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In the framework of locally non-equilibrium thermodynamics, the equation of motion of the vector of the

magnetic moment in a continuum with spatial dispersion is written. The spectrum of locally non-equilibrium
fluctuations of the electromagnetic field and magnetization in a magnetically disordered continuum is determined.
It is shown that the dispersion dependences of the fluctuations have energy and impulse gaps. Unstable modes in
the diamagnetic state are observed for long relaxation times and weak spatial dispersion. Stationary amplitudes
of the modes in the instability region are determined. It is shown that the transition to a locally non-equilibrium
state can be regarded as a phase transition. In a new phase, there are damped (normal) and undamped excitations.
It is shown that stationary standing modes exist in a limited non-equilibrium medium. The propagation of waves
in a locally non-equilibrium continuum with spatial dispersion is considered. It is shown that there are regions of
transmission and non-transmission in which there may be frequencies of transparency and opacity.
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1. Introduction

The equations of motion for magnetization were writ-
ten analogously to the equation of motion of a gyro-
scope [1, 2]. According to these equations, the mag-
netic moment vector (with a constant [2] or with a non-
constant value [3]) precesses around an effective mag-
netic field approaching the equilibrium state. In the
spin wave, the precession of the magnetic moment oc-
curs with a phase that varies periodically in space [1–
4]. In Refs. [5, 6] the equation of magnetization motion
was obtained on the basis of locally non-equilibrium ther-
modynamics [7, 8] by analogy with hydrodynamics [9].
In the last equation, the surface and bulk moments of
forces that are not local in time and space are taken
into account. On the basis of this equation, locally non-
equilibrium waves of magnetization in a disordered di-
electric continuum were considered [5, 6]. In the diamag-
netic state, unstable modes were observed in the region
of large wavenumbers.

In the present paper, locally non-equilibrium excita-
tions of magnetization are considered with allowance for
spatial dispersion [6] and nonlinearity, which limit the
region of instability and excitation amplitude.

2. Equation of movement of the magnetic
moment vector in a locally non-equilibrium

continuum with spatial dispersion

The equation of motion of magnetization can be ob-
tained within the framework of non-equilibrium thermo-
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dynamics [7, 8]. The equation of continuity of the mag-
netization density has the form

M ,t +Rj ,j = N , (1)
where (.),t≡ ∂(.)/∂t and (.),j ≡ ∂(.)/∂xj are the time
and space derivatives, Rj = Rjiei, ei is the basis vector,
Rji is the density of the surface moments of forces, N is
the density of the volume moments of forces.

The density of the internal energy of the dielectric
satisfies the continuity equation u,t +divq = σu, where
u(s, Pi,Mj) is the internal energy density, s is the en-
tropy density, q is the internal energy flux density, σu =
P ,tE + M ,tB is the source density, P is the electric
polarization, E is the electric field, B is the magnetic
induction.

On the basis of the continuity equations for the densi-
ties of internal energy and magnetization in a dielectric
with constant polarization, we can represent the continu-
ity equation for entropy

s,t +Jsj ,j = σ, (2)
where Js is the entropy flux. The production of entropy
is a positive definite bilinear form

σ = JnKn > 0, (3)
in which the generalized thermodynamic flows and the
thermodynamic forces conjugate to them are expressed
in the form

J1 = Js, K1 = (1/T ),x ,

J2 = N , K2 = Beff/T,

J3 = Rji, K3 = Beff
ij /T,

J4 = R, K4 = −2V /T, (4)
where T = ∂u/∂s is the temperature, Beff = B −Bm

is the effective magnetic induction, Bm = ∂u/∂M is the
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local internal effective magnetic induction, Rij = R[ij]

is the symmetric part of the magnetization flux tensor,
Beffij is the symmetric part of the tensor Beffi ,j , R =

−( 1
2
)eieijkR{jk} is the vector of the dual antisymmetric

part of the magnetization flux tensor R{jk} = −eijkRi,
V = ( 1

2
)rotBeff is the vortex of effective magnetic in-

duction.
According to the principles of non-equilibrium thermo-

dynamics, the generalized flows and forces are connected
by constitutive equations. In the linear approximation,
these equations can be represented in the form of an in-
tegral relation

Kn(t,x) =∫ t

−∞
dt′

∫ ∞
−∞

d3x′Inm(t,x, t′,x′)Jm(t′,x′), (5)

where Inm(Q(l)) are the kinetic coefficients, Q(l) are the
parameters, including thermodynamic variables. The
constitutive equation takes into account the medium’s
memory, the causality principle and spatial dispersion.
The kinetic coefficients satisfy the symmetric equa-
tions [5]. In addition, positivity of the form (3) requires
the positivity of the principal minors of the matrix Inm
(Inn > 0, InnIn+1,n+1 − In,n+1In+1,n > 0 and fur-
ther) [10].

