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I. INTRODUCTION

One of the seminal contributions of Kramers [1] to the theory of the escape of

particles over potential barriers due to the shuttling action of the Brownian motion

has undoubtedly been his calculation of the escape rate for very low dissipation

(VLD) to the surrounding heat bath. The reason being that the VLD calculation,

based on the large amplitude nonlinear oscillations with energy-dependent fre-

quency of a lightly damped particle governed by Newton’s equations in a potential

well just before escape (at the barrier energy), leads directly to a parameter Δ
namely the ratio of the mean energy loss per cycle of a particle librating at the

barrier energy to the thermal energy. This parameter then determines the range of

validity of various asymptotic escape rate formulas [2–4]. Moreover, his results,

rooted in the fluctuation dissipation theorem, simultaneously explain why escape

is impossible in the absence of coupling to the bath. The latter cannot be accounted

for in the context of transition state theory (TST) [4] where Boltzmann equilibrium

is assumed to obtain throughout the entire domain of the well. A third reason is

that the principles underlying his VLD calculation provide a dynamical expla-

nation of the high frequency resonance absorption observed [2, 5] in a host of

disparate physical systems exhibiting overbarrier relaxation [5–9] as originating

in the small oscillations about the minimum in a potential well. This is so because

the large amplitude Kramers oscillations (at the barrier energy) before escape and

the small oscillations in the well (with energy-independent frequency) giving rise

to the high frequency resonance absorption must of their very nature be part of

one and the same dynamical process. This fact was explicitly recognized long ago

by Praestgaard and van Kampen [10] and has recently been revisited by Coffey

et al. [5]. Yet another benefit of the Kramers calculation is that his VLD result

provides the means whereby escape rate formulas may be extended to all values

of the dissipation to the bath as described by Hänggi et al. [4], Mel’nikov [11],

and Pollak et al. [12].

Despite its fundamental importance, the original derivation of the VLD rate

by Kramers [1, 2] is to some extent imperfectly understood, indeed prompting
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Hänggi et al. in their well-known review [4] to remark that Kramers achieved

his result (based on an energy-controlled diffusion equation) by use of “some

subtle, almost acrobatic mathematics.” The later, more detailed discussion of

the low damping rate by Praestgaard and van Kampen [10] yields an energy-

controlled diffusion equation which is ostensibly different but which is in fact

identical to that of Kramers as demonstrated in Section III. Moreover, various

derivations of the energy-controlled diffusion equation based on transformation of

the diffusion equation in a phase (representation) space of positions and momenta

to energy/angle variables have appeared in several research monographs, notably

those of Zwanzig [13], Nitzan [14], and Billing and Mikkelson [15]. Here, in

contrast, we favor the derivation of the energy-controlled diffusion equation from

the lightly damped Langevin equation which has been given by Stratonovich [16].

He, in the context of a general discussion of how one may derive probability density

diffusion equations from fluctuation equations such as the Langevin equation,

showed how that equation may be written in terms of the (slow) energy variable

and the (fast) position variable. Both these variables, which are characteristic of the

small dissipation to the bath, naturally give rise to the Kramers energy-controlled

diffusion equation and thus the VLD rate. A merit of this dynamical approach,

to paraphrase Nelson [17], which automatically involves a Langevin equation

in two state variables with multiplicative noise [18], is that it also transparently

yields [19] an energy-controlled diffusion equation for the classical giant spins

characteristic of a single domain ferromagnetic particle. This equation arises in the

theory of the magnetization reversal time of single domain ferromagnetic particles

[19,20] which is of immense technological importance in the magnetic recording

industry [21] and latterly in spintronics [19]. The quasistationary solution of

this equation, by following exactly the procedure of Kramers for point particles,

then yields in novel fashion the VLD rate for spins and hence the magnetization

reversal time as the inverse of the Kramers rate. Thus the more complicated

[22, 23] method of uniform asymptotic expansion of the mean first-passage time

(MFPT) given by Matkowsky et al. [24] as generalized to classical spins by

Klik and Gunther [25, 26] is entirely avoided. Finally, in the spin context, one

should note that the large amplitude Kramers oscillations represent libration in
the direction of precession of the magnetization in a well of the magnetocrystalline-

Zeeman energy potential before escape to another well where the precession is

reversed.

It is the purpose of this chapter to demonstrate in didactic fashion how both

the VLD escape rate for point particles with separable and additive Hamiltonians

and the corresponding rate for giant classical spins where the Hamiltonian is

nonseparable and nonadditive may be simply obtained by using the Stratonovich

treatment based on the Langevin equation with multiplicative noise. In order to

prepare the reader, we will at first present, following [5], a very brief introduction

to the escape rate problem as envisaged by Kramers [1].
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II. THE CONTRIBUTION OF KRAMERS TO ESCAPE
RATE THEORY

We begin with the work of Arrhenius [4] who, from a study of experimental data,

viewed a chemical reaction as very few particles from a huge assembly in a well

(N ≈ 1024) escaping over a potential barrier [5]. Particles just reaching the top can

escape due to thermal agitation.

The Arrhenius equation for the escape rate ΓTST which can be found from TST

[4, 14] is represented by the flux-over-population, namely

ΓTST =
𝜔A

2𝜋
e−ΔV∕(kT) = J

N
= 𝜏−1, (1)

where

𝜔A =
√

V′′(xA)

m
, (2)

is the angular frequency of small oscillations of a particle about the bottom of

the well, called the attempt frequency (which depends only on the shape of the

potential), ΔV is the barrier height, kT is the thermal energy, J is the steady current

of particles over the barrier, 𝜏 is the greatest relaxation time, and the primes denote

the second derivative. Thus we can find the lifetime 𝜏 of a particle in the well (see

Fig. 1) as the inverse of the escape rate.

However, TST assumes that thermal equilibrium prevails everywhere so that the

Maxwell–Boltzmann distribution holds throughout the well even at C. This is not

a valid assumption as particles leaving the well at C will disturb that distribution.

Kramers [1] derived a formula for Γ accounting for the disturbance using the

V(x)

B

x

A

C

ΔV

Figure 1. Single-well potential func-

tion V(x). A is the initial state, C is the tran-

sition state, and B is the product state. Par-

ticles are initially trapped in the well near

the point A by a high potential barrier at

the point C. They are very rapidly thermal-

ized in the well. Due to thermal agitation,

however, a few may attain enough energy

to escape over the barrier into region B,

from which they never return (a sink of

probability).
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Figure 2. 𝜇 = Γ∕ΓTST versus 𝛽∕2𝜔C , showing the VLD, VHD, and IHD regions and the TST

limit. Solid line: from exact numerical solution of Eq. (4). Crosses: IHD, Eq. (7). Dashed-dotted line:

VHD, Eq. (8). Dashed line: VLD, Eq. (9).

theory of Brownian motion in order to represent the heat bath [2]. In doing so he

introduced a dissipation-dependent prefactor 𝜇 so that

Γ = 𝜇ΓTST = 𝜇
𝜔A

2𝜋
e−ΔV∕(kT). (3)

This prefactor removes the possibility that escape can occur in the absence of

dissipation to the bath (see Fig. 2) which is an unphysical result. Kramers was

able to calculate the prefactor 𝜇 in two specific regions of damping: intermediate-

to-high damping (IHD) and very low damping (VLD) using two distinct methods

of attack.

A. IHD or Spatially-Controlled Diffusion Escape Rate

The TST case is called intermediate damping (ID) here and is the limiting case

of IHD, that is, when the friction coefficient per unit mass 𝛽 vanishes (cf. Eq. 6

and Fig. 2). Kramers treated the barrier as an inverted parabola. He was then

able to solve the quasistationary Fokker–Planck equation (based on the Langevin

equation) governing the evolution of the reduced or single particle distribution

function, W(x, p, t), of the positions and momenta in the phase space of a particle

of mass m, namely,

𝜕W
𝜕t

= LFPW = dV
dx
𝜕W
𝜕p

−
p

m
𝜕W
𝜕x

+ 𝛽 𝜕
𝜕p

(
Wp + mkT

𝜕W
𝜕p

)
, (4)

where x is the position and p is the momentum. The first two terms on the right-

hand side of Eq. (4) comprise the Liouville term which describes, in the absence
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of dissipation, the undamped streaming motion along the energy trajectories in

phase space, corresponding to Hamilton’s equations. The other terms represent

the interchange of energy (dissipative coupling) to the heat bath. Everywhere we

shall denote the space on which a probability density function is defined by simply

specifying its arguments. The conservative or Liouville terms essentially represent

Hamilton’s equations for the single (or tagged) particle, namely,

ṗ = −𝜕H
𝜕x
, ẋ = 𝜕H

𝜕p
, (5)

where the Hamiltonian is

H =
p2

2m
+ V(x).

The dissipative terms are contained in the (stochastic) Langevin equation

ṗ = −dV
dx

− 𝛽p + F(t), (6)

where the effect of the manifold degrees of freedom of the heat bath on the motion

of the single particle is represented by a systematic retarding force −𝛽p tending

to kill the motion superimposed on which is a very rapidly fluctuating white noise
force F(t) sustaining it. Kramers then linearized the Langevin equation (6) and

thus Eq. (4) about the barrier top allowing him to find the escape rate using the flux-

over-population method [4]. We may set Ẇ = 0 because the escape over the barrier

is a very slow (quasistationary) process. In IHD, the region of nonequilibrium is

very near the top of the barrier and so lies well inside the range, where the barrier

shape may be approximated by an inverted parabola. Thus

ΓIHD =

(√
1 + 𝛽2

4𝜔2
C

− 𝛽

2𝜔C

)
ΓTST, (7)

where𝜔C is the natural angular frequency of oscillation of a particle if the potential

is inverted, called the barrier frequency. Clearly if 𝛽∕𝜔C → 0 we have the ID case,

where 𝜇 = 1, corresponding to TST. If 𝛽 ≫ 𝜔C, we get the very high damping

(VHD) result:

ΓVHD =
𝜔C

𝛽
ΓTST. (8)

After the TST formula, Eq. (8) is the best known of all the Kramers escape rate

formulas mainly because it is easily obtained from the quasistationary solution
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of the Smoluchowski equation for the probability density function W(x, t) in

configuration space [2]

𝜕W
𝜕t

= kT
𝜁

𝜕

𝜕x

[
𝜕W
𝜕x

+ W
kT

dV
dx

]
.

This equation, in which 𝜁 = m𝛽, governs the evolution of the configuration

space distribution function and approximately holds in the VHD or noninertial

limit where the ṗ term in the Langevin equation is ignored as far as the dynamics

is concerned (see Fig. 2).

Notice that the IHD prefactor is 𝜇 = 𝜆+∕𝜔C where 𝜆+ is the positive eigenvalue

of the Langevin equation linearized about the barrier top, however, omitting F(t)
(see Ref. [2]). This corresponds to the unstable barrier crossing mode of an inverted
damped oscillator so that, in the terminology of the damped oscillator, VHD and

ID would represent the highly overdamped and critically damped oscillators,

respectively. The underdamped region would be characterized by 𝛽2∕4𝜔2
C < 1.

Kramers treated the VLD case, when 𝛽 is almost vanishingly small (now, however,

using an energy-controlled diffusion model) as follows.

B. VLD or Energy-Controlled Diffusion Escape Rate

In VLD, Kramers imagined (see [1, 3]) that the particles move in closed phase

plane orbits (see [11]) which represented large amplitude oscillatory motion in the

well (called libration, [27–29]) and that the particles librating with energy equal

to the barrier energy are only slightly disturbed by the stochastic forces arising

due to the heat bath, that is, the motion is almost deterministic. He took the top

of the barrier as the zero of potential. Such high energy librating particles, which

are essentially in a metastable state like that of an inverted pendulum, can be

kicked over the barrier by a small thermal fluctuation of amount kT. The resulting

phase space trajectory is then called the separatrix (because it divides the bounded

motion in the well from the unbounded one outside) and it opens out the hitherto

closed phase plane orbit (see Fig. 3).

A separate treatment of VLD is required because in VLD, the region of depar-

ture from the Boltzmann equilibrium obtaining in the depths of the well becomes

much greater in spatial extent than that in which the potential may sensibly be

represented as an inverted parabola in configuration space. Therefore, one can

no longer linearize the Fokker–Planck equation (4) in phase space (x,p) about

the barrier top. Thus to tackle VLD, Kramers transformed the quasistationary

Fokker–Planck equation into a new equation, using only the energy, E(t), and

phase, 𝜙(t), as variables. The energy E(t) diffuses very slowly over time (i.e.,

is almost conserved) while the phase 𝜙(t) (which would be the only variable in

the completely conservative system) is in contrast very fast. Kramers can there-

fore average the transformed equation over 𝜙(t), using the Liouville equation
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Critical energy

trajectory E = EC

p

xA

Separatrix 

xC = Transition point 

x

Figure 3. The critical energy curve (dashed line) and the separatrix in phase space. Separation

between the closed EC and separatrix trajectories is infinitesimal. The closed trajectory represents the

bounded librational motion in the well. The phase point, (x,p), specifies the instantaneous state (phase)

of the dynamical system.

to eliminate the 𝜙(t) dependence, to get a one-dimensional diffusion equation

for the distribution function of the energy ultimately leading to the VLD rate

(cf. Fig. 2).

ΓVLD = ΔΓTST (9)

Here,

Δ =
𝛿EEC

kT
, (10)

where 𝛿EEC
is the mean energy loss per cycle of a particle librating in the well at

the barrier energy given by

𝛿EEC
= 𝛽SEC

. (11)

The quantity

SEC
= ↻∫ REC

pdx, (12)

is the action in a cycle of the motion in the well of a librating particle with

energy equal to the critical barrier energy EC (REC
denotes the energy trajectory



ON THE KRAMERS VERY LOW DAMPING ESCAPE RATE 401

of the undamped motion in phase space at EC) and the double overbar represents

the average over a period. The parameter Δ [4] (which represents the crowning

achievement of the Kramers theory) determines the ranges of damping for which

the IHD and VLD formulas can be used. If Δ≫ 1, VHD; if Δ ≈ 1, ID; if Δ≪ 1,

VLD; if Δ < 1 we have the entire underdamped region. Kramers found that in

VLD ΓVLD ∝ 𝛽 while in IHD ΓIHD ∝ 1∕𝛽. He was not, however, able to solve the

problem in the part of the underdamped region lying between ID and VLD, that

is, Δ < 1, essentially due to the lack of a small parameter. This became known

as Kramers’ turnover problem [1, 3, 4] (cf. Fig. 2). The most recent detailed

review of the turnover problem and its solution is available in this series [3]. For

completeness, we summarize Mel’nikov’s solution of the turnover problem in

Section II.D. However, we first describe how the Kramers VLD calculation relates

to the high frequency resonance absorption peak observed in systems which exhibit

over-barrier relaxation.

C. Connection of the VLD Rate with the High Frequency
Resonance Absorption

The background of how the VLD rate relates to high frequency resonance absorp-

tion, which was first mooted in Ref. [10], may be explained as follows. The spectra

of the correlation functions and the corresponding complex susceptibilities asso-

ciated with diverse relaxation phenomena, which are usually modeled (see [2])

via the theory of the Brownian motion in a potential, almost invariably exhibit a

high frequency resonant absorption peak attributed to small inertial oscillations

of the Brownian particles in the wells of the potential. The resonant phenomenon

occurs along with the low frequency absorption due to escape of Brownian parti-

cles over the potential barriers (representing interwell relaxation) [2] and a second

intermediate frequency (representing intrawell relaxation) one due to relatively fast

exponential decays in the wells. Examples of the resonant absorption phenomenon

occur [2] in the complex susceptibilities associated with the position correlation

function of the inertial translational Brownian motion in a potential, the inertial

rotational Brownian motion of a polar molecule in a potential, and the Brownian

motion of the magnetization of a single domain ferromagnetic nanoparticle. For

polar molecules, the librational peak in the complex dielectric susceptibility is

generally in the THz region and is known [2] as the Poley absorption. However,

in single-domain particles, the high frequency ferromagnetic resonance peak in

the complex magnetic susceptibility at GHz frequencies close to the Larmor pre-

cession frequency arises not from inertial librations but from the precession of

the magnetization in the wells of the magnetocrystalline-Zeeman potential. At

low frequencies effectively only the overbarrier relaxation mode characterized by

the escape rate for classical spins remains. In this context, the latter is called the

Néel–Brown overbarrier relaxation mode [2] and the inverse escape rate, taking
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account of the bi- or multi-stable nature of the potential, yields the superparamag-

netic relaxation time or time of reversal of the direction of precession.

