.18)

In Eq. (D.18), the el,m,l′,m±s are the matrix elements of the Fokker–Planck operator
expressed as

el,m,l′,m±s = − l(l + 1)

2
δll′δs0 + (−1)m 1

4

√
(2l + 1)(2l′ + 1)

π

×
∞∑

r=s

Ar,±s

{[
l′
(
l′ + 1

)− r (r + 1) − l (l + 1)
]

2
√

2r + 1
Cr0

l0l′0Cr∓s
lml′−m∓s

+ i

α

√
(2r + 1)(r − s)!

(r + s)!
r−1∑

L = s − εr,s,
�L = 2

√
(L + s)!
(L − s)!CL0

l0l′0

×
[

mCL∓s
lml′−m∓s ± s

√
(l ∓ m)(l ± m + 1)

(L + s)(L − s + 1)
CL∓s±1

lm±1l′−m∓s

]}
, (D.19)

where s ≥ 0 and Crs
lml′m′ are the Clebsch–Gordan coefficients. We remark that Eq.

(D.19) determines the coefficients of the linear combination el,m,l′,m′ for arbi-
trary magnetocrystalline anisotropy and Zeeman energy densities. The Gilbert–
Langevin equation (2) can also be reduced to the moment system for 〈Ylm〉 (t),
Eq. (D.18), by an appropriate transformation of variables and by direct averaging
(without recourse to the Fokker–Planck equation) of the stochastic equation
thereby obtained [5,144]. Examples of explicit calculations of the el,m,l′,m′ for
particular magnetocrystalline anisotropies are available in Refs. 5 and 6 and further
references therein.
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The recurrence Eq. (D.18) may always be written in matrix form as

Ẋ(t) = AX(t), (D.20)

where A is the system matrix and X(t) is an infinite column vector formed
from 〈Ylm〉 (t). The general solution of Eq. (E.7) is determined by successively
increasing the size of A until convergence is attained. Alternatively, we can always
transform the moment systems, Eq. (D.18) into the tri-diagonal vector differential
recurrence equation

τN Ċn(t) = Q−
n Cn−1(t) + QnCn(t) + Q+

n Cn+1(t), (D.21)

where Cn(t) are column vectors arranged in an appropriate way from 〈Ylm〉 (t)
and Q±

n , Qn are matrixes with elements el′,m′,l,m. As shown in Ref. 197 (see also
Ref. 5), the exact matrix continued fraction solution of Eq. (D.21) for the Laplace
transform of C1(t) is given by

C̃1(s) = τN�1(s)

{
C1(0) +

∞∑
n=2

[
n∏

k=2

Q+
k−1�k(s)

]
Cn(0)

}
, (D.22)

where

C̃1(s) =
∞�
0

C1(t)e
−stdt,

�n(s) is the matrix continued fraction defined by the recurrence equation

�n(s) = [τNsI − Qn − Q+
n �n+1(s)Q

−
n+1

]−1
, (D.23)

and I is the unit matrix. Having determined C̃1(s), one may evaluate all the relevant
observables.

Hitherto, we have used Gilbert’s form of the Langevin equation (2) and its
accompanying Fokker–Planck equation (D.12). Equations (2) and (D.12) often
occur in stochastic magnetization dynamics. Brown [23, 24] justified his use of
the Gilbert equation because all the terms in it can be derived from a Lagrangian
function and a Rayleigh dissipation function. Moreover, Gilbert’s equation fits
naturally into escape-rate theory in all damping ranges if the damping torque is
regarded as the time average of a fluctuating torque, whose instantaneous value
contains also a random term with statistical properties. However, in the litera-
ture, alternative forms of the Langevin equations governing the magnetization
M(t) have also been proposed. Two other frequently used Langevin equations
for stochastic spin dynamics are the Landau–Lifshitz (see e.g., Ref. 25) and
Kubo [27, 90, 91] forms, respectively,

u̇(t) = γ u(t) × [Hef (t) + h(t)
]− γαu(t) × [u(t) × [Hef (t)+h(t)]] (D.24)
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and

u̇(t) = γ u(t) × [Hef (t) + h(t)
]− γαu(t) × [u(t) × Hef (t)

]
. (D.25)