Consider highly symmetric continuum (isotropic, from
a cubic lattice) at a constant temperature. Then the
flows will be unbound. Taking into account the symme-
try relations for the kinetic coefficients and expanding the
flows in the constitutive equations (5) in a series at the
point (t,x) and restricting ourselves to the first two terms
of the series, we can write the constitutive equations in
the form of parabolic (heat conduction) equations

τvN ,t−λ2vN ,nn +N = νBeff ,

τtRjk,t−λ2tRjk,nn +Rjk = Pjk,

Pjk = P0jk − δjk(lττvRnn,t−lλλ2vRnn,jj ),

P0jk = 2η(Beffjk − δjkB
eff
nn /3) + δjkξB

eff
nn ,

τvRnn,t−λ2vRnn,mm +Rnn = 3ξBeffnn ,

τrR,t−λ2rR,nn +R = −2χV , (6)
where τv is the relaxation time of the volume moments
of forces, τt, τ1, τv and τr are the relaxation times of
the symmetric and antisymmetric parts of the surface
moments of forces, with τr, τt and τ1 characterizing the
relaxation of torsional, shear and longitudinal moments
of forces, λv, λt, λr, λ1 are the characteristic lengths, ν
and η, ξ, χ are the coefficients of the volume and shear,
linear, rotational “magnetic viscosity”, and from the posi-
tive definiteness of the entropy production it follows that
all the coefficients are positive, τv = (3ξ/2η)(τt + 3lτ1)
and λ2v = (3ξ/2η)(λ2t + 3lλ21) are the relaxation time and
spatial dispersion coefficient of the trace of the tensor of
the moments of forces, lτ = l[(τ1/τv) − 1], l = I3312/2I

33
44 ,

lλ = l((λ21/λ
2
v)− 1).

Equations (1) and (6) describe the magnetization dy-
namics in the linear approximation. Dependence of co-
efficients on thermodynamic variables and flows (forces)
leads to nonlinear terms in the determining equations.
In particular, taking into account the dependence of the
coefficient of “linear viscosity” on magnetization in the
first Eq. (6) leads to the replacement of the body torque

νBeff → g[MBeff ] + (ν11 + (ν12 + 2ν44)M2)Beff

−2ν44[M [MBeff ]].

Consequently, in the highly symmetric locally equilib-
rium (τv, τr, τr → 0) without spatial dispersion (λ2v, λ2t ,
λ2r → 0), in the absence of surface moments of forces
(ξ, χ → 0), the equation (1) reduces to the usual equa-
tion of motion of the vector of the magnetic moment [4].

The system (1), (6) for constant coefficients can be
reduced to the equation of motion of the magnetization
in the form

τtM ,tt +M ,t−λ2tM ,tnn +η∆Beff

= −gradφB + N e − rotRe, (7)
where φB = ηeBeffjj + lτ (Rjj −λ2vRjj ,nn ) is the effective
scalar potential of the moment of forces, ηe = [( 1

3
)η +

ξ(1−3lτ )] is the coefficient of effective magnetic viscosity,
Rjj =

(3ξ/τv)

∫ t

−∞
dt′

∫ ∞
−∞

d3x′Beffjj (t′, x′n)Fv(t− t′, xn − x′n)

is the nonlocal component of the scalar potential, N e =
N + τtN ,t−λ2tN ,nn is the effective volumetric moment
of forces,

N(t,x) =

(ν/τv)

∫ t

−∞
dt′

∫ ∞
−∞

d3x′Beff (t′,x′)Fv(t− t′, xn − x′n)

is the nonlocal volume moment, Re = R+τtR,t−λ2tR,nn
is the effective vector potential, the rotor of which gives
the moment of forces,

R(t,x) =

(−2χ/τr)

∫ t

−∞
dt′

∫ ∞
−∞

d3x′V (t′, x′i)Fr(t− t′, xn − x′n)

is a nonlocal vector potential,
Fs = (4λ2sπ(t− t′)/τs)−3/2

× exp(−((t− t′)/τs)− (x′n − xn)2/4λ2s(t− t′)/τs]

are the kernels of integrals, s = v, v, r. The non-local
components at a given moment of time and at a given
point in space are determined by the field values at all
previous instants of time at all other points of space.