By way of illustration of the various relaxation phenomena for particles, we

shall consider the one-dimensional inertial translational diffusion of a Brownian

particle in a double-well potential

V(x) = a
2

x2 + b
4

x4, (13)

where a (a < 0) and b are constants, and −∞ < x < ∞. This model is almost

invariably used to model the noise-driven motion in bistable physical and chemi-

cal systems, e.g., simple isometrization processes, chemical reaction-rate theory,

bistable nonlinear oscillators, second-order phase transitions, nuclear fission and

fusion, and so on [2]. Here, the stochastic dynamics of the particle is governed

by the Langevin equation (6). The position ACF C(t) = ⟨x(0)x(t)⟩0∕⟨x2(0)⟩0, its

spectrum, and the characteristic times, may be calculated directly either from the

Langevin equation (6) or from the Fokker–Planck equation (4) (details in Ref.

[2]). In particular, the low-frequency part of the spectrum C̃(𝜔) = ∫ ∞
0

C(t)e−i𝜔tdt
may be accurately approximated by a single Lorentzian [2], namely,

C̃(𝜔)

C̃(0)
≈ 1

1 + i𝜔∕Γ
, (14)

(explicit equations for Γ are given in Ref. [2], v. also Eq. 95). The real part of

C̃(𝜔) for various values of the dimensionless friction coefficient 𝛽′ = 𝛽𝜂 (where

𝜂 = [m⟨x2⟩
0
∕(2kT)]1∕2 is a characteristic time and ⟨ ⟩0 designates the statistical

average over the equilibrium distribution function [2]) are shown in Fig. 4. One

relaxation band dominates the low-frequency part of the spectra; this is a result

of the slow overbarrier relaxation of the particles in the double-well potential.

Clearly, the low-frequency part of the spectrum may be approximated by Eq. (14).

The half-width Δ𝜔c of the low-frequency band strongly depends on ΔV as well

as on the friction parameter 𝛽′. Regarding the dependence on the barrier height

ΔV, we perceive that Δ𝜔c decreases exponentially as ΔV is increased, since the

probability of escape of a particle from one well to another over the potential barrier

(corresponding to interwell relaxation) exponentially decreases with increasing

ΔV. For low damping, 𝛽′ < 0.1, Δ𝜔c decreases with decreasing 𝛽′ for given values

of ΔV. The very high-frequency band visible in the figure is due to the fast inertial

oscillations of the particles in the potential wells: this is a ubiquitous feature of

inertial Brownian motion in a potential. Furthermore, for very small friction (large

inertial effects), 𝛽′ ≪ 1, an additional peak appears in the high-frequency part of

the spectra: this is a result of resonances at higher harmonic modes of the very
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Figure 4. Re[C̃(𝜔)∕C̃(0)] of an assembly of particles in a double-well potential, Eq. (13), versus

𝜔𝜂 for various values of the dimensionless damping parameter 𝛽′. Solid lines: exact matrix continued

fraction solution [2]. Asterisks: Eq. (14) with Γ from Eq. (3) [2].

lightly damped motion in the wells of the (anharmonic) potential (v. Chapter 3 of

Ref. [2]).

We now explain why the high frequency resonance process observed in the

spectrum C̃(𝜔) is already implicit in the Kramers energy-controlled diffusion

treatment of the very low damping escape rate from a metastable state. This is so

because the VLD Kramers calculation entirely relies on the Newtonian concept

of undamped large amplitude oscillations of a particle in a well before escape,

incidentally a concept which is also used [30] in discussing the inverted pendulum

in which the bob has just enough energy to reach the upper vertical position. This

may be explained in more detail as follows. In the Kramers model of energy-
controlled diffusion, the undamped librational motion of a particle in the well

before escape is effectively governed by the Newtonian equation of motion with

energy equal to the barrier energy. This equation is simply the Langevin equation

underlying Eq. (4), when the systematic and rapidly fluctuating white noise random

forces F(t) due to the bath are ignored. The librational motion at this critical energy

which is defined by a closed trajectory in phase space with energy equal to the

critical energy is then used to define the separatrix or trajectory travelling on

which a particle may escape the well (cf. Fig. 3). Moreover, comparing Fig. 5,

it is unnecessary to treat the left and right going particles separately in VLD.

The separatrix trajectory due to the thermal fluctuations which is now open is

regarded as infinitesimally close to the (closed) critical energy trajectory and for

very low damping all particles having reached the separatrix are regarded as on

their way out of the well. (This assumption has been discussed by Mel’nikov

[11] who has rigorously justified it). Now the period TC = ∮EC
ẋ−1dx of the (large

amplitude) oscillations with energy equal to the critical energy EC always depends
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Figure 5. Escape from a single well.

on their amplitude and may be evaluated [27–29] from the Newtonian equations

(considering the one dimensional motion of a particle and an isolated well)

mẍ = −dV
dx
, ẋ = ±

√
2

m
[EC − V(x)], (15)

where the index C denotes the closed orbit corresponding to the critical energy EC
as traced out by the phase point (x,mẋ).

The prefactor of the VLD rate is then solely determined by the action SEC
on

the closed critical energy trajectory, that is, by the deterministic dynamics, as is

immediately apparent from the quasistationary solution of the energy-controlled

diffusion equation (see Section III.E). The effect of the noise, which is automat-

ically contained in the energy-controlled diffusion equation is to give rise to a

spread of energies about EC. Subsequent use of the flux-over-population method

shows that the escape rate is given by Eq. (9). However, as far as the deterministic

Newtonian dynamics is concerned, there is nothing special about the closed criti-

cal energy trajectory per se save that it represents the librational motion with the

longest period or largest closed orbit in phase space and so the lowest frequency

of all the possible librational motions in the well with E ≤ EC. These must of

necessity (cf. Fig. 3) also include the almost harmonic, low energy but relatively

high frequency motions near the bottom of the well which characterize the reso-

nance absorption. Such behavior is in complete contrast to the VLD escape rate

which is essentially determined by the highest energy and lowest frequency out

of all the possible undamped librational motions. It is obvious that the resonance

absorption is dominated by the low energy undamped librational motion near the

bottom of the well. This corresponds to a harmonic oscillator with natural angular

frequency 𝜔A given in terms of the period TA = 2𝜋∕𝜔A of small oscillations about

the bottom of the well.

This behavior of course corresponds to the librational motion with the smallest
periodic time and highest frequency which is simply the attempt frequency𝜔A∕2𝜋
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of TST. Thus we may regard the times TC and TA as upper and lower bounds for the

periodic time of the possible librational motions in the well. As far as the resonance

absorption is concerned the contributions of the higher energy librational motions

with E < EC manifest themselves as an energy-dependent frequency which may

be calculated [27–29] just as the corrections to the periodic time of a simple

pendulum resulting from the anharmonic nature of the librational motion which

causes the periodic time to increase ([28], Chapter 3, and also [30], [31]).

D. Connection of the VLD Rate with Mel’nikov’s Solution of the
Kramers Turnover Problem

The notion of large oscillations in a well preceding escape is also crucial in

Mel’nikov’s solution of the Kramers turnover problem as we illustrate. Now when

Kramers transformed the Fokker–Planck Eq. (4) to E (slow) and 𝜙 (fast) variables

he ignored the coupling between dissipative and nondissipative terms so that the

Liouville equation may be used to eliminate the 𝜙 dependence. Mel’nikov [11]

solved this problem 50 years later. The calculations [3, 11, 23] are, however, rather

abstruse and are not readily accessible so we paraphrase them here. Mel’nikov

first wrote the Fokker–Planck equation on trajectories near the critical energy as

a diffusion equation in energy and action. This allowed him to take into account

the coupling. Unlike in VLD, it is now necessary to consider left and right going

particles separately (see Fig. 5). Moreover, near the separatrix the momentum

satisfies (cf. Eq. 15)

p(x,E) = ±
√

2m[E − V(x)] ≈ p(x, 0) = ±
√
−2mV(x), (16)

because we have chosen the separatrix trajectory to effectively coincide with E = 0

(see Fig. 5) and we suppose that the leading contributions to the escape stem only

from diffusing particles very near the barrier in a narrow range of energy of order

kT. Now we define the action as

S = SE = ↻∫RE

pdx, (17)

where RE denotes a closed contour with energy E, pertaining to librational motion

in the well via

dS
dx

= ±
√

2m[E − V(x)], (18)
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recalling that inside the well V(x) is negative since the top of the well corresponds

to the zero of potential. Hence, [3] using the chain rule, we have the energy/action

diffusion equation (R,L denoting the right and left going particles, respectively)

𝜕fR,L
𝜕S

= 𝛽 𝜕
𝜕E

(
fR,L + kT

𝜕fR,L
𝜕E

)
, (19)

describing diffusion and uniform drift in energy space in the separatrix region

and so governing the noisy motion there. This equation can be reduced [3] to

an integral equation using the principle of superposition by first determining the

Green function g(E, S|E′, 0) ≡ g(E − E′, S), namely, the transition probability in

energy space which is the fundamental solution of the energy-action diffusion

equation

𝜕g

𝜕S
= 𝛽 𝜕
𝜕E

(
g + kT

𝜕g

𝜕E

)
. (20)

This equation yields via Fourier transforms the characteristic function

g̃(𝜆, S) = ∫
∞

−∞
g(E − E′, S)ei𝜆(E−E′)∕(kT)dE = e−𝛽S𝜆(𝜆+i)∕(kT), (21)

(𝜆 is dimensionless) showing that the energy distribution of the random variable

E − E′, that is, the change in energy in one cycle near the top of the barrier in a
narrow range kT, is Gaussian with mean −𝛽S and variance 2𝛽kTS, namely,

g(E − E′, S) = (4𝜋𝛽kTS)−1∕2e−(E−E′+𝛽S)2∕(4𝛽kTS), −∞ < E − E′ < ∞. (22)

This Gaussian is sharply peaked, indeed resembling a delta function, since the

variance is supposed very small. The energy distribution for an arbitrary initial

distribution of energy f (E′, 0) for a trajectory near the barrier is then, by the

principle of superposition

f (E, S) = ∫
∞

−∞
f (E′, 0)g(E − E′, S)dE′, (23)

which, by use of appropriate transformations and boundary conditions (details

in Refs. 2 and 3), may be transformed into a Wiener–Hopf equation for the
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distribution function f (E) of particles with a possibility of escape (see [3, 11]). We

then find the escape rate by normalizing the flux-over-population so that [2, 11]

𝜏−1 = ∫
∞

0

f (E)dE. (24)

The calculation is accomplished by taking the Fourier transform of the distri-

bution function f (E) written as 𝜑±(𝜆) in both halves (±) of the complex (𝜆) plane

and then using the Wiener–Hopf method [3, 11] to find 𝜇 = A(Δ) in the entire

underdamped region as it is equal to 𝜑+(0), where

𝜑±(𝜆) = 𝜋

𝜔A
e−

ΔV
kT ∫

∞

−∞
U(±E) f (E)e

i𝜆E
kT dE, (25)

and U(x) is Heaviside’s theta or step function. Furthermore, for a single isolated

well, based on Mel’nikov’s assumption that the prefactor of the overall escape rate

is simply the product of the underdamped and IHD prefactors (which is reasonable

in that they both tend to the TST limit from either side), we have the escape rate

for all values of the damping

Γ =
⎡⎢⎢⎣
(

1 + 𝛽2

4𝜔2
C

)1∕2

− 𝛽

2𝜔C

⎤⎥⎥⎦A(Δ)ΓTST, (26)

where the depopulation factor A(Δ) is

A(Δ) = e
1

2𝜋
∫ ∞
−∞

ln{1−exp[−Δ(𝜆2+1∕4)]}

𝜆2+1∕4
d𝜆
, (27)

(so called because Kramers assumed zero particle density at the barrier in VLD

which is not in general true for low damping [11]). For high damping Δ≫ 1

(details in Ref. [23]) and therefore A(Δ) → 1, giving us the original IHD result.

Also for the VLD limit A(Δ) → Δ, yielding the VLD result in Eq. (9). The

arguments leading to the general solution which we have summarized show very

clearly how the Kramers concept of large oscillations at the critical energy in the

potential well before escape plays a vital role in that solution. The hypothesis of

large oscillations in a potential well is also essential in the semiclassical quantum
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Figure 6. Double-well potential.

treatment of the calculations of the depopulation factor (see for detail [3, 11]).

The same concept is also implicit in the alternative more general method of

attack on the problem due to Grabert [32] and Pollak et al. [12] which starts

by envisaging the particle as bilinearly coupled to a bath of harmonic oscillators

which mimic the stochastic forces acting on it. Grabert [32] and Pollak et al. [12]

presented a complete solution of the Kramers turnover problem and have shown

that the Mel’nikov formula, Eq. (26), can be obtained without ad hoc interpolation

between the weak and strong damping regimes. We remark that the theory of

Pollak et al. [12] is also applicable to an arbitrary memory friction and not only

in the “white noise” (memoryless) limit.

We saw earlier that along with the escape from a single well another important

case is represented by a double-well potential (Fig. 6) such that when particles

escape over the barrier they enter another well of finite depth. There is now a

finite, non-negligible probability for the particle to return to the initial well in

the underdamped case. Here, the particle (having escaped the first well) in the

second well loses its energy so slowly that even after several oscillations there the

white noise force may give it sufficient energy to send it back over the barrier [23]

into the first well. This double-well situation was first analyzed by Mel’nikov and

Meshkov [33] in 1986 and was reviewed in depth by Coffey et al. [23]. In this

situation, the overall escape rate Γ = Γ1 + Γ2 is

Γ =
⎡⎢⎢⎣
(

1 + 𝛽2

4𝜔2
C

)1∕2

− 𝛽

2𝜔C

⎤⎥⎥⎦
A(Δ1)A(Δ2)

A(Δ1 + Δ2)

[
𝜔A(1)

2𝜋
e−

ΔV1
kT +

𝜔A(2)

2𝜋
e−

ΔV2
kT

]
,

(28)

where Γi is the escape rate from well i, Δi is the ratio of the energy loss per cycle

of a particle librating in well i, moving with energy equal to the barrier energy, to

the thermal energy.



ON THE KRAMERS VERY LOW DAMPING ESCAPE RATE 409

III. ENERGY-CONTROLLED DIFFUSION EQUATION
FOR PARTICLES WITH SEPARABLE AND ADDITIVE

HAMILTONIANS

We now derive the VLD escape rate using the method of Stratonovich [16].

Before discussing energy-controlled diffusion of point particles with separable

and additive Hamiltonians, it will be instructive to consider the motion of a lightly

damped particle librating in the potential V(x) in the absence of the stochastic

noise term. In particular, we shall consider the mean energy loss per cycle of a

particle librating with energy equal to the barrier energy EC as an understanding

of this is essential for the study of the VLD rate.

A. Mean Energy Loss per Cycle of a Lightly Damped Particle

We consider a very lightly damped particle executing large oscillations in a poten-

tial well with energy equal to the barrier or critical energy EC in excess of which

the particle may escape the well. The Newtonian equation of motion of the parti-

cle in a potential V(x) is (the Langevin equation (6) omitting the noise term and

𝜁 = m𝛽)

mẍ + 𝜁 ẋ + dV
dx

= 0, (29)

and we assume that the retarding force −𝜁 ẋ is very small compared to the inertial

force so that the particle executes many large amplitude oscillations in the well

before finally relaxing to the well bottom. To study the very lightly damped motion,

we rewrite Eq. (29) in energy and configuration space (E,x) variables. We write

the energy E as

E = 1

2
mẋ2 + V(x), (30)

which we can rearrange as the evolution equation of the state variable x (for the

purpose of our subsequent VLD calculations whether the positive or negative sign

is used is immaterial as the signs will effectively always cancel each other out)

ẋ = ±
√

2

m
[E − V(x)]. (31)

We assume that E varies slowly with time. Taking its derivative with respect to

time yields the instantaneous power dissipated

Ė = mẋẍ + dV
dx

ẋ =
(

mẍ + dV
dx

)
ẋ. (32)
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Using Eq. (29) we have

Ė = −𝜁 ẋ2. (33)

Now from Eq. (31), we have for the evolution equation of the state variable E

Ė = −2𝛽[E − V(x)]. (34)

Thus the nonstochastic lightly damped system is governed by the two Eqs. (31)

and (34).