The difference between these two models is that in the Kubo equation (D.25), the
random field h(t) appears only in the gyromagnetic term. In general, the explicit
form of the infinite hierarchy of differential recurrence equations for the statistical
moments depends on the Langevin equation. Furthermore, the corresponding
Fokker–Planck equation is also determined by that equation. Nevertheless, all
the Langevin equations (2, D.24, and D.25) yield very similar hierarchies and
Fokker–Planck equations, the only difference being in the definition of the free
diffusion time τN (see for details Ref. 5 and 6). Moreover, the Kubo and Landau–
Lifshitz models, despite the different forms of the Langevin equations (D.24 and
D.25), yield identical mathematical forms for the corresponding Fokker–Planck
equations. Thus the Gilbert, Kubo, and Landau–Lifshitz models for Brownian
motion of classical spins, irrespective of the Langevin equations, yield the same
form of the corresponding Fokker–Planck equations, as well as the same infinite
hierarchy of differential recurrence equations for the statistical moments, the only
difference being in the free-diffusion time constant, a difference that is negligible
at low damping [5, 6] (the most interesting damping range from an experimental
point of view). However, only Gilbert’s model where a damping term is introduced
via the customary Lagrangian formulation of the classical equations of motion for
the angular momentum, can be used in all damping ranges. In contrast, neither the
Kubo nor the Landau–Lifshitz models can be used for high damping, because
under this condition they may predict unphysical behavior of the observables
(relaxation times, escape rates, and so on.).

Finally, we remark that in the more general treatment of the isotropic Brownian
motion of the classical spin, the memoryless assumption, that is,

φ (t1 − t2) = α/(vγμ0MS) δ (t1 − t2)

is discarded. Thus, the random field h(t) has no longer white noise properties,
namely,

hi(t) = 0, hi(t1)hj(t2) = 2kTδijφ (t1 − t2) , (D.26)

and the generalized stochastic magnetic Langevin equation becomes [198, 199]

u̇(t) = γ
[
u(t) × (Hef (t) + h(t)

)]−
[

u(t) ×
t�

0

φ(t − t′)u̇(t′)dt′
]

. (D.27)

Here, Eq. (D.27) takes into account memory effects and the random field correla-
tion function φ

(
t − t′

)
has the meaning of a memory function.
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APPENDIX E: CHARACTERISTIC TIMES OF RELAXATION AND
CORRELATION FUNCTIONS

We have seen by solving the differential recurrence equations for the statistical
moments how we can evaluate the characteristic times of the relaxation and/or
correlation functions Ci(t)(i = X, Y , Z) of the longitudinal and transverse compo-
nents of spin operators (or vectors in the classical case). Now, to characterize the
overall time behavior of Ci(t), we may formally introduce (see Ref. 5) the integral
relaxation time τ i

int, namely,

τ i
int = 1

Ci(0)

∞�
0

Ci(t)dt, (E.1)

which is the area under the decay curve of Ci(t). Yet another time constant
characterizing the time behavior of Ci(t) is the effective relaxation time τ i

ef
defined by

τ i
ef = −Ci(0)

Ċi(0)
(E.2)

(yielding precise information on the initial decay of Ci(t) in the time domain). For
spin systems with dynamics governed by Fokker–Planck equations, the times τ i

int
and τ i

ef may equivalently be defined using the eigenvalues (λi
k) of the Fokker–

Planck operator from the evolution equation (2) because (Ref. 5, ch. 2) the
normalized relaxation function Ci(t)/Ci(0) may formally be written as

Ci(t)

Ci(0)
=
∑

k
ci

ke−λi
kt, (E.3)

so that, from Eqs. (E.1), (E.2), and (E.3), we have

τ i
int =

∑
k

ci
k/λ

i
k (E.4)

and

τ i
ef =

∑
k
λkci

k. (E.5)

Now, the relaxation times τ i
int and τ i

ef each contain contributions from all the

eigenvalues λi
k. Therefore, in general, in order to evaluate both Ci(t), τ i

int, and
τ i

ef numerically, a knowledge of each individual λk and ci
k is required. However,

in the low-temperature (high-barrier) limit, for the longitudinal relaxation of the
magnetization, λZ

1 <<
∣∣λZ

k

∣∣ and cZ
1 ≈ 1 >> cZ

k (k = 1) provided the wells of the
potential remain equivalent or nearly equivalent, the approximation τZ

int ≈ 1/λZ
1
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is valid. In other words, the inverse of the smallest nonvanishing eigenvalue λZ
1

closely approximates the longitudinal relaxation time τZ
int in the low-temperature

limit for zero or very weak external fields. Furthermore, in the longitudinal
relaxation of the magnetization, the smallest nonvanishing eigenvalue(s) λZ