In the linear approximation, we can write Bm = aM ,
where a is the spin–spin interaction constant. In the lo-
cally equilibrium state (τt, τv, τr → 0) for weak spatial
dispersion (λt, λv, λr → 0), for small inhomogeneity of
magnetic induction, Eq. (7) describes diffusion of mag-
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netization. If the inhomogeneity of the magnetization is
also small, then it can be seen from (7) that the vec-
tor M → B/a with the characteristic relaxation time
τm = (aν)−1, which is inversely proportional to the co-
efficient of the body moment of forces and the spin–
spin interaction constant. In a locally non-equilibrium
medium, the parabolic diffusion equation of magnetiza-
tion is transformed into a hyperbolic equation that ad-
mits solutions in the form of transverse and longitudinal
waves.

An analogous form (7) has the equations of motion of
electric polarization vectors and a vortex electric current.

With a Lorentz gauge and a constant polarization in
the dielectric, the magnetic vector potential (B = rotA)
satisfies the equation

c−2A,tt−∆A = 4πrotM . (8)
The left-hand side of (8) determines transverse electro-
magnetic waves in a vacuum. The system of Eqs. (7)
and (8) describes the coupled waves of magnetization
and magnetic vector potential. The fields A(t, r) and
M(t, r) are interrelated by means of the vortices of the
fields rotM and rotA, respectively.

3. Coupled waves of the magnetic vector
potential and magnetization

in a locally non-equilibrium continuum
with spatial dispersion

Consider excitations of the continuum in the form of
traveling plane waves A,M ∝ exp(ikx− iωt), where k
is the wave vector, ω is the frequency. Then from (7), (8)
follow the relations between the components of the wave

(k2 − k20)A = 4π i [kM ],

(k2 − k2m)M − c1k(kM) = ik2c [kA], (9)
where k0 = ω/c, k2m = c1/c0, k2c = c2/c0 are the
characteristic wave numbers, c1 = iω − a(ν/ζv), c2 =
(ν/ζv) + a−1c0k

2, c0 = a((η/ζt) + (χ/ζr)) are the com-
ponents of the wave numbers, ζv = 1 + λ2vk

2 − iωτv,
ζt =1+λ2tk

2 − iωτt, ζr =1+λ2rk
2 − iωτr are the disper-

sion components, c1 = 1 − (a/ζtc0)((4/3)η + (ζ1/ζν)ξ)
is the dispersion function, ζν = 1 + λ2νk

2 − iωτν , ζ1 =
1 + λ2νk

2(1− 3lλ)− iωτν(1− 3lτ ) are the components of
the function.

From Eqs. (9) it is clear that unbound longitudi-
nal waves M are described by the dispersion relation
k2 = k2m/(1 − c1). Transverse waves are coupled waves
of vector potential and magnetization with dispersion

(q2 − Ω2)(q2 − q2m)− 4πq2cq
2 = 0, (10)

where q2 ≡ q2 = k2λ2m, q2m,c = k2m,c λ
2
m are the normal-

ized wave numbers, λm =cτm is the characteristic length,
and Ω = ωτm is the normalized frequency. Because of the
isotropy of the medium, the dispersion relation depends
only on the square of the wave number. At 4πq2c → 0 the
dispersion relation of the coupled waves decays into the
dispersion relations of unbound electromagnetic waves
q2 = Ω2 and magnetization waves q2 = q2m.

By definition, M = (χ0/(1 + 4πχ0))B, where χ0 is
the magnetic susceptibility [4]. From (10) it follows that
χ0 = χ00/(1 − 4πχ00), where χ00 = q2c/(q

2 − q2m). For
q,Ω → 0 the quasi-static homogeneous susceptibility
χ0 = 1/(a − 4π). In paramagnets χ0 > 0 and, conse-
quently, a > 4π, in diamagnets χ0 < 0 and, consequently,
a < 4π.