Since the time now represents that measured along a closed phase space trajec-

tory with energy E we have the periodic time of the motion of a librating particle

with energy E and the corresponding angular frequency 𝜔E in radians per second,

namely,

TE = 2𝜋

𝜔E
. (35)

The mean power loss in one cycle of the periodic motion in the well with energy

equal to the barrier energy EC is by definition using Eq. (33)

ĖEC
= 1

TEC
∫

TEC

0

Ėdt = −
𝜁𝜔EC

2𝜋 ∫
2𝜋∕𝜔EC

0

ẋ2dt = −
𝜁𝜔EC

2𝜋
↻∫ REC

ẋdx, (36)

where REC
denotes the energy trajectory of the undamped motion in phase space at

the critical energy EC and the double overbar represents the average over a period

of this closed cycle. One should note that ẋ may be understood in the conservative

sense in Eq. (36) because we assume the VLD limit (i.e. all calculations are to

first order in 𝛽). Using Eq. (12), we have the mean power dissipated

ĖEC
= −

𝛽𝜔EC

2𝜋
SEC
. (37)

Equation (37) written in terms of the mean energy loss 𝛿EEC
over a cycle with

energy equal to the barrier energy then becomes (cf. Eq. 11)

𝛿EEC
= −TEC

ĖEC
= 𝛽SEC

. (38)

Thus all that is required to calculate the mean energy loss is a knowledge

of the undamped deterministic dynamics. The introduction of a heat bath will

now counteract, via thermal agitation, this energy loss due to the frictional forces

imposed by the surroundings.
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B. The Lightly Damped Langevin Equation

As we mentioned in the Introduction, our preferred method of treatment of the one-

dimensional energy-controlled diffusion is that of Stratonovich [16]. His starting

point is effectively the Langevin equation (all his calculations are, however, carried

out in normalized variables)

mẍ + 𝜁 ẋ + dV
dx

= F(t). (39)

Here, the influence of the bath on the single degree of freedom system is

represented by a systematic damping force −𝜁 ẋ slowing down the particle and a

rapidly fluctuating random white noise force which sustains the Brownian motion

and has properties

F(t) = 0, F(t)F(t′) = 2D𝛿(t − t′). (40)

Now the spectral density D = 𝜁kT = 𝛽mkT and the overbars in the foregoing

equations mean the statistical average over an ensemble of particles each of which

starts with the same (sharp) initial conditions in phase space (x,mẋ). Furthermore,

the F(t) obey Isserlis’s (Wick’s) theorem [2] concerning mean values of products

of Gaussian white noise random variables

F(t1)F(t2)⋯F(t2n) =
∑∏

ki<kj

F
(
tki

)
F
(
tkj

)
, (41)

where the sum is over all distinct products of expectation value pairs, each of which

is formed by selecting n pairs of subscripts from 2n subscripts. For example, when

n = 2, we have the decomposition into products of two-time averages

F1F2F3F4 = F1F2 F3F4 + F1F3 F2F4 + F1F4 F2F3. (42)

In general, there will be (2n)!/(2n n!) such distinct pairs. We also always have,

for an odd number of observations (three-time averages and so on)

F(t1)F(t2)⋯F(t2n+1) = 0. (43)

If 𝜁 and F(t) are small, Eq. (39) describes the behavior of a system performing

nonlinear oscillations under the influence of weak frictional forces and weak
internal fluctuations. In other words, the system is only very lightly coupled to the

bath.

The energy of a particle moving in a potential V(x) can be expressed via Eq. (30)

using the same method as in the nonstochastic case. Thus, we have from Eqs. (32)
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and (39), the stochastic evolution equations of the state variables x and E

ẋ =
√

2[E − V(x)]∕m (44)

Ė = −𝜁 ẋ2 + F(t)ẋ, (45)

which when combined yield an equation involving multiplicative noise terms,

namely,

Ė = −2𝛽[E − V(x)] +
√

2[E − V(x)]∕mF(t). (46)

Thus the system is governed by the two stochastic Eqs. (44) and (46) in two

state variables. The corresponding Fokker–Planck equation for the evolution of

the probability density function underlying the two state variables x and E can

now be written down.

C. The Fokker–Planck Equation

We first write the two Langevin equations (44) and (46) in state variable form for

random variables 𝜉i(t) as (using Einstein’s summation convention)

�̇�i(t) = hi[{𝝃(t)}, t] + gij[{𝝃(t)}, t]Fj(t). (47)

Here, 𝜉1 = x and 𝜉2 = E with

h1 =
√

2[E − V(x)]∕m, h2 = −2𝛽[E − V(x)] (48)

and

g11 = g12 = g21 = 0, g22 =
√

2[E − V(x)]∕m. (49)

Next we can construct utilizing Isserlis’s theorem, Eqs. (41) and (43), the

Fokker–Planck equation as the first two terms in a Kramers–Moyal [18] expansion

of the evolution of the representation space distribution W

Ẇ = LFPW = −
∑

i

𝜕

𝜕𝜉i

[
D(1)

i W −
∑

j

𝜕

𝜕𝜉j
D(2)

i,j W

]
(50)

where the D(1)
i are the drift coefficients defined as

D(1)
i = lim

Δt→0

[𝜉i(t + Δt) − xi]

Δt
(51)
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and the D(2)
i,j (x, t) are the diffusion coefficients defined as

D(2)
i,j = lim

Δt→0

[𝜉i(t + Δt) − xi][𝜉j(t + Δt) − xj]

2Δt
, (52)

where the xi are the state variables for initially sharp values at time t.
For purposes of exposition, we first find expressions for the drift and diffusion

coefficients of the one-dimensional Langevin equation

�̇�(t) = h[𝜉(t), t] + g[𝜉(t), t]F(t). (53)

In order to accomplish this, we must regard Eq. (53) as the integral equation

[2, 18]

𝜉(t + Δt) = 𝜉(t) + ∫
t+Δt

t
�̇�(t′)dt′, (54)

so that, using Eq. (53),

𝜉(t + Δt) − x = ∫
t+Δt

t
(h[𝜉(t′), t′] + g[𝜉(t′), t′]F(t′))dt′, (55)

where x is the sharp value of 𝜉 at an initial time t. Now expanding h[𝜉(t′), t′] and

g[𝜉(t′), t′] as the first two terms in Taylor series expansions about the sharp initial

value x, namely,

h[𝜉(t′), t′] = h(x, t′) + (𝜉(t′) − x)
𝜕h(x, t′)
𝜕x

+⋯

g[𝜉(t′), t′] = g(x, t′) + (𝜉(t′) − x)
𝜕g(x, t′)

𝜕x
+⋯ (56)

and iterating for (𝜉(t′) − x) using Eq. (55) we have a six-term expression for

Eq. (55), namely, [18]

𝜉(t + Δt) − x = ∫
t+Δt

t
h(x, t′)dt′ + ∫

t+Δt

t ∫
t′

t
h(x, t′′)

𝜕h(x, t′)
𝜕x

dt′′dt′

+∫
t+Δt

t ∫
t′

t
g(x, t′′)

𝜕h(x, t′)
𝜕x

F(t′′)dt′′dt′ + ∫
t+Δt

t
g(x, t′)F(t′)dt′

+∫
t+Δt

t ∫
t′

t
h(x, t′′)

𝜕g(x, t′)

𝜕x
F(t′)dt′′dt′

+∫
t+Δt

t ∫
t′

t
g(x, t′′)

𝜕g(x, t′)

𝜕x
F(t′′)F(t′)dt′′dt′ +⋯ (57)
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On substituting this expression into the drift coefficient Eq. (51), the third,

fourth, and fifth terms will vanish on averaging due to Eq. (40). Moreover, we can

ignore the second term as it is of order (Δt)2. Next, we can write the last term

(involving a two-time product of noises) using Eq. (40) and the delta function

property

∫
b

a
𝛿(b − x)y(x)dx = 1

2
y(b) (58)

as [2, 18]

D(1) = lim
Δt→0

𝜉(t + Δt) − x
Δt

= h(x, t) + Dg(x, t)
𝜕g(x, t)

𝜕x
. (59)

The last term represents our noise-induced drift while the first constitutes the

deterministic drift. Finally all higher order terms in the expansion Eq. (57) will

vanish in the limit of infinitesimally small Δt due to Isserlis’s theorem as stated in

the form of Eqs. (41) and (43) which renders them either as products of two-time

averages or zero.

Similarly for the diffusion coefficient Eq. (52), we have

[𝜉(t + Δt) − x]2 = ∫
t+Δt

t ∫
t+Δt

t
h(x, t′)h(x, t′′)dt′dt′′

+2∫
t+Δt

t
h(x, t′)dt′ ∫

t+Δt

t
g(x, t′)F(t′)dt′

+∫
t+Δt

t ∫
t+Δt

t
g(x, t′)g(x, t′′)F(t′)F(t′′)dt′dt′′ +⋯

(60)

The first two terms of Eq. (60) will give contributions of the order (Δt)2 and

will vanish as prescribed by Eq. (52). Likewise, all higher order contributions will

vanish due to Isserlis’s theorem. Thus for our purposes

[𝜉(t + Δt) − x]2 = 2D∫
t+Δt

t ∫
t+Δt

t
g(x, t′)g(x, t′′)𝛿(t′ − t′′)dt′dt′′ + O(Δt)2

= 2Dg2(x, t + Θ1Δt)Δt + O(Δt)2 (61)
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(0 ≤ Θ1 ≤ 1). Therefore, we have the diffusion coefficient [2, 18]

D(2) = lim
Δt→0

[𝜉(t + Δt) − x]2

2Δt
= Dg2(x, t). (62)

In our two-dimensional equation for E and x, Eq. (59) generalizes to [2, 18]

D(1)
i = hi + D

2∑
k,j=1

gkj

𝜕gij

𝜕𝜉k
. (63)

Similarly, we can find the diffusion coefficients as [2, 18]

D(2)
i,j (x, t) = D

2∑
k=1

gikgjk. (64)

Many explicit examples of the calculation of these coefficients are given in

Refs. 2, 18, and 23. Since the Langevin equation for x, namely Eq. (44), does not

explicitly involve a multiplicative noise we only have a deterministic (conservative)

term in the corresponding drift coefficient so that

D(1)

1
=
√

2[E − V(x)]∕m, (65)

while the stochastic Langevin equation, Eq. (46), gives rise to the following

deterministic and noise-induced terms

D(1)

2
= −2𝛽[E − V(x)] + 2D

m

√
E − V(x)

𝜕

𝜕E

√
E − V(x)

= −2𝛽[E − V(x)] + 𝛽kT . (66)

From inspection of Eq. (49), we can see that the only nonzero diffusion coeffi-

cient is

D(2)

2,2
(x, t) = 2𝛽kT[E − V(x)]. (67)
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Thus we have the Fokker–Planck equation for the evolution of the joint proba-

bility density in (x,E) space, namely,

Ẇ = − 𝜕
𝜕x

{√
2

m
[E − V(x)]W

}
+𝛽kT

𝜕

𝜕E

{
2

[E − V(x)]

kT
W − W + 2

𝜕

𝜕E
[E − V(x)]W

}
. (68)

Thus it is clear how the lightly damped Langevin equations (44) and (46) give

rise to a two-dimensional Fokker–Planck equation with x and E as variables. We

must now reduce Eq. (68) to a one-dimensional equation in the energy.

D. Reducing the Fokker–Planck Equation to a One-Dimensional
Equation in the Energy

In the very low damping case, E will be a slow variable and x will be a fast
variable so that W will nearly equilibrate in x over long timescales. This allows

us to integrate out the x dependence in Eq. (68) over the domain of the well RE,

where V(x) ≤ E and so reduce it to a one-dimensional equation in the energy. First,

however, we will use the classical conditional probability for an underdamped

oscillator and the two-dimensional joint probability density function to express

W(x,E, t) in a more convenient form. If 𝛽 is small (low damping), E is sensibly

preserved during a large number of oscillations in the well so that the time the

particle spends in the interval between x and x + Δx is inversely proportional to the

velocity ẋ =
√

2[E − V(x)]∕m. Hence, for a given energy, we have the conditional

probability density function

W(x|E) = B{2[E − V(x)]∕m}−1∕2, (69)

where B is a constant. To determine B we have, since W(x |E) is a probability

density function,

∫RE

W(x|E)dx = 1, (70)

so that

B = 1

∫RE
{2[E − V(x)]∕m}−1∕2dx

. (71)
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To simplify, we introduce the action SE, Eq. (17), on a trajectory of energy E
in the well via the closed line integral

SE = ↻∫RE

√
2m[E − V(x)]dx = 2∫RE

√
2m[E − V(x)]dx. (72)

and its derivative with respect to E

𝜕SE

𝜕E
= 2∫RE

dx√
2[E − V(x)]∕m

. (73)

Thus from the definition of the action at energy E we have the constant

B = 2
𝜕E
𝜕SE

=
𝜔E

𝜋
. (74)

By definition, the joint probability density function can then be written in the

form

W(x,E, t) = W(E, t)W(x|E) =
𝜔EW(E, t)

𝜋
√

2[E − V(x)]∕m
. (75)

Before we integrate over x, we consider the first term on the right-hand side of

Eq. (68), namely,

𝜕

𝜕x

[√
2

m
[E − V(x)]W(x,E, t)

]
= 𝜕

𝜕x

[
W(E, t)

𝜔E

𝜋

]
= 0. (76)

Thus we have the simplified form

d
dt ∫RE

W(x,E, t)dx = − 𝜕
𝜕E

[
𝛽kT ∫RE

W(x,E, t)dx

]
+ 2𝛽

𝜕

𝜕E

[
1 + kT

𝜕

𝜕E

]
∫RE

[E − V(x)]W(x,E, t)dx. (77)

Next, we can integrate out the x dependence on the left-hand side and the first

term on the right-hand side using Eq. (75)

∫RE

W(x,E, t)dx = W(E, t)∫RE

W(x|E)dx = W(E, t). (78)
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We can also integrate out the x dependence in the second term on the right-hand

side using the action Eq. (72), we have

∫RE

2[E − V(x)]W(x,E, t)dx

= W(E, t)
𝜔E

2𝜋 ∫RE

√
2m[E − V(x)]dx

=
𝜔ESE

2𝜋
W(E, t). (79)

Hence, we have the one-dimensional Fokker–Planck equation for the probabil-

ity density function W(E, t) in energy space corresponding to the quasistationary

(lightly damped) Langevin equation, Eq. (46)

Ẇ = 𝛽 𝜕
𝜕E

(
−kTW +

[
1 + kT

𝜕

𝜕E

](
W
𝜔ESE

2𝜋

))
. (80)

The last term on the right-hand side of Eq. (80) can be expanded and simplifies

using Eq. (74) as follows:

𝜕
𝜕E

(
W
𝜔ESE

2𝜋

)
= W

𝜔E

2𝜋

𝜕SE

𝜕E
+ SE

𝜕

𝜕E

(
W
𝜔E

2𝜋

)
= W +

SE

2𝜋

𝜕

𝜕E
(𝜔EW). (81)

Therefore, we have

Ẇ = 𝛽 𝜕
𝜕E

(
SE

[
1 + kT

𝜕

𝜕E

] (
W
𝜔E

2𝜋

))
. (82)

This is the energy-controlled diffusion equation as originally derived by

Kramers. Now since we are interested in energies in the neighborhood of the

barrier energy EC, one can anticipate how the Kramers parameter Δ, given by

Eq. (10), enters into this equation, which will become more obvious when we find

its quasistationary solution. An exactly similar equation was derived by Praest-

gaard and van Kampen [10]. On remembering that, averaging over a period,

p2

m
= 2(E − VE) =

𝜔ESE

2𝜋



ON THE KRAMERS VERY LOW DAMPING ESCAPE RATE 419

and then substituting this into the Fokker–Planck Eq. (80), their equation reads

Ẇ = 𝛽 𝜕
𝜕E

⎛⎜⎜⎝
p2

m
− kT
⎞⎟⎟⎠W + 𝛽kT

𝜕2

𝜕E2

⎛⎜⎜⎝
p2

m

⎞⎟⎟⎠W. (83)

Here the double-overbar denotes averaging involving the undamped motion, as

in Eq. (36) over the fast (phase) variable, the phase is defined via the constant of

integration in the differential equation ẋ = ±
√

2[E − V(x)]∕m, that is,

∫
x

x(0)

(2[E − V(x′)]∕m)−1∕2dx′ = t + w.