1 of the
Fokker–Planck operator characterizes the long-time behavior of〈

ŜZ

〉
(t) −

〈
ŜZ

〉
eq

∼ C‖(t) ∼ e−λZ
1 t = e−t/τ , t >> τ . (E.6)

Thus, it may be associated with the longest relaxation (reversal) time of the
magnetization. In order to evaluate the reversal time τ numerically, we note that the
recurrence equations for the statistical moments may always be written in matrix
form as

Ẋ(t) = AX(t), (E.7)

where A is the system matrix and X(t) is an infinite column vector formed from the
statistical moments. The τ may then be determined from the smallest nonvanishing
root of the characteristic equation

det(λI − A) = 0 (E.8)

by selecting a sufficiently large number of equations. The general solution of Eq.
(E.7) is determined by successively increasing the size of A until convergence is
attained.

The integral relaxation times τ i
int can also be calculated via the one-

sided Fourier transform of the appropriate correlation function C̃i(−iω) =� ∞
0 Ci(t)eiωtdt as

τ i
int = C̃i(0)

Ci(0)
.

Here, we may evaluate the reversal time τ via the one-sided Fourier transform of
the longitudinal correlation function C̃Z(−iω) = � ∞

0 CZ(t)eiωtdt as follows. We
consider the long-time behavior of CZ(t) which is dominated by an exponential,
namely,

CZ(t) ≈ C0e−t/τ . (E.9)

Then, the longest relaxation time τ can then be extracted from C̃Z(−iω) (by
eliminating C0) as follows [5]:

τ = lim
ω→0

CZ(0) − C̃Z(−iω)

iω C̃Z(−iω)
. (E.10)

In practical applications, such as to magnetization reversal, matrix continued
fractions due to their rapid convergence are much better suited to numerical cal-
culations than standard direct matrix inversion based on the matrix representation,
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Eq. (E.7), of the infinite system of linear differential recurrence relations for the
averaged spherical harmonics.

In the general case, the integral relaxation time can only be evaluated numer-
ically. However, for systems with dynamics governed by single-variable Fokker–
Planck equation, it can be calculated analytically for both linear and nonlinear
transient responses.

Here, we first derive following Ref. 5, an exact analytic equation for the
nonlinear transient response relaxation time of a system governed by a one-
dimensional Fokker–Planck equation for the probability distribution function
W(z, t) of a single variable z, namely,

∂W

∂t
= LFPW, (E.11)

where the Fokker–Planck operator LFP may be represented as follows [71]:

LFPW = ∂

∂z

[
D2(z)

(
∂W

∂z
+ D1(z)W

)]
. (E.12)

Here, D1(z) and D2(z) are the coordinate-dependent coefficients and z is defined in
the range t1 ≤ z ≤ 1). Moreover, we assume that the relaxation dynamics of spins
obey the single-variable Fokker–Planck equation (E.11). Suppose that at time
t = 0, the external field H is suddenly altered from HI to HII (see Fig. 14). We are
interested in the relaxation of the system starting from an equilibrium (stationary)
state I with the distribution function WI(z), which evolves under the action of
the stimulus of arbitrary strength to another equilibrium (stationary) state II with
the distribution function WII(z). This problem is intrinsically nonlinear, because
changes in the magnitude of the potential are arbitrary. Thus, the concept of
relaxation functions and relaxation times must now be used, rather than correlation
functions and correlation times.

Following Ref. 200 we may define the relaxation function fA(t) of a dynamical
variable A by

fA(t) =
{

〈A〉(t) − 〈A〉II, (t > 0),

〈A〉I − 〈A〉II, (t ≤ 0),
(E.13)

where 〈A〉(t) is the time-dependent average and 〈A〉I and 〈A〉II are equilibrium
(stationary) averages defined as follows:

〈A〉(t) =
� 1

−1
A(z)W(z, t)dz, (E.14)

〈A〉i =
� 1

−1
A(z)Wi(z)dz (i = I, II). (E.15)
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Our goal is to evaluate the integral relaxation time τint of the relaxation function
fA(t), which is defined as

τint = 1

fA(0)

∞�
0

fA(t)dt

= 1

fA(0)
lim
s→0

∞�
0

e−stfA(t)dt = f̃A(0)

fA(0)
, (E.16)

where f̃A(s) is the Laplace transform of fA(t). The relaxation time, Eq. (E.16), may
be written as

τint = 1

〈A〉I − 〈A〉II

1�
−1

[A(z) − 〈A〉II]W̃(z, 0)dz, (E.17)

where

W̃(z, 0) = lim
s→0

W̃(z, s)

and

W̃(z, s) =
∞�
0

W(z, t)e−stdt.