4. Spectrum of locally
non-equilibrium fluctuations

We consider the fluctuations of the magnetization in
the form of wave packets consisting of plane waves with
a complex frequency and a real wave number.

Equation (10) can be represented in the form
a06Ω

6 + a04Ω
4 + a02Ω

2 + a00

+iΩ(a05Ω
4 + a03Ω

2 + a01) = 0, (11)
where a06 = θvθ1, a05 = a050 + a051q

2, a050 = θvθ0 + θ1,
a051 = θvθ0λ + θ1λ

2
ym, a04 = a040 + a041q

2 + a042q
4,

a040 = −θv − θ0 − θ1, a041 = −a06(1 + aγ0) − θ0λ −
θ0λ

2
ym − θvλ

2
0, a042 = −θ0λλ2ym − θvλ

2
tmλ

2
rm, a03 =

a030 + a031q
2 + a032q

4 + a033q
6, a030 = −1 − θ0, a031 =

−a050−aγ01−θ0λ−λ21, a032 = −a051−aγ01λ−λ22, a033 =
−λ2ymλ2tmλ2rm, a02 = a020 + a021q

2 + a022q
4 + a023q

6,
a020 =1, a021 = θv + θ0 + αθ1 + aγ1 + λ20, a022 =
a(a06αγ0 +γ1λ

2
ym+γ1λ) + θ0λ

2
ym+ θvλ

2
0 + θ0λ+λ2tmλ

2
rm,

a023 = −a042+aγ1λλ
2
ym, a01 = a011q

2+a012q
4+a013q

6+

a014q
8, a011 = 1 + αθ0, a012 = α(aγ01 + θ0λ) + λ21,

a013 = αaγ01λ+λ22, a014 = −a033, a00 = a001q
2+a002q

4+
a003q

6 + a004q
8, a001 = −α, a002 = −α(aγ1 +λ20), a003 =

−α [a(γ1λ+γ1λ
2
ym)+λ2tmλ

2
rm], a004 = −αaγ1λλ2ym are the

coefficients, θv = τv/τm, θt = τt/τm, θr = τr/τm are the
normalized relaxation times, θ1 = θtθr, θ0 = θt+θr – are
the characteristic relaxation times, θ0λ = θtλ

2
rm + θrλ

2
tm,

λ2ym = λ2v/λ
2
m, λ2tm = λ2t/λ

2
m, λ2rm = λ2r/λ

2
m are the nor-

malized coefficients of spatial dispersion, λ20 = λ2tm+λ2rm,
λ21 = λ20 + λ2ym, λ22 = λ2ymλ

2
0 + λ2tmλ

2
rm, γη = v2η/c

2, γχ =

v2χ/c
2 are the ratios of characteristic magnetization waves

v2η = η/τt, v2χ = χ/τr and speed of light, γ0 = γη + γχ,
γ1 = γηθt + γχθr, γ01 = γ0θ1 + γ1θv are the charac-
teristic ratios of velocities, γ1λ = γηθtλ

2
rm + γχθrλ

2
tm,

γ01λ = γ0θ1λ
2
ym+γ1λθv are the renormalized by the spa-

tial dispersion the ratio of velocities, α = 1 − (4π/a) is
the ratio of the reciprocal susceptibility and the spin–spin
interaction constant.

Separating the real and imaginary parts from (11), we
obtain a system of equations

ar3Ω
′6 + ar2Ω

′4 + ar1Ω
′2 + ar0 = 0,

am2 Ω ′4 + am1 Ω ′2 + am0 = 0, (12)
where ar3 = a06, ar2 = a04 − 5a05Ω

′′ − 15a06Ω
′′2, ar1 =

a02−3a03Ω
′′−6a04Ω

′′2+10a05Ω
′′3+15a06Ω ′′4, ar0 = a00-

a01Ω
′′−a02Ω ′′2+a03Ω

′′3+a04Ω
′′4−a05Ω ′′5−a06Ω ′′6 are

the coefficients in the first equation, am2 = a05 + 6a06Ω
′′,

am1 = a03+4a04Ω ′′ − 10a05Ω
′′2 − 20a06Ω

′′3, am0 = a01 +
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2a02Ω
′′ − 3a03Ω

′′2 − 4a04Ω
′′3 + 5a05Ω

′′4 + 6a06Ω
′′5 are

the coefficients in the second equation.