Moreover,

D(2)(E) = 𝛽kTp2∕m = 2𝛽kT(E − V) (84)

may be interpreted as a diffusion coefficient in energy space.

E. Very Low Damping Escape Rate

Equation (82) represents a continuity equation in energy space, namely,

𝜕W
𝜕t

= − 𝜕J
𝜕E
, (85)

where J(E) is the probability current. If we consider the quasistationary solution,

where Ẇ = 0 and J(E) = J representing a steady injected current of particles to

replenish those continually being lost at the barrier, we get

J = −𝛽SE

[
1 + kT

𝜕

𝜕E

] (
W
𝜔E

2𝜋

)
, (86)

which we can arrange as a first-order linear differential equation for the quasista-

tionary distribution W(E), namely,

𝜕

𝜕E

(
W
𝜔E

2𝜋

)
+ 1

2𝜋kT
𝜔E W = − J

𝛽kTSE
. (87)
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Following Kramers [1], we seek a particular solution of Eq. (87) under the

assumption that W(EC) = 0 at the barrier energy EC, that is, all particles that reach

the barrier go over. The particular solution due to the constant injected current is

W(E) = 2𝜋Je−E∕kT

kT𝛽𝜔E ∫
EC

E

eE′∕kT

SE′
dE′. (88)

As detailed by Hänggi et al. [4], Eq. (88) for the density W(E) has a logarithmic

singularity at S = 0. However, for very high barrier heights, this singularity does

not contribute to the population N in the well. Hence, to find the population, one

may integrate the quasistationary distribution over the domain of the well energy

so that

N = ∫
EC

EA

W(E)dE = 2𝜋J
kT𝛽 ∫

EC

EA

e−E∕kT

𝜔E ∫
EC

E

eE′∕kT

SE′
dE′dE. (89)

Thus, the characteristic escape (mean first-passage) time 𝜏 = 1∕Γ from the well

is via the flux-over-population method

𝜏 ∼ N
J

= 2𝜋

kT𝛽 ∫
EC

EA

e−E∕kT

𝜔E ∫
EC

E

eE′∕kT

SE′
dE′dE. (90)

On integrating by parts, we obtain the more convenient form

𝜏 ∼ 2𝜋

kT𝛽 ∫
EC

EA

eE∕kT

SE ∫
E

EA

e−E′∕kT

𝜔E′
dE′dE. (91)

This is the time to reach the top of the barrier, provided that all particles

there are absorbed, which is the boundary condition that W vanishes at E = EC.

Equation (91) can also be derived using the MFPT approach by solving the

equation [4, 18, 23]

L†
FP
𝜏(E) = −1, (92)

for 𝜏(E) with appropriate boundary conditions; here L†
FP

is [18, 23] the adjoint

Fokker–Planck operator associated with Eq. (82). The MFPT is the average time

needed to reach the separatrix for the first time from a starting point E0 inside the

initial domain of attraction [4]. In the VLD limit, this MFPT 𝜏(E0) becomes essen-

tially independent of E0, that is, 𝜏(E0) ≃ 𝜏MFPT = 𝜏 for all starting configurations

away from the neighborhood of the separatrix [4].

Following Kramers, we effectively assume that the potential near the bottom

of the well is represented by that of a harmonic oscillator, where 𝜔EA
= 𝜔A which



ON THE KRAMERS VERY LOW DAMPING ESCAPE RATE 421

is independent of E (𝜔A is defined by the small oscillation frequency Eq. 2). Thus

we may estimate the value of the inner integral in Eq. (91) as

∫
E

EA

e−E′∕kT

𝜔E′
dE′ ≃ 1

𝜔A ∫
∞

EA

e−E′∕kTdE′ = kT
𝜔A

e−
EA
kT . (93)

In like manner the main contribution to the outer integral in Eq. (91) comes

from the positive exponential factor near C which dominates the integrand there

so that

∫
EC

EA

eE∕kT

SE
dE ≃ 1

SEC
∫

EC

−∞
eE∕kTdE = kT

SEC

e
EC
kT . (94)

Substituting Eqs. (94) and (93) into Eq. (91), we obtain the VLD escape rate

over the barrier

ΓVLD =
𝛽SEC

kT

𝜔A

2𝜋
e−ΔV∕(kT) = ΔΓTST, (95)

(whereΔV = EC − EA) transparently demonstrating howΔ, the ratio of the energy

loss per cycle 𝛽SEC
of the librating motion at the saddle energy to the thermal

energy, plays a crucial role in the escape rate. Notice that SEC
is always calculated

via the undamped deterministic dynamics at the critical energy.

However, Eq. (95) pertains to escape from an isolated well in the VLD limit

provided the particle never returns. Now, as we alluded to in our short summary

of the depopulation factor in Section II, one of the most interesting situations

involves escape from a double well (Fig. 6). The formula for the escape rate in this

case may be written down simply by using the results of Section 4.D of Hänggi

et al. [4]. On applying the VLD limit of Eq. (28), we have for the overall escape

rate for a double-well potential [22, 23]

ΓVLD ∼
Δ1Δ2

Δ1 + Δ2

[
𝜔A(1)

2𝜋
e−ΔV1∕(kT) +

𝜔A(2)

2𝜋
e−ΔV2∕(kT)

]
. (96)

The above results which are for point particles will also apply to rigid inertial
rotators as their Hamiltonians are also separable and additive. However, adjust-

ments are often needed due to the periodic nature of the potential. The interested

reader can find many examples in Chapter 10 of Reference 2.

F. Comparison of VLD Escape Rate with Longest
Relaxation Time Solutions

Equation (95) is obviously an asymptotic solution valid only in the high barrier

limit while Eq. (91) is the exact solution for the longest relaxation time which
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is valid for all barrier heights. Therefore, if we desire a solution for the greatest

relaxation time for moderate barrier heights, we [34] use the MFPT which has the

same asymptotic behavior as the inverse escape rate.

The longest relaxation time 𝜏 in the VLD limit can be calculated directly from

Eq. (91). However, for practical calculation purposes, it is easier to use the energy-

controlled diffusion equation in the form of Eq. (83) given by Praestgaard and van

Kampen [10]. Proceeding in this manner 𝜏 is now given by

𝜏 = 1

2kT𝛽 ∫
EC

EA

1[
E − V(E)

]
W0(E)

∫
E

EA

W0(E′)dE′dE, (97)

where W0(E) is the equilibrium solution of Eq. (83), that is, Ẇ0 = 0 and zero

injected current. Equation (97) is derived noting that the quasistationary solution

of Eq. (83) in the vicinity of the barrier is given by

W(E) =
JW0(E)

2𝛽kT ∫
EC

E

dE′

[E′ − V(E′)]W0(E′)

.

For a variety of potentials 𝜏 can be evaluated analytically in terms of the elliptic

functions.

Estimations of this type based on the energy-controlled diffusion method are in

perfect agreement with the results of independent calculations of 𝜏 via numerical

solution of the Fokker–Planck Eq. (4) in phase space. Several examples have been

given in Refs. [2, 3]. These include

i. translational Brownian motion of a particle in a double-well potential,

Eq. (13);

ii. rotational Brownian motion of a fixed axis rotator in a double-well potential;

iii. rotational Brownian motion of a fixed axis rotator in an asymmetrical

double-well potential.

As an example, let us consider in more detail the case (i). Since Δ1 = Δ2 and

Γ1 = Γ2 for this double-well potential with two equivalent wells 1 and 2, the

VLD escape rate can be estimated in the high barrier limit (ΔV ≫ kT) from the

asymptotic Eq. (96) as

ΓVLD = 𝛽S
kT

𝜔A

2𝜋
e−ΔV∕(kT) ∼

8
√

2𝛽Q

3𝜋
e−Q, (98)



ON THE KRAMERS VERY LOW DAMPING ESCAPE RATE 423

Q

105

104

103

102

101

100

0 5 10 15
10−1

Figure 7. 𝛽𝜏, 𝛽∕ΓVLD and 𝛽∕𝜆1 versus Q. Filled circles: numerical solution for the inverse of

the smallest nonvanishing eigenvalue 𝛽∕𝜆1 of the Fokker–Planck operator, Eq. (4) [2]. Dashed line:

the VLD Eq. (98). Solid line: 𝜏 from Eq. (99).

where Q = ΔV∕(kT), 𝜔A ∼ 2𝜂−1
√

Q, and 𝛽S∕(kT) ∼ 8𝛽′
√

2Q∕3 [2]. Now the

VLD longest relaxation time 𝜏 for this double-well potential is calculated in

Appendix A and is given by

𝜏MFPT = 3Q
4𝛽 ∫

0

−1

eQz
√

1 +
√

1 + z ∫ z
−1

e−Qz′√
1+
√

1+z′
K

(
2
√

1+z′

1+
√

1+z′

)
dz′

zK

(
2
√

1+z

1+
√

1+z

)
+
(

1+
√

1 + z
)

E

(
2
√

1+z

1+
√

1+z

) dz, (99)

where K(m) and E(m) are complete elliptic integrals of the first and second kind,

respectively [35]. Equation (99) is valid for all Q. The longest relaxation time

∼ Γ−1
VLD

predicted by the asymptotic Eq. (98), 𝜏 from Eq. (99) and the inverse of the

smallest nonvanishing eigenvalue 𝜆1 of the Fokker–Planck operator, Eq. (4),calcu-

lated numerically by the matrix continued fraction method [2] are shown in Fig. 7

as functions of the barrier height Q. Apparently, 𝜆−1
1

and 𝜏 are very close to each

other for all Q while in the high barrier limit, the asymptotic Eq. (98) provides a

good approximation to both 𝜆−1
1

and 𝜏. The merit of Eq. (99) is that it yields the

VLD longest relaxation time valid for all barrier heights including low barriers

(0 ≤ Q ≤ 2), where asymptotic escape rate equations obtained in the high barrier

limit are not applicable.

Regarding now the inertial rotational Brownian motion which for fixed axis

rotators take place on a circle the calculations are exactly the same as for a particle

moving in one dimension as the Hamiltonian is still separable and additive as

indeed is also true for rotation in space. Details of all these calculations are given in
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Chapter 10 of Ref. [2] and in Section II of Ref. [3]. Moreover, the three dimensional

inertial rotational Brownian motion of rod-like molecules in an axially symmetric

potential with nonequivalent wells has been exhaustively treated in Chapter 11

of Ref. [2] exhibiting, along with the ubiquitous Kramers overbarrier relaxation,

the high frequency resonance process in the wells. In addition, of course, a fast

relaxation process also arises due to rapid decays in the wells themselves. However,

we shall not reproduce the details of any of these investigations here as the main

objective of this review is merely to clarify the calculation of the VLD rate and its

relation to the high frequency resonant process.

IV. ENERGY-CONTROLLED DIFFUSION OF CLASSICAL SPINS

Experimental success [21, 36–38] in isolating individual single domain ferro-

magnetic particles (containing circa 105 spins which behave as a single giant

spin hence the generic title superparamagnetism), in making measurements of the

reversal time of the magnetization M of an individual particle, and in verifying

[36] the behavior of the reversal time as a function of the damping parameter pre-

dicted by the Néel–Brown [39, 40] theory have stimulated renewed interest in the

Kramers escape rate theory for classical spins. The Néel–Brown [39,40] theory is

in effect an adaptation of the Kramers theory to macrospin relaxation governed by

a gyromagnetic-like equation so that the verification [36] of that theory in effect

confirms the Kramers conception of a thermal relaxation process over a potential

barrier. Yet another adaptation of the Kramers VLD theory is its use in the rela-

tively new subject of spintronics which has been reviewed by Dunn et al. [19]. It is

the purpose of this section to outline how the VLD rate may be calculated in sub-

stantially the same manner as for particles using the energy-controlled diffusion

equation for spins given by Dunn et al. [19].

Néel’s original estimate [39] of the relaxation time over an internal anisotropy

barrier in a single domain ferromagnetic particle with axially symmetric (func-

tions of the latitude only) potentials (per unit volume) of the magnetocrystalline

anisotropy

V = −K cos2 𝜗, (100)

(K is an anisotropy constant) like that shown schematically in Fig. 8 was based on

TST. Thus the relaxation time over a barrier is given by

𝜏 = 𝜏0evK∕(kT), (101)

where v is the volume of the particle and 𝜏−1
0

is the attempt frequency which

is of the order of the gyromagnetic precession frequency. Thus 𝜏0 lies between

10−10 to 10−11 seconds. However, since the volume of the particle is involved
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Figure 8. (a) Magnetization M with spherical polar coordinates 𝜗 and 𝜑. In the absence of

thermal agitation (if there is no damping),Mwill precess along orbits of constant energy called Stoner–

Wohlfarth orbits [41] (dashed line). According to Eq. (105), if damping is involved, the precession

will slowly collapse by spiraling toward an energy minimum (solid line). (b) Néel’s conception of the

superparamagnetic relaxation time as illustrated in profile for a single-domain particle with uniaxial

anisotropy giving rise to axial symmetry, for which the anisotropy potential is V = −K cos2 𝜗 (see also

Fig. 11a), the magnetization M has two stable orientations, n1 and n2, at the north (𝜗 = 0) and south

(𝜗 = 𝜋) poles of the sphere, respectively, and an unstable one at the equator. The reversal time over

the barrier at the equator is 𝜏 = 𝜏0evK∕(kT).

in the exponential, the relaxation time can vary from as little as 10−9 seconds

to geological epochs. However, Brown [40] criticized Néel’s original TST-based

treatment of the overbarrier time because gyromagnetic effects were not explicitly

included. Moreover, the dissipation dependence of the prefactor is not taken into

account just as we described in the Kramers theory for point particles. The key to

a more precise treatment of the problem is the construction of a Langevin equation

for the evolution of the magnetization M which will then allow us to generalize the

Kramers theory to the spin relaxation (over a potential barrier) of single-domain

particles.

A. Magnetization Evolution Equations: Brown’s Langevin
and Fokker–Planck Equations

Our starting point for the explicit inclusion of gyromagnetic effects is the equation

given by Landau and Lifshitz in 1935 [20] who postulated that, in the absence

of damping, the magnetization M of a single domain ferromagnetic particle or

macrospin precesses about an effective magnetic field H according to the gyro-

magnetic equation

Ṁ = 𝛾[H ×M]. (102)

This is just the Larmor equation for a single spin generalized to the coherent

rotation of a macrospin [20] where 𝛾 is the gyromagnetic ratio. The effective
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magnetic field H is proportional to the negative gradient of the free energy density

V(𝜗, 𝜑), namely,

H = − 𝜕V
𝜕M
. (103)

Assuming that the single domain ferromagnetic particle is at its saturation

magnetization MS so that only the direction of M can change, we can write

Eq. (102) in terms of a unit vector u = M∕MS and in terms of the gradient of the

scalar magnetic potential so that the kinematic equation is simply that defining

angular velocity 𝛀(t), namely,

u̇(t) = 𝛀(t) × u(t), (104)

where

𝛀 = − 𝛾
MS

𝜕V
𝜕u
.

Invariably the potential energy density V comprises an anisotropy potential

plus the Zeeman energy due to an external applied magnetic field. Taking as

example a bistable potential, a giant spin will orbit at constant energy in one of the

wells. If the applied field is strong enough, however, the orbital precession will be

reversed, that is, cross over into the other potential well, as shown schematically

by the dashed line in Fig. 9. Switching of the direction of precession in this way

represents the process of erasure of magnetic recordings by Oersted fields.

Now the evolution of the magnetization as described by the gyromagnetic

Eq. (104) is a conservative process so there is no energy lost in the motion of

the magnetization to the surrounding environment. Therefore, M must follow

X

Y

Z

Figure 9. Stoner–Wohlfarth orbits encircling an

energy minimum along the polar positive and negative

Z-axis (solid lines) or crossing a potential barrier lying

in the XY plane (dashed lines).
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paths of constant energy, that is, the Stoner–Wohlfarth orbits [19, 41, 42] (Fig. 9)

and so will continue to precess ad infinitum in a well of the potential provided

that the energy of the applied field is less than the barrier height. However, in

practice, the nanomagnet loses energy to the microscopic degrees of freedom of

its surroundings. In order to model this effect of the energy dissipation, Landau

and Lifshitz in 1935 and Gilbert in 1955 [2, 20] introduced a damping torque

which opposes the precession so that the gyromagnetic equation becomes

u̇ = 𝛾

MS

[
u × 𝜕V

𝜕u

]
+ 𝛼[u × u̇]. (105)

The above equation which tends to makeM spiral toward the Z-axis in Fig. 8a is

known as the Landau–Lifshitz–Gilbert (LLG) equation. In Gilbert’s model, which

reduces to that of Landau–Lifshitz in the VLD limit, the energy of the system is no

longer conserved and will continuously be dissipated by the drag torque so that the

Stoner–Wohlfarth orbits centered on the energy minima will start to collapse until

they become a singularity (see Figs. 8 and 9). Thus Gilbert’s equation describes a

transient precession that will ultimately cease.