Now, W̃(z, 0) in Eq. (E.11) can be calculated analytically via the final-value
theorem of Laplace transformation [105], namely,

lim
s→0

sW̃(z, s) = lim
t→∞ W(z, t) = WII(z).

Thus, we obtain, from the Fokker–Planck equation (E.11), for t > 0, the ordinary
differential equation

WII(z) − WI(z) = d

dz

[
D2(z)

(
d

dz
W̃(z, 0) + D1(z)W̃(z, 0)

)]
. (E.18)

The particular solution of Eq. (E.18) is

W̃(z, 0) = WII(z)
1�

−1

�(y)dy

D2(y)WII(y)
, (E.19)
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where

�(y) =
y�

−1

[WII(z) − WI(z)]dz (E.20)

and WII(z) is the stationary solution of the equation

d

dz

[
D2(z)

(
d

dz
WII(z) + D1(z)WII(z)

)]
= 0. (E.21)

Hence, using the definitions, Eq. (E.17) and Eq. (E.19), we have

τint = 1

〈A〉I − 〈A〉II

1�
−1

[A(x) − 〈A〉II] WII(x)
x�

−1

�(y)dy

D2(y)WII(y)
dx

or, by integration by parts [200],

τint = 1

〈A〉II − 〈A〉I

1�
−1

�(x)(x)

D2(x)WII(x)
dx, (E.22)

where for convenience we have written

(x) =
x�

x1

[A(y) − 〈A〉II] WII(y)dy. (E.23)

Equation (E.22) is an exact equation for the nonlinear transient-response relax-
ation time. Examples of applications of Eq. (E.22) to nonlinear-response problems
have been given in the present review and in Ref. 5.

If we now suppose that the change in the magnitude of the external field H from
HI to HII is very small, that is, |HII − HI| → 0, the problem becomes intrinsically
linear, because changes in the magnitude of the potential are insignificant. Thus,
linear-response theory and the concept of correlation functions and correlation
times rather than relaxation functions and relaxation times can now be used. The
equilibrium (stationary) correlation function CAB(t) is defined by

CAB(t) = 〈A [z(0)] B [z(t)]
〉
0 − 〈A〉0 〈B〉0

=
1�

−1

[A(z) − 〈A〉0]eLFPt[B(z) − 〈B〉0]W0(z)dz. (E.24)
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Here, W0 is the stationary (equilibrium) distribution function satisfying LFPW0 = 0;
the symbols 〈 〉 and 〈 〉0 designate the statistical averages over W and W0,
respectively. Now, the salient feature of one-dimensional systems is that an exact
integral formula for the correlation time τcor

τcor = 1

CAB(0)

∞�
0

CAB(t)dt (E.25)

(defined as the area under the curve of the normalized correlation function CAB(t))
exists because the relevant Fokker–Planck equation (E.11) may be integrated by
quadratures as with the nonlinear responses [5, 71]. The details of the derivation
are given in Refs. 5 and 71, so we merely quote the final analytic expression for
τcor, namely,

τcor = 1

CAB(0)

1�
−1

ψA(x)ψB(x)dx

D2(x)W0(x)
, (E.26)

where

ψA(x) =
� x

−1
[A(y) − 〈A〉0]W0(y)dy, (E.27)

ψB(x) =
� x

−1
[B(y) − 〈B〉0]W0(y)dy. (E.28)

For A = B, Eq. (E.26) reduces to

τcor = 1〈
A2
〉
0 − 〈A〉2

0

1�
−1

ψ2
A(x)dx

D2(x)W0(x)
. (E.29)

The relaxation time in integral form, Eq. (E.29), was first given by Szabo [201],
and later reproduced by other authors under different guises [5, 151, 153, 200,
202, 203].
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