The second Eq. (12) with the condition am2 6= 0 gives
the dispersion relations of the spin-electromagnetic (SE)
and electromagnetic-spin (ES) modes in an implicit form

Ω ′21 , 2=− (am1 /2a
m
2 )± [(am1 /2a

m
2 )2 − (am0 /a

m
2 )]

1
2 , (13)

in which the imaginary part of the frequency is deter-
mined from equation

i0I0 + i1I1 + (ar3)2I2 = 0, (14)
where i0 = ar0a

m
1 − ar1a

m
0 , I0 = am2 (2ar3a

m
0 + ar2a

m
1 −

ar1a
m
2 )−ar3(am1 )2, i1 = ar0a

m
2 −ar2am0 , I1 = am2 i1+ar3a

m
0 a

m
1 ,

I2 = (am0 )3 are the functions of the coefficients. Substi-
tuting the expressions for the coefficients from (12) into
(14), we obtain the equation of the fifteenth degree for
the imaginary part of the frequency

Σn=15
n=0 enΩ

′′n = 0, (15)
where en = Σm+l=n

m,l i0mI0l + Σp+r=n
p,r i1pIlr + a206I2n

are coefficients dependent on q2, 0 ≤ m ≤ 9, 0 ≤
l ≤ 6, 0 ≤ p ≤ 7, 0 ≤ r ≤ 8 are integers,
i00 = a03a00 − a02a01, i01 = 4a04a00 + 2a03a01 − 2a202,
i02 = −10a05a00 + 2a04a01 + 8a03a02, i03 = −20a06a00 +
12a04a02 − 8a203, i04 = 5a06a01 − 15a05a02 − 25a04a03,
i05 = −16a06a02 + 34a05a03 − 20a204, i06 = 42a06a03 +
56a05a04, i07 = 72a06a04 − 40a205, i08 = −105a06a05,
i09 = −70a206 are the coefficients of Ω ′′ in the function
i0, I00 = a06(2a05a01−a203) +a05(a04a03−a05a02), I01 =
a06(12a06a01 − 8a05a02 − 2a04a03) + a05(4a204 − 2a05a03),
I02 = a06(−12a06a02 + 5a05a03 + 8a204)− 24a205a04, I03 =
a06(22a06a03 − 116a05a04) + 40a305, I04 = a06(325a205 −
152a06a04), I05 = 932a206a05, I06 = 932a306 are the coeffi-
cients of Ω ′′ in the function I0, i10 = a05a00 − a04a01,
i11 = 6a06a00 + 4a05a01 − 2a04a02, i12 = 9a06a01 +
9a05a02+3a04a03, i13 = 24a06a02−14a05a03+4a204, i14 =
−39a06a03 − 24a05a04, i15 = −60a06a04 + 24a205, i16 =
98a06a05, i17 = 84a206 are the coefficients of Ω ′′ in the
function i1, I10 = a06a03a01 +a05(a05a00−a04a01), I11 =
a06(12a05a00−2a04a01+2a03a02)+a05(4a05a01−2a04a02),
I12 = a06(36a06a00 + 23a05a01 − 4a04a02 − 3a203) +
a05(9a05a02 + 3a04a03), I13 = a06(34a06a01 + 58a05a02 +
2a04a03) + a05(4a204 − 14a05a03), I14 = a06(104a06a02 −
88a05a03 + 8a204) − 24a205a04, I15 = −a06(−168a06a03 −
144a05a04) + 24a305, I16 = a06(−256a06a04 + 192a205),
I17 = 512a206a05, I18 = 384a306 are the coefficients
of Ω ′′ in the function I1, I20 = a301, I21 = 6a201a02,
I22 = a01(−9a01a03 + 12a202), I23 = −12a01(a01a04 +
3a02a03) + 8a302, I24 = a01(15a01a05 − 48a02a04 +
27a203) − 36a202a03, I25 = a01(18a01a06 + 60a02a05 +
72a03a04)+a02(−48a02a04+54a203), I26 = a01(72a02a06−
90a03a05 + 48a204) + a02(60a02a05 + 144a03a04) − 27a303,
I27 = a01(−108a03a06 − 120a04a05) + a02(72a02a06 −
180a03a05 + 96a204)− 108a203a04, I28 = a01(−144a04a06 +
75a205) + a02(−216a03a06− 240a04a05) + a03144(a03a05−
a204), I29 = a01180a05a06 + a02(−288a04a06 + 150a205) +
a03(162a03a06 + 360a04a05) − 64a304, I210 = a01108a206 +
360a02a05a06 + a03(432a04a06 − 225a205) + 240a204a05,
I211 = 216a02a