The LLG equation takes no account of thermal fluctuations which arise as the

nanomagnet is at a finite temperature T. If these are included the precessional

motion would be maintained by energy provided by the heat bath. In order to do

this Brown [40] in 1963 added a random isotropic noise field F to the dissipative

field that would be a source of energy to the system

u̇ = 𝛾

MS

[
u ×
(
𝜕V
𝜕u

− MSF
)]

+ 𝛼[u × u̇]. (106)

This random magnetic field is treated as spatially isotropic Gaussian white

noise and has the properties [2] of Section III.B

Fi(t1) = 0, Fi(t1)Fj(t2) = 2D𝛿i,j𝛿(t1 − t2), (107)

where the constant

D = 𝛼kT
v𝛾MS

, (108)

is determined by imposing the Boltzmann equilibrium distribution of orientations

(details in [2, 40]) and i,j = 1,2,3 represent the Cartesian axes of the laboratory

coordinate system (see Fig. 8). In other words, the expected value of F is zero

and F is uncorrelated in both space and time while Isserlis’ theorem (Eqs. 41 and

43) is still obeyed. Equation (106) is known as the magnetic Langevin equation.
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Since the random torque counteracts the damping torque it can, if the temperature

is high enough, reverse the direction of precession. The time for the reversal of the

direction of precession (magnetization) over the anisotropy-Zeeman energy bar-

rier is known as the magnetization (superparamagnetic) relaxation time. Brown’s

magnetic Langevin equation describes how magnetic recordings may degrade in

a heat bath because thermal fluctuations cause unwanted magnetic reversal so that

data stored in magnetic recordings is ultimately lost.

Brown then derived from Eq. (106), the appropriate Fokker–Planck equation

for the distribution function W(𝜗, 𝜑, t) of the orientations of the magnetization

vector M on the surface of the unit sphere (see Refs. [40] and [43] for details)

𝜕
𝜕t

W = LFPW = 1

2𝜏N sin𝜗
𝜕

𝜕𝜗

{
sin 𝜗
[
𝜕W
𝜕𝜗

+ v
kT

W

(
𝜕V
𝜕𝜗

+ 𝛼−1

sin𝜗
𝜕V
𝜕𝜑

)]}
+ 1

2𝜏N sin2 𝜗

𝜕

𝜕𝜑

[
𝜕W
𝜕𝜑

+ v
kT

W

(
𝜕V
𝜕𝜑

− 𝛼−1 sin𝜗𝜕V
𝜕𝜗

)]
,

(109)

where

𝜏N =
vMS(𝛼−1 + 𝛼)

2𝛾kT
, (110)

is the free diffusion time of the magnetization (𝜏N is of the order of 10−11–10−8 s),

LFP is the Fokker–Planck operator, the operators Δ and 𝜕∕𝜕u are, respectively,

the Laplacian and the gradient on the surface of the unit sphere defined in the

spherical coordinates shown in Fig. 10 as

Δ = 1

sin𝜗
𝜕

𝜕𝜗

(
sin𝜗 𝜕

𝜕𝜗

)
+ 1

sin2 𝜗

𝜕2

𝜕𝜑2
. (111)

Figure 10. Spherical polar coordinate system.
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𝜕
𝜕u

= 𝜕

𝜕𝜗
e𝜗 +

1

sin 𝜗
𝜕

𝜕𝜑
e𝜑. (112)

A detailed discussion of the assumptions made in the derivation of the Fokker–

Planck and Gilbert equations is given elsewhere (e.g., [2, 25, 40, 43]). We remark

in passing that in developing his theory of the magnetization relaxation for super-

paramagnets (classical spins) Brown obviously used by analogy ideas originating

in the Debye theory of dielectric relaxation of polar dielectrics [2, 6, 7, 44]. In

Eq. (109), the term in 𝛼−1 corresponds to the precessional (gyromagnetic) term

in Eq. (106), giving rise to ferromagnetic resonance (usually in the GHz range).

When 𝛼→∞ (i.e., ignoring the gyromagnetic term) Brown’s Fokker–Planck equa-

tion (109) has the same mathematical form as the noninertial rotational diffusion

equation for a rigid body in an external potential known as the Smoluchowski

equation in configuration space (𝜗, 𝜑) (see, e.g., Ref. [2], Chapter 1 for details).

Referring to magnetic relaxation, in his earliest calculations of the reversal

time of the magnetization 𝜏, which may be defined as the inverse of the smallest
nonvanishing eigenvalue 𝜆1 of the Fokker–Planck operator LFP in Eq. (109),

Brown confined himself to axially symmetric potentials of the magnetocrystalline

anisotropy and Zeeman energy [40]. Hence no dynamical coupling between the
longitudinal and the transverse modes of motion exists so that the longitudinal

modes are governed by a single state variable, namely, the colatitude 𝜗, that is,

the polar angle of M. The second state variable, namely the azimuthal angle 𝜑
of M, gives rise only to a steady precession of that vector. Noting the decoupling

between the transverse and longitudinal modes existing for axial symmetry, which

results in an exact single-variable Fokker–Planck equation in the colatitude 𝜗,

Brown [40] demonstrated that the Kramers escape rate theory for point particles

may be easily adapted to yield an expression for the escape rate for spins in axially

symmetric potentials which is valid for all values of the damping parameter 𝛼. We

remark, however, that the exact Fokker–Planck equation in the single variable 𝜗
arises not from strong damping of the momentum (which in the Brownian motion

of point particles or rigid bodies, governed by the Klein–Kramers equation in the

Euler angles and corresponding angular momenta, gives rise to the approximate
noninertial Smoluchowski equation [2]) rather it follows from the axial symmetry
of the potential.

As a consequence of this very particular result valid for axially symmetric

problems alone the complete analogy with the Kramers theory for separable and

additive Hamiltonians only becomes fully apparent when an attempt [20] is made to

treat non-axially-symmetric potentials of the magnetocrystalline anisotropy which

are functions of both the colatitude 𝜗 and longitude 𝜑 (examples in Fig. 11b–

d). Here all the particular cases of the escape rate as a function of the friction

considered by Kramers for point particles will appear as well as the turnover

region (see Sections II.A and II.B). In the non-axially symmetric context, Brown
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(a) (b)

(c) (d)

Figure 11. (a) Uniaxial anisotropy potential without external field: vV∕(kT) = 𝜎 sin2 𝜗;

(b) uniaxial potential with external field: vV∕(kT) = 𝜎 sin2 𝜗 − 𝜉(cos𝜓 cos 𝜗 + sin𝜓 sin 𝜗 cos𝜑); (c)

biaxial anisotropy potential: vV∕(kT) = 𝜎(−cos2 𝜗 + 𝛿 sin2 𝜗 cos2 𝜑); and (d) cubic anisotropy poten-

tial vV∕(kT) = 𝜎(sin4 𝜗 sin2 2𝜑 + sin2 2𝜗). Here, 𝜎 and 𝛿 are, respectively, the barrier height and

biaxiality parameters, 𝜉 is the external field parameter, and 𝜓 is the angle between the easy axis and

the external field. For a color version of this figure, see the color plate section.

[20, 43] succeeded in giving a formula for the greatest relaxation time for single-

domain particles (spins) in the IHD limit which is the exact analog of the Kramers

IHD formula for point particles or rigid rotators. For example, taking the potential

Fig. 11b the greatest relaxation time is the reciprocal of the sum of the escape

rates from each well of the potential. However, the calculation is very much

more involved [20] than that for point particles by virtue of the facts that it

must be carried out in spherical polar co-ordinates, that the undamped motion is

rotational (precessional) [27, 29] so that large oscillations comprising libration in

the direction of precession at the barrier energy before escape (representing in this

case reversal of the direction of precession) from a well are involved, and that the

inertia of the particle plays no role. The role of the latter being mimicked [3] by the

gyromagnetic term in the equation of motion of the magnetization (see Eq. 106).
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Moreover, the Hamiltonian comprising the anisotropy and Zeeman energy is not

separable. Furthermore, the phase space orbits at constant energy inside the well

in the original one degree of freedom Kramers problem are approximate ellipses

while the corresponding quantities in the magnetization problem which pertain to

the two degrees of freedom (𝜗, 𝜑), namely the Stoner–Wohlfarth [19, 41] orbits,

are very much more complicated as they exist in the domain of a sphere of constant

radius.

Brown’s calculation for non-axially symmetric potentials only applies in the

IHD limit like its counterpart for point particles. Now we saw that for point

particles, Kramers [1] showed (by essentially treating the low-damping case as a

perturbation of the zero-damping case and constructing a diffusion equation for

the energy) how a simple formula (Eq. 95) for the inverse overbarrier relaxation

time (escape rate) could be obtained in the VLD limit, where Δ≪ 1. Thus a VLD

escape rate is also required for spins. This defect was remedied by Klik and Gunther

[25,26] who used the theory of first passage times to obtain the magnetic analogue

of the Kramers low-damping formula so bypassing the Kramers energy-controlled

diffusion method entirely. Their calculation (since it involves an extension to spins

of the uniform asymptotic method for the calculation of first passage times which

Matkowsky et al. [24] formulated for the original Kramers problem) involves

complicated mathematical manipulations [22, 23]. However, Dunn et al. [19] have

very recently given, essentially using the Stratonovich method already described

in the previous sections, an energy-controlled diffusion equation for spins. They

did not, however, derive the Kramers escape rate using their equation. Here,

we demonstrate how the VLD Kramers rate for spins follows naturally from

this equation exactly as we have just discussed for point particles. Thus, the

mathematical complications associated with the first passage time method of

Matkowsky et al. [24] as adapted to spins are avoided. Moreover, it becomes

readily apparent how the Mel’nikov approach to the turnover problem as adapted

to bistable potentials by Mel’nikov and Meshkov [33] may be extended to spins

[20, 45]. It should be noted from Fig. 11 that the single-domain particle of volume

v will in general involve several states of stability, e.g., for uniaxial anisotropy

with a uniform magnetic field the potential is bistable and so on. The detailed

calculations of the escape rate for all values of the damping have been given in

Refs. [2] and [3] for the various potentials. However, since the purpose of this

chapter is simply to explain in reasonable detail how the VLD rate is calculated

in novel fashion from the energy-controlled diffusion equation given by Dunn

et al. [19], we will mainly confine ourselves to escape from a single well. For

a symmetric double-well potential, the overall escape rate can be determined by

calculating that for a single well (see Eq. 96). Many examples are given in Refs.

[2] and [3]. We emphasize throughout that unlike point particles the Hamiltonian

is nonseparable and nonadditive, typical examples being shown in Fig. 11. Just as

with particles we will first consider the nonstochastic case.
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B. Undamped Motion of Classical Spins

Inspired by our previous treatment of the lightly damped motion for point particles

we shall parameterize the instantaneous magnetization direction by the slow energy

variable E = vV (v is the volume of the particle and V represents the energy

density) and the fast precessional variable 𝜙 with period 2𝜋 running uniformly

along a closed Stoner–Wohlfarth orbit of energy E. We assume that E varies very

slow compared to 𝜙. We denote the energy-dependent precession period as

TE = 2𝜋

ΩE
, (113)

where ΩE is the precession frequency at a given energy in radians per second. The

time dt to reach a given point along a Stoner–Wohlfarth orbit is then given by

d𝜙 = 2𝜋

TE
dt = ΩEdt. (114)

Now we can express dt in terms of a change in magnetization dM. To achieve

this, we write the evolution equation for the magnetization in the absence of

damping, considering only the gyromagnetic term

Ṁ = 𝛾[H ×M]. (115)

Now taking scalar products (Ṁ ⋅ [H ×M]) = 𝛾|H ×M|2 and rearranging them

we have the time dt along an element of orbit dM, namely,

dt = ([H ×M] ⋅ dM)

𝛾|H ×M|2 . (116)

Hence, we can find the precession period explicitly by taking a closed line

integral along a Stoner–Wohlfarth orbit of constant energy E, namely,

TE = 𝛾−1 ↻∫ E

([H ×M] ⋅ dM)|H ×M|2 . (117)

Equation (117) can also be rewritten in terms of polar and azimuthal angles as

TE =
MS

𝛾 ∮E

[
1

sin2 𝜗

(
𝜕V
𝜕𝜑

)2

+
(
𝜕V
𝜕𝜗

)2
]−1(

sin𝜗𝜕V
𝜕𝜗

d𝜑 − 1

sin𝜗
𝜕V
𝜕𝜑

d𝜗

)
.

(118)
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As an example, we consider the uniaxial potential vV(𝜗) = −𝜎kT cos2 𝜗. By

substituting V(𝜗) into the general Eq. (118), we have

TE =
vMS

2𝛾𝜎kT ∮E

d𝜑
cos 𝜗

=
vMS

2𝛾𝜎kT cos 𝜗E ∫
2𝜋

0

d𝜑 =
𝜋vMS

𝛾𝜎kT cos 𝜗E
. (119)

This result can be verified by direct solution of the gyromagnetic equation of

motion (115) which in our example of a uniaxial potential is the following set of

equations

�̇�(t) = 0 (120)

�̇�(t) = 2𝛾𝜎kT
vMS

cos 𝜗(t). (121)

The solution is

𝜗(t) = 𝜗E (122)

𝜑(t) =
2𝛾𝜎kT cos 𝜗E

vMS

t + 𝜑(0). (123)

Thus the vector M precesses at a constant angle 𝜗E. The period of this preces-

sional motion is by definition

TE = 2𝜋

�̇�(t)
=

𝜋vMS

𝛾𝜎kT cos 𝜗E
. (124)

Clearly Eq. (124) is in full agreement with Eq. (119).

In the analysis which follows, we will need 𝜕M
𝜕𝜙

and
𝜕M
𝜕E

. Now
𝜕M
𝜕𝜙

can be

obtained using Eqs. (114) and (115) yielding

𝜕M
𝜕𝜙

= Ṁ
�̇�

= 𝛾

ΩE
[H ×M], (125)

while
𝜕M
𝜕E

can be obtained as follows. On cross multiplying the equation H =
− 1

v
𝜕E
𝜕M

by M and taking the scalar vector product with [H ×M] we have

|[H ×M]|2 = −1

v

([
𝜕E
𝜕M

×M
]
⋅ [H ×M]

)
. (126)

Using the scalar triple product [46], we rearrange Eq. (126) as

|[H ×M]|2 = −1

v

(
𝜕E
𝜕M

⋅ [M × [H ×M]]
)
.
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or

1 = −
(
𝜕E
𝜕M

⋅
[M × [H ×M]]

v|[H ×M]|2
)
. (127)

Since
(
𝜕E
𝜕M

⋅ 𝜕M
𝜕E

)
= 1 we then have by inspection

𝜕M
𝜕E

= − [M × [H ×M]]

𝜈|[H ×M]|2 . (128)

Clearly the new coordinates (E, 𝜙) are locally orthogonal because(
𝜕M
𝜕E

⋅
𝜕M
𝜕𝜙

)
= − 𝛾

vΩE|[H ×M]|2 ([M × [H ×M]] ⋅ [H ×M]) = 0. (129)

It is also useful to give a geometrical interpretation of the periodic time TE
as [19]

TE = v
𝛾MS

dAE

dE
= v

𝛾M2
S

↻∫ RE

(
M ⋅
[
𝜕M
𝜕E

× dM
])
, (130)

where AE is the portion of the area of the sphere that is enclosed by a Stoner–

Wohlfarth orbit with energy E. Substituting for
𝜕M
𝜕E

from Eq. (128) and noticing

that (
M ⋅
[
𝜕M
𝜕E

× dM
])

=
([

M × 𝜕M
𝜕E

]
⋅ dM
)

and

[M × [M × [H ×M]]] = M2
S[M ×H],

we have

v

𝛾M2
S

↻∫ RE

(
M ⋅
[
𝜕M
𝜕E

× dM
])

= ↻∫ RE

([M × [M × [H ×M]]] ⋅ dM)

𝛾M2
S|[H ×M]|2

= 1

𝛾
↻∫ RE

([M ×H] ⋅ dM)|[H ×M]|2 .

so proving Eq. (130). Thus we now have a useful geometrical interpretation of

the periodic time TE as the rate of change of the portion of the area of the sphere

enclosed by a Stoner–Wohlfarth orbit of a constant energy. Again we consider
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the uniaxial potential as an example. The portion of the area of the sphere that is

enclosed by the orbit of the precessing vector M is then

AE = 2𝜋M2
S(1 − cos 𝜗E). (131)

while the orbital energy is

E = −𝜎kT cos2 𝜗E + const. (132)

Consequently, the periodic time is then

TE = v
𝛾MS

dAE

d𝜗E

d𝜗E

dE
=

𝜋vMS

𝛾𝜎kT cos 𝜗E
, (133)

which is again in agreement with Eqs. (119) and (124).