2
06 − 540a03a05a06 + a04(288a04a06 −

300a205), I212 = −324a03a
2
06 − 720a04a05a06 + 125a305,

I213 = −432a04a
2
06 + 450a205a06, I214 = 540a05a

2
06, I215 =

216a306 are the coefficients of Ω ′′ in the function I2.
In the general case, Eq. (15) can have up to fifteen so-

lutions Ω ′′n (q2). Each solution yields up to two branches
of the spectrum (13) Ω ′21 , 2(Ω ′′n , q

2). Dissipation splits
the spectrum. The substitution of (13) in (11) gives the
relation between the amplitudes in the mode. A large
number of dispersion branches leads to complex non-
equilibrium motion of the magnetization.

Fig. 1. Dependence of the imaginary part of the fre-
quency on the wave number for paramagnets.

Fig. 2. Dependence of the imaginary part of the fre-
quency on the wave number for diamagnetics.

At the point q = 0, along with the zero solution, there
exist nonzero solutions (15) Ω ′′n (q = 0) ≡ Ω ′′n0 satisfying
the equation of the fourteenth degree Σn=15

n=1 en0Ω
′′n−1
0 =

0, where en0 = en(q = 0) (Figs. 1, 2). The frequencies of
homogeneous states are determined by (13) for q = 0 and
Ω ′′ = Ω ′′n0. In particular, the frequencies of undamped
homogeneous oscillations are Ω ′20 = [(1+θ0)/(θvθ0+θ1)]

1
2
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Fig. 3. Dependence of the real part of the frequency
on the wave number for paramagnets.

and Ω ′10 = 0. ES branches have energy gaps (Fig. 3).
The gap Ω ′20 is determined by the relaxation times. SE
branches have impulse clearances (threshold) qt, which
are satisfied by the condition Ω ′(qt) = 0. The system (12)
gives the equations ar0(qt) = 0, am0 (qt) = 0, from which
it is seen that the branch with Ω ′′(qt) = 0 does not have
the threshold qt0 = 0 and branches with nonzero Ω ′′(qt)
have a threshold (Fig. 3). In particular, in the linear
approximation with respect to Ω ′′ and q2, the threshold
q2t1 = 2α/(1 +α2(θ2t + θ2r)−2α(θv +aγ1 +λ20)) > 0 in the
paramagnet and the threshold is absent in the diamag-
net. The gaps are due to the dynamic interaction of the
electromagnetic and spin non-equilibrium subsystems.

There are points of stability loss qc for which Ω ′′(qc) =
0. At the point qc, the imaginary part of Ω changes
sign. The amplitudes of the excitations with Ω ′′ < 0
and Ω ′′ > 0 decrease and increase with time, respec-
tively. The critical wave numbers qc satisfy the equa-
tion Σn=13

n=1 e0nq
2n
c = 0. The equation has a zero solution

qc = 0. In paramagnets, the equation has no non-zero so-
lutions since all the coefficients of the same sign. In dia-
magnetics, solutions exist for weak spatial dispersion and
long relaxation times. At the points qc, along with the
zero solution, there exist solutions satisfying the equation
Σn=15
n=1 encΩ

′′n−1
c = 0, where enc = en(qc).

In the particular case, when θv = θr = 0, λ2ym = λ2rm =

0 and therefore ar3 = am2 = 0 and θt 6= 0, λ2tm 6= 0, the
system (12) gives the dispersion relation