C. Mean Energy Loss per Cycle of a Stoner–Wohlfarth Orbit

Just as accomplished for point particles in the absence of thermal agitation, we

can rewrite the vector equation of motion, Eq. (105), as equations of motion for

the state variables E and 𝜙. Subsequently, we shall invariably neglect all terms of

order 𝛼2 thereby assuming the VLD limit, namely, 𝛼 ≪ 1. We will then have

Ė =
(
𝜕E
𝜕M

⋅ Ṁ
)
= −v(H ⋅ Ṁ). (134)

Now, comparing Eq. (105), the only way E can alter is via the nonconservative

Gilbert damping term 𝛼[u × u̇] in Eq. (105) so that by the properties of the triple

scalar product [46]

Ė = − v𝛼
MS

(H ⋅ [M × Ṁ]) = − v𝛼
MS

(Ṁ ⋅ [H ×M])

= − v𝛼
𝛾MS

(Ṁ ⋅ Ṁ) = − v𝛼
𝛾MS
|Ṁ|2, (135)

which is essentially similar to the corresponding expression Eq. (33) for point

particles. In (135), the term Ṁ is understood in the (conservative) sense Ṁ =
𝛾[H ×M] because we assume the very low damping limit, 𝛼 ≪ 1. Notice that,

just as with the (conservative) inertial term for particles, the gyromagnetic term

does not contribute to Ė so the only contribution to Ė in the non-stochastic case is

from the Gilbert damping term which is the origin of the instantaneous power loss.

The equation of motion of 𝜙 can be obtained from Eq. (125) which we rewrite as

Ṁ = 𝛾

ΩE
[H ×M]�̇�. (136)
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By taking the scalar product of both sides with [H ×M] we have

�̇� =
ΩE

𝛾

([H ×M] ⋅ Ṁ)|[H ×M]|2 = ΩE. (137)

We can now, just as with particles, evaluate the mean power loss per period of

a Stoner–Wohlfarth orbit from Eq. (135). We have

Ė = −
𝛼vΩE

2𝜋𝛾MS ∫
TE

0

(Ṁ ⋅ Ṁ)dt, (138)

where the overbar represents the average over a period. Since the time is measured

on a closed orbit, we have

Ė = −
𝛼vΩE

2𝜋MS𝛾
↻∫ RE

(Ṁ ⋅ dM). (139)

Since Ė is the mean power loss in a precessional cycle, we have

Ė = −
ΩE𝛿E

2𝜋
= −𝛿E

TE
, (140)

where 𝛿E is the mean energy loss in such a cycle. Therefore,

𝛿E = 𝛼v
𝛾MS

↻∫ RE

(Ṁ ⋅ dM), (141)

which is the magnetic analog to Eq. (38).

D. Stochastic Motion of Classical Spins in the VLD Limit

To treat the stochastic case, following Brown [40] and Dunn et al. [19], we

simply use Eq. (106) with a spatially isotropic Gaussian white noise term F (with

properties given by Eq. 107) and neglect all terms of the order of O(𝛼2). Thus, we

have from Eq. (134)

Ė = −v(H ⋅ Ṁ) − v𝛾(H ⋅ [F ×M]) = −v(H ⋅ Ṁ) + v(F ⋅ Ṁ). (142)
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As in the deterministic case, only the Gilbert damping term is involved in the

Ṁ in the first term on the right-hand side and the multiplicative noise term can be

expressed using Eq. (114) as [cf. Eq. (135)]

Ė = − v𝛼
𝛾MS

(Ṁ ⋅ Ṁ) + vΩE

(
F ⋅
𝜕M
𝜕𝜙

)
. (143)

Similarly for �̇�, one has from Eq. (137)

�̇� = ΩE + 𝛾ΩE
([F ×M] ⋅ Ṁ)

(Ṁ ⋅ Ṁ)
= ΩE − vΩE

(
F ⋅
𝜕M
𝜕E

)
. (144)

E and 𝜙 are now random variables and we easily see that multiplicative noise

terms are again involved as for particles. In Eqs. (143) and (144) and below, the

term Ṁ is again understood in the sense Ṁ = 𝛾[H ×M] because we assume the

very low damping limit, 𝛼 ≪ 1.

We can now write from Eqs. (143) and (144), the equations of motion as

Langevin equations with multiplicative noise for the state variables 𝜉1 = E and

𝜉2 = 𝜙, namely,

�̇�i = hi + (gi ⋅ F) (i = 1, 2) (145)

where

h1 = − v𝛼
𝛾MS

(Ṁ ⋅ Ṁ), h2 = ΩE (146)

and

g1 = vΩE
𝜕M
𝜕𝜙

= vṀ, g2 = −vΩE
𝜕M
𝜕E
. (147)

The Langevin equation, Eq. (145), now allows one [19] to write a Fokker–

Planck equation for the probability density W(E, 𝜙, t) using the Stratonovich

method as described in Section III.C for point particles.

E. Fokker–Planck Equation

We have formally

Ẇ = − 𝜕
𝜕E

[
D(1)

1
W −
∑

j

𝜕

𝜕𝜉j

(
D(2)

1,j W
)]

− 𝜕

𝜕𝜙

[
D(1)

2
W −
∑

j

𝜕

𝜕𝜉j

(
D(2)

2,j W
)]
. (148)
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where the drift and the diffusion coefficients are (cf. [47])

D(1)
i = hi + D

∑
k

(
gk ⋅

𝜕gi

𝜕𝜉k

)
. (149)

D(2)

i,j = D(gi ⋅ gj), (150)

and D is the free diffusion coefficient of the magnetization defined by Eq. (108).

In order to write the Fokker–Planck equation in explicit form, we notice at first

that according to the orthogonality property Eq. (129) and then Eq. (147), we have

𝜕

𝜕𝜉i
(g1 ⋅ g2) =

(
g1 ⋅

𝜕g2

𝜕𝜉i

)
+
(
g2 ⋅

𝜕g1

𝜕𝜉i

)
= 0,

so that (
g2 ⋅

𝜕g1

𝜕𝜉i

)
= −
(
g1 ⋅

𝜕g2

𝜕𝜉i

)
. (151)

and

𝜕g2

𝜕𝜙
= 𝜕

𝜕𝜙

(
−vΩE

𝜕M
𝜕E

)
=−v

[
𝜕

𝜕E

(
ΩE
𝜕M
𝜕𝜙

)
− 𝜕M
𝜕𝜙

𝜕ΩE

𝜕E

]
=−
𝜕g1

𝜕E
+ g1

𝜕 lnΩE

𝜕E
.

(152)

Due to Eqs. (151) and (152), the noise-induced contribution to the drift coeffi-

cient D(1)

1
can then be written using

∑
j

(
gj ⋅
𝜕g1

𝜕𝜉j

)
= 2

(
g1 ⋅

𝜕g1

𝜕E

)
−
𝜕 lnΩE

𝜕E
(g1 ⋅ g1) =

𝜕|g1|2
𝜕E

−
𝜕 lnΩE

𝜕E
|g1|2,

(153)

while the noise-induced contribution to the drift D(1)

2
can be written using

∑
j

(
gj ⋅
𝜕g2

𝜕𝜉j

)
= (g2 ⋅ g1)

𝜕 lnΩE

𝜕E
+ 2

(
g2 ⋅

𝜕g2

𝜕𝜙

)
=2

(
g2 ⋅

𝜕g2

𝜕𝜙

)
= 𝜕

𝜕𝜙
|g2|2.

(154)
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Moreover, the diffusion terms can also be simplified using the orthogonality

property, Eq. (129); we have

∑
j

𝜕

𝜕𝜉j
D(2)

1,j W = 𝜕

𝜕E

(
D(2)

1,1
W
)
= D

𝜕

𝜕E

(|g1|2W
)

(155)

∑
j

𝜕

𝜕𝜉j
D(2)

2,j W = 𝜕

𝜕𝜙

(
D(2)

2,2
W
)
= D

𝜕

𝜕𝜙

(|g2|2W
)
. (156)

Substituting Eqs. (153)–(156) into Eq. (148) then yields the Fokker–Planck

equation in the two state variables E and 𝜙

Ẇ = 𝜕

𝜕E

[(
𝛼v
𝛾MS
|Ṁ|2 − D

𝜕

𝜕E
|g1|2 + D

𝜕 lnΩE

𝜕E
|g1|2)W + D

𝜕

𝜕E

(|g1|2W
)]

− 𝜕
𝜕𝜙

[(
ΩE + D

𝜕

𝜕𝜙
|g2|2)W − D

𝜕

𝜕𝜙

(|g2|2W
)]
. (157)

This equation may be further simplified by expanding
𝜕

𝜕E
(|g1|2W) and

𝜕

𝜕𝜙
(|g2|2W) and then using Eq. (147) so that

D|g1|2 = Dv2|Ṁ|2. (158)

Thus we have the final form of the Fokker–Planck equation for the joint prob-

ability density function W(E, 𝜙, t) analogous to Eq. (68) for particles, namely,

Ẇ = 𝜕

𝜕E

[
𝛼v
𝛾MS
|Ṁ|2(1 + kT

𝜕 lnΩE

𝜕E
+ kT

𝜕

𝜕E

)
W

]
+ 𝜕
𝜕𝜙

[
−ΩEW + v𝛼kT

𝛾MS
Ω2

E

||||𝜕M𝜕E ||||2 𝜕W𝜕𝜙
]

(159)

This equation, because the two state variables E and 𝜙 are again involved, is

difficult to treat and cannot be solved by quadratures. However, because on long

timescales, t ≫ TE, 𝜙 is a fast variable and E is slow and is almost conserved,

we can reduce Eq. (159) to a one dimensional equation in the energy variable

just as with the Stratonovich calculation in Section III.D for point particles with

separable and additive Hamiltonians.
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F. Energy Diffusion Equation

Following Dunn et al. [19], we eliminate the fast variable by exploiting the peri-

odicity of W in 𝜙 along a precessional orbit to write the Fourier series

W(E, 𝜙, t) =
∞∑

m=−∞
Wm(E, t)eim𝜙 (160)

Now on long timescales, t ≫ TE, W(E, 𝜙, t) nearly equilibrates in 𝜙 and slowly

evolves in E. Therefore, on these timescales, the density is dominated by the Fourier

component W0(E, t) that does not depend on 𝜙. In other words on this timescale,

W(E, 𝜙, t) ≃ W0(E, t), thus eliminating the 𝜙 dependence which corresponds to

averaging over a period, we then find that Eq. (159) yields a Fokker–Planck

equation for W0(E, t)

Ẇ0 = 𝜕

𝜕E

⎡⎢⎢⎣
ΩE𝛿E

2𝜋

(
1 + kT

𝜕 lnΩE

𝜕E
+ kT

𝜕

𝜕E

)
W0

⎤⎥⎥⎦ (161)

since [cf. Eq. 138]

v𝛼
2𝜋𝛾MS ∫

2𝜋

0

|Ṁ|2d𝜙 =
v𝛼ΩE

2𝜋𝛾MS ∫
TE

0

|Ṁ|2dt =
ΩE𝛿E

2𝜋
(162)

Equation (161) represents the continuity equation

Ẇ0 +
𝜕J
𝜕E

= 0, (163)

where J is the probability current. Thus we have a one-dimensional evolution

equation in the distribution function in the energy E exactly analogous to that

previously derived for point particles.

The time-independent solutions of Eq. (163) will be of particular interest to us.

Setting Ẇ0 = 0, the possible solutions are J = 0 or J = constant. The solution J
= 0 yields the equilibrium distribution while J = constant represents the quasista-

tionary solution. The latter solution will be considered when we discuss the VLD

escape rate in Section IV.H. The equilibrium distribution satisfies, by inspection

of Eq. (161),

𝜕W0

𝜕E
+
(

1

kT
+
𝜕 lnΩE

𝜕E

)
W0 = 0, (164)
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so that

W0(E) = 1

Z
e−

1

kT
(E+kT lnΩE) = e−E∕(kT)

ZΩE
, (165)

where Z is the partition function given by

Z = ∫
e−E′∕(kT)

ΩE′
dE′. (166)

Here, the dependence on the entropy kT lnΩ−1
E is obvious. Notice that the origin

of the entropy term in our Fokker–Planck approach is due to the multiplicative

noise terms in the Langevin equations (143) and (144).

G. Very Low Damping Escape Rate

The Kramers very low damping escape rate for spins (which we shall now deter-

mine via the quasistationary solution of Eq. 163) was first derived by Klik and

Gunther [25,26] using the first-passage time method originally developed for point

particles by Matkowsky et al. [24]. This was extended to classical spins by Klik

and Gunther [25,26] and the details of the calculation were provided by McCarthy

and Coffey [22] and Coffey et al. [23, 45]. However, the latter method involves

rather long calculations and the VLD escape rate may be much more transparently

derived from the energy-controlled diffusion Eq. (161). Moreover, the escape rate

so obtained may be compared with the VLD solutions of Eq. (161) obtained using

the MFPT. This is so because in the VLD limit, the energy-controlled diffusion

equation is a Fokker–Planck equation in a single space variable. Thus, the MFPT

in this limit may be exactly calculated by quadratures as shown in Eq. (172). The

latter method has been extensively applied to point particles and rigid rotators in

Ref. [2].

We now derive the VLD rate from Eq. (161). First recall that the steady state

probability current J is given by

J = −
ΩE𝛿E

2𝜋

(
1 + kT

𝜕 lnΩE

𝜕E
+ kT

𝜕

𝜕E

)
W0. (167)

As in the Kramers calculation for particles, the first integral of Eq. (161) with

a steady injected probability current satisfies the first-order linear differential

equation

𝜕W0

𝜕E
+
(

1

kT
+
𝜕 lnΩE

𝜕E

)
W0 = − 2𝜋J

kTΩE𝛿E
. (168)
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Considering the behavior of W0(E) at EC and, following Kramers, assuming

that W0(EC) = 0 (all spins that reach the barrier go over) we have by quadratures

the particular solution

W0(E) = 2𝜋J
kT

e−
E
kT

ΩE ∫
EC

E

e
E′
kT dE′

𝛿EE′

. (169)

Let N denote the number of precessional orbits in the well that is

N = ∫
EC

EA

W0(E)dE = 2𝜋J
kT ∫

EC

EA

e−
E
kT

ΩE ∫
EC

E

e
E′
kT dE′

𝛿EE′

dE, (170)

we then have the escape rate as the flux-over-population

Γ = J
N

=
⎛⎜⎜⎝2𝜋kT ∫

EC

EA

e−
E
kT

ΩE ∫
EC

E

e
E′
kT dE′

𝛿EE′

dE
⎞⎟⎟⎠
−1

. (171)

We remark in passing that, just as with point particles, we can derive by

integrating by parts an equation for the longest relaxation (reversal) time 𝜏 = 1∕Γ,

namely,

𝜏 = 2𝜋

kT ∫
EC

EA

e
E
kT

𝛿EE
∫

E

EA

e−
E′
kT dE′

ΩE′
dE. (172)

Again, just as with point particles, the main contribution to the inner integral

of Eq. (172) comes from near the bottom of the well because the negative expo-

nential dominates there. Furthermore, near the bottom of the well the precession

frequencyΩEA
≃ ΩA, which is independent of E because of the paraboloid approx-

imation for the potential near the bottom of the well [ΩA is defined by Eq. (184)].

Thus

∫
E

EA

e−
E′
kT

ΩE′
dE′ ≃ 1

ΩA ∫
∞

EA

e−
E′
kT dE′ = kT

ΩA
e−

EA
kT . (173)

With regard to the physical meaning of the frequency ΩA in Eq. (173), this is

the precessional angular frequency in accordance with the original conjectures of

Néel and is effectively independent of the energy. The main contribution to the
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outer integral of Eq. (172) comes from the positive exponential factor dominating

the integrand near the saddle point of the potential. Therefore,

EC

∫
EA

e
E
kT dE

𝛿EE

≃ 1

𝛿EEC

∫
EC

−∞
e

E
kT dE = kT

𝛿EEC

e
EC
kT . (174)

Here, we have neglected the energy dependence of 𝛿EE′. Using Eqs. (174) and

(173) in Eq. (171) yields the VLD escape rate

ΓVLD = Δ
ΩA

2𝜋
e−

ΔV
kT = ΔΓTST, (175)

where ΔV = (EC − EA) and

Δ =
𝛿EEC

kT
. (176)

To compare the escape rate equation for spins with that for point particles, we

may also rewrite Eq. (176) noting Eq. (141) in terms of an action SEC
at the saddle

point energy as

Δ =
𝛼SEC

kT
, (177)

with

SEC
= v

MS
↻∫ REC

([H ×M] ⋅ dM) = v↻∫ REC

([
u × 𝜕V

𝜕u

]
⋅ du
)
, (178)

where u is a unit vector in the direction of M, u = M∕MS. In spherical polar

coordinates (see Fig. 10)

u = er, du = e𝜗d𝜗 + e𝜑 sin 𝜗d𝜑, (179)

so that Eq. (178) becomes

SEC
= −v↻∫ REC

[
𝜕V
𝜕𝜑

1

sin𝜗
d𝜗 − 𝜕V

𝜕𝜗
sin𝜗d𝜑

]
. (180)
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The contour integral is taken along the critical energy trajectory on which the

magnetization (direction of precession) may reverse by passing through the saddle

points. Hence, we have the VLD escape rate, given by Klik and Gunther [25, 26],

for spins in the same manner as the escape rate for point particles.

Now, in order to evaluate ΓVLD, we require explicit equations for ΩA and Δ.

The latter can be calculated from Eq. (180). In order to calculate ΩA, it is supposed

[2, 20] that the free energy per unit volume V (M) of a single-domain particle has

a multistable structure with a minimum at nA separated by a potential barrier with

a saddle point at nC. If M is close to a stationary point nA and (u(A)

1
, u(A)

2
, u(A)

3
)

denote the direction cosines of M, then V(M) can be approximated to second order

in u(A)

1
and u(A)

2
via the Taylor series

vV
kT

=
vVA

kT
+ 1

2

[
c(A)

1

(
u(A)

1

)2
+ c(A)

2

(
u(A)

2

)2
]
+⋯ (181)

To determine the expansion coefficients c(A)

1
, c(A)

2
, and VA, we recall that the

transformation matrix R(A) relating the basic polar coordinate system P and a new

polar coordinate system P′ with the origin at the stationary point nA, is defined as

[2, 20]

R(A) =
⎛⎜⎜⎝
cos𝜑A cos 𝜗A sin𝜑A cos 𝜗A − sin 𝜗A

− sin𝜑A cos𝜑A 0

cos𝜑A sin𝜗A sin𝜑A sin𝜗A cos 𝜗A

⎞⎟⎟⎠ ,
so that the relationship between the direction cosines u(A)

n and u′(A)
m in the systems

P and P′ is given by

u(A)
n = R(A)

1n u′(A)

1
+ R(A)

2n u′(A)

2
+ R(A)

3n u′(A)

3
, (182)

(n = 1, 2, 3). Because

u′(A)

3
=
(

1 − u′(A)2

1
− u′(A)2

2

)1∕2
≈ 1 −

(
u′(A)2

1
+ u′(A)2

2

)
∕2,

c(A)

1
, c(A)

2
, and VA, can be evaluated from Eqs. (181) and (182) as

VA = VA(u(A)

1
, u(A)

2
)
|||u′ (p)

1
,u′ (p)

2
=0
, c(A)

1
= v

kT
𝜕2V

𝜕u′(A)

1
2

|||||u′ (A)
1
,u′ (A)

2
=0

, c(A)

2
= v

kT
𝜕2V

𝜕u′(A)

2
2

|||||u′(A)
1
,u′ (A)

2
=0

.

(183)
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The well angular frequency is then defined as [2, 20]

ΩA = 𝛾kT
vM

S

√
c(A)

1
c(A)

2
. (184)

An example of the calculation of ΩA for biaxial anisotropy is given in Section

IV.H. For particular anisotropies, the coefficients c(A)

1
and c(A)

2
may sometimes be

equal to zero [2, 20]. In those cases, the next term in the expansion, Eq. (181),

must be considered.

We remark that the VLD escape rate Eq. (175) has been derived under the

assumption that all spins are absorbed at the boundary, that is, having reached the

separatrix they never return to their original direction of precession. In practice,

we saw that a potential in single domain ferromagnetic particles will have several

states of stability (see Fig. 11). Hence, the multiwell nature of the potential must

be taken account of just as with the corresponding problem for point particles.

Moreover, since the escape rates have essentially the same mathematical form as

those of the original Kramers problem, the results of Mel’nikov and Meshkov [33]

should also apply to the magnetic problem. This has been justified rigorously by

Déjardin et al. [45] provided the departures from axial symmetry are significant.

The case of small departures from axial symmetry has been considered by Coffey

et al. [23] (see also [48]). A particular example of a uniaxial crossover is considered

in Section IV.H.

Now considering, for example, a bistable potential with a field at an angle to

the easy axis of magnetization (see Fig. 11b) the escape rate for all values of the

damping is given by

Γ =
(
ΓIHD

1
+ ΓIHD

2

) A(Δ1)A(Δ2)

A(Δ1 + Δ2)
, (185)

which is of the same form as the corresponding equation for point particles in an

asymmetric double-well potential, Eq. (28). The calculation of the IHD escape

ratesΓIHD
1

andΓIHD
2

is, however, more complicated due to the nonseparable form of

the anisotropy-Zeeman energy density which renders the determination of the IHD

rates significantly more difficult. However, the interested reader can find the details

in Coffey and Kalmykov [2, 20] since our purpose here is merely to explain simply

how the VLD rate may be obtained from an energy-controlled diffusion equation

rather than from the more complicated first passage time method. Also in non-

axially symmetric problems, the phenomena of high frequency (ferromagnetic)

resonance and low frequency overbarrier (Néel) relaxation behavior alluded to in

our introductory sections will always be evident because of the coupling between
the longitudinal and transverse modes of magnetization which occurs for non-
axially symmetric potentials of the magnetocrystalline-Zeeman energy. The reader
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can find several examples of this in Chapter 9 of Ref. [2]. The salient point is that

the high frequency ferromagnetic resonance behavior is essentially due to the

almost harmonic motion in the bottom of the potential wells while the overbarrier

relaxation is just as with particles due to the anharmonic part of the well dynamics

and of course is influenced by the well frequency via the TST limit.

H. Reversal Time and Escape Rate for Biaxial and
Uniaxial Anisotropies

As an example, we consider the biaxial potential in the form shown in Fig. 11c

yielding

E = vV(𝜗, 𝜑) = 𝜎kT(−cos2 𝜗 + 𝛿 sin2 𝜗 cos2 𝜑). (186)

Here 𝜎 and 𝛿 are, respectively, barrier height and biaxiality parameters. The

potential, Eq. (186), has two equivalent wells and two equivalent saddle points.

The biaxial anisotropy may yield an appreciable contribution to the free energy

density of magnetic nanoparticles [42]. In particular, Eq. (186) describes the

magnetic anisotropy energy of a spheroidal single-domain particle, with the axis

of symmetry inclined at a certain angle to the easy anisotropy axis of the particle

as well that of elongated particles, where easy- and hard-axis anisotropy terms

are present [49]. Furthermore, the bistable potential in the form of Eq. (186) is

commonly used in spintronic applications [42, 50] in order to represent the free

energy density of a nanopillar in the standard form of superimposed easy-plane

and in-plane easy axis anisotropies.

In accordance with Eq. (172) (see details in Appendix B), the magnetization

reversal time can be calculated in the VLD limit as

𝜏 =
𝜏N
2 ∫

0

−1

e𝜎𝜀√
𝛿 − 𝜀

[
E
(
𝛿+𝛿𝜀
𝛿−𝜀

)
+ 𝜀K

(
𝛿+𝛿𝜀
𝛿−𝜀

)] ∫ 𝜀

−1

K
(
𝛿+𝛿𝜀′
𝛿−𝜀′

)
e−𝜎𝜀

′√
𝛿 − 𝜀′

d𝜀′d𝜀

(187)

where K(m) and E(m) are the complete elliptic integrals of the first and second

kind, respectively [35, 51], 𝜏N ≈ vMS∕(2𝛼𝛾kT) is the free diffusion time, and

𝜀 = E∕(𝜎kT), −1 ≤ 𝜀 ≤ 𝛿, is the normalized free energy of the initial state of the

magnetization.

Now we can compare this result both with the exact numerical solution obtained

via matrix continued fractions and with the VLD escape rate formula for the biaxial
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potential. For biaxial anisotropy, Eq. (186), Eq. (183) yields c(A)

1
= 2𝜎, c(A)

2
=

2𝜎(1 + 𝛿) [2, 20] so that

ΩA = 2𝛾kT𝜎
vM

S

√
(1 + 𝛿). (188)

Furthermore, the dimensionless action Δ is given by the contour integral,

Eq. (180), taken along the separatrixes cos 𝜗(𝜑)|E=EC
, which are determined by

the equation vV(𝜗, 𝜑)∕(kT) = EC, where EC = 0 is the value of energy at the

saddle points. The separatrixes satisfy the trigonometric equation

−cos2 𝜗 + 𝛿(1 − cos2 𝜗) cos2 𝜑 = 0

with solution

cos 𝜗(𝜑)|E=EC
= 𝛿 cos2 𝜑

1 + 𝛿 cos2 𝜑
(189)

Thus, we have from Eqs. (180) and (189)

Δ = 𝛼2𝜎
√
𝛿(1 + 𝛿)∫

2𝜋

0

√
cos2 𝜑

(1 + 𝛿 cos2 𝜑)3
d𝜑 = 8𝜎𝛼

√
𝛿 (190)

Noting that the well energy EA = −𝜎 and the barrier height parameter

vΔV∕(kT) = 𝜎, we obtain from Eq. (175) the VLD asymptote for the longest

relaxation time for biaxial anisotropy, namely,

𝜏VLD = 1

ΓVLD

∼
𝜏N𝜋e𝜎

4𝜎2
√
𝛿(1 + 𝛿)

, 𝜎 ≪ 1. (191)

The longest relaxation time ∼ Γ−1
VLD

predicted by Eq. (191), 𝜏 from Eq. (187),

and the inverse of the smallest nonvanishing eigenvalue 𝜆1 of the Fokker–Planck

operator, Eq. (109), calculated numerically by the matrix continued fraction

method [2, 20] are shown in Fig. 12 as functions of the barrier height 𝜎. Appar-

ently, 𝜆−1
1

and 𝜏 are very close to each other for virtually all 𝜎 while in the high

barrier limit, 𝜎 ≫ 1 and 𝜎𝛿 > 1, the asymptotic Eq. (191) provides an accurate

approximation to both 𝜆−1
1

and 𝜏.
However, for 𝛿 → 0, the (asymptotic) escape rate Eq. (191) cannot be used

to determine the longest relaxation time. In contrast this limit corresponds to the

uniaxial anisotropy given by Eq. (100) and can be treated via the general Eq. (187)
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Figure 12. Normalized times 𝜏∕𝜏N , 1∕(𝜏NΓVLD) and 1∕(𝜏N𝜆1) versus the barrier height (inverse

temperature) parameter 𝜎 for biaxial anisotropy, Eq. (186), with 𝛿 = 1. Filled circles: numerical

solution for the inverse of the smallest nonvanishing eigenvalue 1∕(𝜏N𝜆1) of the Fokker–Planck

operator in Eq. (109) [2]. Dashed line: the VLD asymptotic Eq. (191). Solid line: 𝜏 from Eq. (187).

in the limit 𝛿 → 0 yielding

𝜏 =
𝜏N
2 ∫

0

−1

e𝜎𝜀

(1 + 𝜀)
√
−𝜀 ∫

𝜀

−1

e−𝜎𝜀
′√

−𝜀′
d𝜀′d𝜀

=
𝜏N
√
𝜋

2 ∫
𝜎

0

e−z
[
erfi(
√
𝜎) − erfi(

√
z)
]

(𝜎 − z)
√

z
dz. (192)

Here erfi(z) = 1√
𝜋
∫ z

0
et2 dt is the error function of imaginary argument [35]

and we have used E(0) = K(0) = 𝜋∕2 [35]. The high barrier asymptote, 𝜎 ≫ 1, 𝜏
from Eq. (192) is now closely approximated by Brown’s formula for the longest

relaxation time [20]

𝜏VLD ∼
𝜏N
√
𝜋e𝜎

2𝜎3∕2
, 𝜎 ≫ 1. (193)

The 𝜏 from Eq. (192), 𝜏VLD predicted by the asymptotic Eq. (193), and the

inverse of the smallest nonvanishing eigenvalue 𝜆1 of the Fokker–Planck operator,

Eq. (109), calculated numerically by the matrix continued fraction method [2, 20]

are shown in Fig. 13 as functions of the barrier height 𝜎. Again 𝜆−1
1

and 𝜏 are

very close to each other for all 𝜎 while in the high barrier limit, 𝜎 ≫ 1, Eq. (193)

provides an accurate approximation both to 𝜆−1
1

and 𝜏.
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Figure 13. Normalized times 𝜏MFPT∕𝜏N , 1∕(𝜏NΓVLD), and 1∕(𝜏N𝜆1) versus the barrier height

(inverse temperature) parameter 𝜎 for uniaxial anisotropy, Eq. (100). Filled circles: numerical solution

for the inverse of the smallest nonvanishing eigenvalue 1∕(𝜏N𝜆1) of the Fokker–Planck operator in

Eq. (109) [2]. Solid line: 𝜏 from Eq. (192). Dashed line: asymptotic Eq. (193).

The merit of Eqs. (187) and (192) is that they yield the reversal time in the VLD

valid for all barrier heights including low barriers (0 ≤ 𝜎 ≤ 3), where asymptotic

methods (like escape rate equations in the high barrier limit) are not applicable.

V. CONCLUSION

In this chapter, we have reviewed the calculation of the VLD escape rate based

on an energy-controlled diffusion equation for both point particles (including

rigid inertial rotators) and classical spins, a topic which we believe is very often

misunderstood in the literature. Confusion arises in part due to the plethora of

seemingly different energy-diffusion equations involved for point particles, while

for spins the escape rate problem (due to the lack of an energy-controlled diffusion

equation for the latter) has hitherto been treated indirectly using the uniform

asymptotic expansion method for the calculation of first passage times [24–26].

This method, although correct in every detail, does not explicitly involve an energy-

controlled diffusion equation. Consequently for spins the basic relationship with

the original VLD calculation of Kramers for point particles, a fortiori with his IHD

solution and the general theory of the decay of metastable states [2, 4], is somewhat

obscured, particularly for the uninitiated reader. As well as circumventing these

difficulties, the availability of an energy-controlled diffusion equation for spins

transparently shows how the Mel’nikov and Meshkov [11, 33] formalism for the

escape rates for all values of the dissipation for point particles carries over to
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classical spins yielding the spin escape rate in the entire damping range. Now,

although on cursory inspection, the particle and spin problems appear to be quite

different since for particles the Hamiltonian is separable and additive and the

domain is the real line while for spins the Hamiltonian is nonseparable and

nonadditive and the domain is the unit sphere (a feature which is shared with rigid

rotators), in reality the exact expressions for the VLD MFPT, namely, Eqs. (91) and

(172), are essentially similar. The commonality of the two problems is emphasized

by the elegant Stratonovich method [16]. This consists of reduction to a one

dimensional diffusion problem based on the concept of transforming the lightly

damped Langevin equation, consequently the Fokker–Planck equation to slow
energy and fast configuration (phase) variables and then averaging the subsequent

noise induced drift, the latter being determined using his interpretation of the

Langevin equation. The Stratonovich method allows one to transparently derive

the energy-controlled diffusion equation for both cases by averaging over the fast

configuration variable while at the same time removing the obscurities which have

been associated with the derivation of such equations for point particles with the

bonus of the diffusion equation for spins. The VLD results for spins, embodied

in Eq. (172) (just as with particles) are valuable as they serve as a benchmark

solution with which numerical calculations of the greatest relaxation time from

the relevant Fokker–Planck equation in the VLD limit must agree. We remark

that in order to calculate the VLD escape rate, knowledge of the deterministic
dynamics in the given potential is always required. In general, the calculation

of the VLD rate due to the action integrals, etc. involved always reduces to the

solution of a problem in the classical mechanics [27–29] of particles (including

rigid rotators) governed by Newton’s or Euler’s equations or spins governed by

the Larmor equation which is simply the kinematic equation, Eq. (104). The study

of the deterministic dynamics usually governed by the Jacobian doubly periodic

elliptic functions [35, 52–54] does not, due to the form of the action integrals which

are involved, pose of itself an insuperable problem with the exception of spintronic

[42] or Josephson junction problems [18], where an injected current is present.

Such dynamical systems driven by an external current exhibit behavior [50] in

marked contrast to the conventional steady state characterized by the Boltzmann

equilibrium distribution which arises when the current is omitted.

We have derived the energy controlled diffusion equation for classical spins

using the Stratonovich method. However that equation was originally given by

Apalkov and Visscher [55] using a method essentially similar to that of Kramers

in his original justification [1] of the corresponding VLD equation for point par-

ticles. Furthermore in our numerical demonstrations of the behavior of the VLD

relaxation time we have confined ourselves to potentials of the magnetocrys-

talline/Zeeman energy with equivalent wells, e.g. Eq. (186). Later Coffey et al.

[56] have extended the calculations to non-equivalent wells demonstrating that

the results agree with those yielded by independent numerical and asymptotic

methods.
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APPENDIX A: LONGEST RELAXATION TIME FOR A
DOUBLE-WELL POTENTIAL, EQ. (13), IN THE VLD LIMIT

First, we introduce dimensionless variables and parameters as in Ref. [2]

x′ = x⟨x2⟩1∕2

0

, A =
a⟨x2⟩

0

2kT
, B =

b⟨x2⟩2
0

4kT
, 𝛽′ = 𝜂𝛽 (194)

where 𝜂 =
√

m⟨x2⟩
0
∕(2kT) is a characteristic time and the angular brackets ⟨ ⟩

0

denote the statistical averages over the equilibrium distribution function. The

normalization condition ⟨x′2⟩0 = 1 implies that the constants A and B are not

independent [2]

B = B(Q) = 1

8

⎡⎢⎢⎢⎣
D−3∕2

(
sgn(A)

√
2Q
)

D−1∕2

(
sgn(A)

√
2Q
)⎤⎥⎥⎥⎦

2

(195)

where Q = A2∕(4B) and Dv(z) is the parabolic cylinder function of order v [35].

For A < 0 (which is the case of greatest interest), Q is equal to the barrier height.

Now, in order to specialize Eq. (97) for the MFPT, we introduce the dimen-

sionless energy of the particle as (we retain the notation of Ref. [2])

𝜀 = 𝜂2ẋ
′2 − 2

√
QBx

′2 + Bx
′4 (196)

and the time w (phase) measured along a closed trajectory in phase space as

action-angle variables [27, 29]. The energy 𝜀 varies very slowly with time in
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comparison to the phase w. By using the method of Praestgaard and van Kampen

[10], that is, averaging the Fokker–Planck Eq. (4) over the fast phase variable

w, we have, as already seen, a single variable Fokker–Planck Eq. (83) for the

probability distribution function W(𝜀, t) in energy space

𝜕W
𝜕t

= 2𝛽′

𝜂

[
𝜕

𝜕𝜀

(
𝜂2ẋ′2(𝜀) − 1

2

)
+ 𝜂2 𝜕

2

𝜕𝜀2
ẋ′2(𝜀)

]
W, (197)

where the double overbar denotes averaging over the fast phase variable. Now

the longest relaxation time 𝜏 from the general expressions, Eqs. (97) and (84), is

formally given by

𝜏 = 𝜂

2𝛽′ ∫
0

−Q

1[
𝜀 + 2
√

QBx′2(𝜀) − Bx′4(𝜀)

]
W0(𝜀)

∫
𝜀

−Q
W0(𝜀′)d𝜀′d𝜀. (198)

We interpret Eq. (198) following Ref. [2]. Thus we first recall that in the undamped

limit, the energy 𝜀, Eq. (196), is a constant of the motion, namely, �̇� = 0. Equation

(196) can then be rearranged as the following deterministic nonlinear differential

equation describing the undamped dynamics of the particle

𝜂√
e2B

d
dt

z(t) = ±
√

[z2(t) − e1∕e2][1 − z2(t)], (199)

where z(t) = x′(t)∕
√

e2 and e1,2 =
√

Q∕B(1 ∓
√

1 + 𝜀∕Q) are the roots of the

quadratic equation 𝜀 + 2
√

QBx′ − Bx′2 = 0. The solution of Eq. (199) may be

written [2] in terms of the Jacobian doubly periodic elliptic functions cn(u|m) and

dn(u|m) [35, 52–54], namely,

x′(t) =
⎧⎪⎨⎪⎩

±
√

e2dn
(√

Be2t∕𝜂 + w|||m) , −Q ≤ 𝜀 ≤ 0

±
√

e2cn
(√

B(e2 − e1)t∕𝜂 + w
√

m|||m−1
)
, 0 < 𝜀 <∞

(200)

m = m(𝜀) =
e2 − e1

e2
=

2
√
1 + 𝜀∕Q

1 +
√
1 + 𝜀∕Q

(201)

w = ∫
1

y(0)∕
√

e2

1√
(x2 − e1∕e2)(1 − x2)

dx.
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From Eq. (200) we have

x′2(t) =
⎧⎪⎨⎪⎩

e2
[
1 − msn2

(√
Be2t∕𝜂 + w|||m)] , −Q ≤ 𝜀 ≤ 0

e2
[
1 − sn2

(√
B(e2 − e1)t∕𝜂 +

√
mw|||m−1

)]
, 0 < 𝜀 <∞

(202)

Next we recall [35, 54] the identities

∫
K(m)

0

dn2(u|m) du = E(m) (203)

and

sn4(u|m) = 1

6

d2

du2
sn2(u|m) − 1

3
− 2

3
(1 + m)sn2(u|m). (204)

Thus we have

1

2K(m) ∫
2K(m)

0

sn2(u|m) du = 1

2mK(m) ∫
2K(m)

0

[1 − dn2(u|m)]du

= 1

m

(
1 − E(m)

K(m)

)
(205)

and

1

2K(m) ∫
2K(m)

0

sn4(u|m) du = 1

3m2

[
2 + m − 2(1 + m)

E(m)

K(m)

]
. (206)

Here, K(m) and E(m) are complete elliptic integrals of the first and second kind,

respectively [35, 51–54].

Thus, from Eqs. (202)–(206), we can evaluate averages over the phase w. In

particular for the averages x′2 and x′4 occurring in Eq. (198), we have in the domain

of a well −Q ≤ 𝜀 ≤ 0, namely,

x′2(𝜀) = 1

2K ∫
2K

0

x
′2(𝜀,w)dw = e2

E
K

(207)

x′4(𝜀) =
e2
2

3

[
m − 1 + (4 − 2m)

E
K

]
. (208)
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Now because the stationary distribution function is the equilibrium Maxwell–

Boltzmann distribution W0, namely,

W0[x
′(0), ẋ′(0)]dx′(0)dẋ′(0) = 𝜂

Z
√
𝜋

e−𝜂
2 ẋ

′2(0)+2
√

QBx
′2(0)−Bx

′4(0)dx′(0)dẋ′(0),

then by making the transformation of the variables {x′(0), ẋ′(0)} → {w, 𝜀}, and by
integrating the distribution function W0 over the phase w, we have the stationary
distribution in energy space

W0(𝜀)d𝜀 =
25∕4e−Q∕2

𝜋Q1∕4D−1∕2

(
−
√
2Q
) Re{K[m(𝜀)]}e−𝜀√

1 +
√
1 + 𝜀∕Q

d𝜀. (209)

Moreover, the average of a dynamical quantity X(𝜀) over the normalized energy

𝜀 is defined as, mindful of the 𝜀 ranges defined in Eqs. (200) and (202),⟨
X

⟩
0

= ∫
∞

−Q
X(𝜀)W0(𝜀)d𝜀. (210)

In particular, we have from Eqs. (207) and (209)

∫
∞

−Q
W0(𝜀)d𝜀 =

25∕4e−Q∕2

𝜋Q1∕4D−1∕2

(
−
√
2Q
) ∫

∞

−Q

Re {K [m(𝜀)]} e−𝜀√
1 +
√
1 + 𝜀∕Q

d𝜀 = 1,

and

⟨ x′2⟩0 = 211∕4Q1∕4e−Q∕2

𝜋D−3∕2

(
−
√
2Q
) ∫

∞

−Q

√
1 +
√
1 + 𝜀∕QRe {E [m(𝜀)]} e−𝜀d𝜀 = 1.

Now by using Eqs. (207)–(209) in Eq. (198), we obtain

𝜏 = 3𝜂

4𝛽′ ∫
0

−Q

e𝜀
√

1 +
√
1 + 𝜀∕Q

𝜀K[m(𝜀)] + Q(1 +
√
1 + 𝜀∕Q)E[m(𝜀)] ∫

𝜀

−Q

K[m(𝜀′)]e−𝜀
′
d𝜀′√

1 +
√
1 + 𝜀′∕Q

d𝜀

(211)

which after some simplifications leads to Eq. (99).
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APPENDIX B: UNDAMPED LIMIT FOR BIAXIAL ANISOTROPY

For the biaxial anisotropy potential, Eq. (186), the gyromagnetic Eq. (115) gov-

erning the deterministic dynamics can be rewritten in terms of the Cartesian

components uX , uY , uZ of the unit vector u along the direction of magnetization

M as

𝜏0u̇X = −uYuZ . (212)

𝜏0u̇Y = (1 + 𝛿)uZuX . (213)

𝜏0u̇Z = −𝛿uXuY . (214)

where 𝜏0 = MS∕(2𝛾K) is a characteristic time constant. The components

uX , uY , uZ are not independent being subject to the obvious constraint

u2X + u2Y + u2Z = 1. (215)

Furthermore, the trajectories of the precessional dynamics must satisfy the

constraint (energy conservation)

𝜀 = −u2Z + 𝛿u2X , (216)

where 𝜀 = E∕(𝜎kT), −1 ≤ 𝜀 ≤ 𝛿 is the normalized free energy of the initial state

of magnetization.

In order to solve the set of Eqs. (212)–(214) in accordance with the con-

straints, Eqs. (215) and (216), we can introduce a function u(t) which is related to
uX(t), uY (t), uZ(t) by the following formula

uX(t) = p
√
1 − u2(t), uY (t) = p

√
1 + 𝛿u(t) , and uZ(t) =

√
1 − p2 − 𝛿p2u2(t),

(217)

where

p2 = 1 + 𝜀
1 + 𝛿

. (218)

By substitution of uX(t), uY (t), uZ(t) from Eq. (217) into Eq. (213), we see that

u(t) satisfies the following differential equation

du
dt

= a𝜀

√
(1 − m𝜀u2)(1 − u2), (219)
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where

m𝜀 =
𝛿p2

1 − p2
= 𝛿 + 𝛿𝜀
𝛿 − 𝜀

(220)

a𝜀 =
1

𝜏0

√
(1 − p2)(1 + 𝛿) = 1

𝜏0

√
𝛿 − 𝜀. (221)

The solution of the differential equation (219) is [51–54]

u(t) =
⎧⎪⎨⎪⎩

sn(a𝜀t + w|m𝜀) 0 ≤ m𝜀 ≤ 1 (−1 ≤ 𝜀 ≤ 0)

1√
m𝜀

sn
(√

m𝜀(a𝜀t + w)||| 1

m𝜀

)
m𝜀 ≥ 1 (0 ≤ 𝜀 ≤ 𝛿) (222)

where sn(u|m) is Jacobi’s doubly periodic elliptic function with period 4K(m) [35,

51–54] and w is an integration constant (initial phase). By inserting Eq. (222) into

Eqs. (217) we then obtain

u2X(t) =

{
p2cn2(a𝜀t + w|m𝜀) 0 ≤ m𝜀 ≤ 1

p2dn2(
√

m𝜀(a𝜀t + w), |1∕m𝜀) m𝜀 ≥ 1
(223)

u2Y (t) =

{
p2(1 + 𝛿)sn2(a𝜀t + w|m𝜀) 0 ≤ m𝜀 ≤ 1

p2[(1 + 𝛿)∕m𝜀]sn
2(
√

m𝜀(a𝜀t + w)|1∕m𝜀) m𝜀 ≥ 1
(224)

u2Z(t) =

{
(1 − p2)dn2(a𝜀t + w|m𝜀) 0 ≤ m𝜀 ≤ 1

(1 − p2)cn2(
√

m𝜀(a𝜀t + w)|1∕m𝜀) m𝜀 ≥ 1
(225)

Furthermore, the period of precession of the vector M is from the general

Eq. (118) specialized to our biaxial potential

T𝜀 =

{
4K(m𝜀)∕a𝜀 0 ≤ m𝜀 ≤ 1

4K(1∕m𝜀)∕
√

m𝜀a𝜀 m𝜀 ≥ 1.
(226)

As a check, we consider the uniaxial potential (𝛿 = 0). Noting that here 𝜀 =
−cos2 𝜗E, m𝜀 = 0, and K(0) = 𝜋∕2, we have the elementary result (cf. Eq. 133)

T𝜀 =
2𝜋𝜏0√
−𝜀

=
𝜋vMS

𝛾𝜎kT cos 𝜗E
. (227)

The solutions for the deterministic dynamics embodied in Eqs. (223)–(226)

enable one to calculate the reversal time 𝜏 in the VLD limit from the general

expression Eq. (172). Noting that only the region −1 ≤ 𝜀 ≤ 0 is appropriate to
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escape (because the energy of a separatrix trajectory is 𝜀C = 0), we can rewrite

Eq. (172) specialized to the biaxial potential, namely,

𝜏 = 𝜎 ∫
0

−1

e𝜎𝜀

𝛿𝜀
∫
𝜀

−1
T𝜀′e

−𝜎𝜀′d𝜀′d𝜀, (228)

where T𝜀 is defined by Eq. (226) and the mean energy loss in a precessional cycle

𝛿𝜀 is given by

𝛿𝜀 = 1

𝜎kT
𝛿EE =

2𝛼𝜏0

M2
S

∫
T𝜀

0

|Ṁ|2dt = 2𝛼𝜏0 ∫
T𝜀

0

[
u̇2X(t) + u̇2Y (t) + u̇2Z(t)

]
dt.

(229)

Now by substituting the right-hand side Eqs. (212)–(214) into Eq. (229) we

have

𝛿𝜀 = 2𝛼

𝜏0 ∫
T𝜀

0

[
𝛿2u2X(t)u

2
Y (t) + u2Yu2Z(t) + (1 + 𝛿)2u2Zu2X(t)

]
dt

= 2𝛼

𝜏0 ∫
T𝜀

0

[
p2(1 − p2)(1 + 𝛿)2 − 𝛿u2Y (t)

]
dt, (230)

where we have used Eqs. (217). Next, to evaluate explicitly 𝛿𝜀 from Eq. (230), we

now use Eqs. (205) and (224) so that

𝛿𝜀 = 8𝛼(1 + 𝜀)

⎧⎪⎪⎨⎪⎪⎩

√
𝛿 − 𝜀K(m𝜀) + 𝛿

E(m𝜀) − K(m𝜀)√
𝛿 − 𝜀m𝜀

(−1 ≤ 𝜀 ≤ 0)

√
𝛿−𝜀
m𝜀

K(1∕m𝜀) + 𝛿
E(1∕m𝜀) − K(1∕m𝜀)√

m𝜀(𝛿 − 𝜀)
(0 ≤ 𝜀 ≤ 𝛿)

(231)

By substituting the first solution of Eq. (231) pertaining to the region

−1 ≤ 𝜀 ≤ 0 into Eq. (228), we then obtain Eq. (187) for 𝜏.
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