Ω ′2 = [(aq + αθt)q
2 + 2aqηΩ

′′ + 3aqtΩ
′′2

+4θtΩ
′′3]/(aqt + 4θtΩ

′′), (13’)
where aq = 1 + λ2tmq

2, aqη = aq + θt(1 + aγη)q2,
aqt = aq + θt and equation

Σn=6
n=0 e

(t)
n Ω ′′n = 0, (15’)

where e(t)6 = 64θ3t , e
(t)
5 = 96θ2t aqt, e

(t)
4 = 16θt(2θtaqη +

3a2qt), e
(t)
3 = 8aqt(4θtaqη + a2qt), e

(t)
2 = 8a2qtaqη +

(2θt/a
2
qt)e

(t)
1 , e(t)1 = 2aqt[aqt(aq +αθt)q

2 + (aq + θt(aγη −
1)q2)2 + 4θt(1 − α)(aq + θtaγηq

2)], e(t)0 = [aqaqt(aq +
θtaγη)q2) + θ2t (aq + αθt)q

2](1 − α)q2. If α > 0, then
all the coefficients e(t)n > 0, therefore the solution (15’)
Ω ′′n < 0 and, consequently, the paramagnetic state will
be stable. The diamagnetic state (α < 0) can be unsta-
ble due to the coefficient (aq + αθt). It can be seen that
the spatial dispersion suppresses the instability in the
region of large q2. At weak attenuation (in particular,
near qc), the wave velocity will be larger in a paramag-
net than in a diamagnet. In the particular case, when
θv = θt = 0, λ2ym = λ2tm = 0 and θr 6= 0, λ2rm 6= 0, the
results are obtained from the previous ones by replac-
ing the indices “t” by “r” and “η” by “χ”. In the special
case, when θt = θr = 0, λ2tm = λ2rm = 0 and θv 6= 0,
λ2ym 6= 0, the paramagnetic and diamagnetic states will
be stable. Consequently, instability is caused by non-
equilibrium surface moments of forces.

The instability can be explained on the basis of the
negative energy of the waves [11–14]. SE waves excite
slow and fast ES waves. If the phase velocities of the SE
waves are greater than the velocity of the ES waves in the
continuum, then slow ES waves will be unstable [11, 12].
As a result, the amplitudes of the ES and SE of the
wave increase (an analog of the anomalous Doppler ef-
fect) [13, 14]. This means that the energy of the contin-
uum with waves is less than the energy of the continuum
without waves.

Let us consider numerical solutions. Figure 1 shows the
dependence of Ω ′′(q) obtained in (15) in the paramagnet
for the parameters θv = 4, θt = 2, θr = 4, γη = 0.05,
γχ = 0.07, λ2ym = λ2tm = λ2rm = 0.4, a = 10π. It can
be seen that there exists a set of homogeneous oscilla-
tions with increasing damping, in addition to the zero
undamped mode. In the region of large q, the branch
Ω ′′1 tends to a constant and the branches Ω ′′0 and Ω ′′2 are
determined to be close to quadratic functions. Figure 3
shows the dependence of Ω ′(q) in a paramagnet for the
same parameters as for Fig. 1. It is seen that there is
an energy gap and an impulse gap. Figure 2 shows the
dependences of Ω ′′(q) in diamagnet for the previous pa-
rameters, except for a = π. In the region of small q, there
are fifteen solutions. It can be seen that the two branches
have regions of instability. Figures 4–7 show the depen-
dences of the wave numbers qc for which Ω ′′(qc) = 0,
on the spin–spin interaction constant qc(a), on the relax-
ation times qc(θ ≡ θv = θt = θr), the spatial dispersion
constants qc(λ ≡ λ2ym = λ2tm = λ2rm), the ratio of the
velocities qc(γ ≡ γη = γχ) with the same constant pa-
rameters. The curves limit the region of wave instability.

Thus, in a locally non-equilibrium continuum with spa-
tial dispersion with an increase in the constants λvm, λtm,
λrm and a by decreasing θv, θt, θr and γη, γχ the insta-
bility region first shrinks and eventually disappears.

The point of occurrence of instability when the param-
eters determined from the equation e0(qc0) = 0, where
qc0 is the wave number corresponding to the maximum
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Fig. 4. Dependence of the critical wave number on the
spin–spin interaction constant.

Fig. 5. Dependence of the critical wave number on the
relaxation times.

of the imaginary part of the frequency, which is deter-
mined from the equation (∂Ω ′′/∂q)|qc0 = 0. In Figs. 4–7
the wave number with vertical tangent correspondsto qc0.

Locally equilibrium fluctuations (τv, τt, τr → 0) in the
absence of spatial dispersion (λ2v, λ2t , λ2r → 0) on the ba-
sis of (11) are determined by the relation

Ω ′2 = q2 + 2Ω ′′ + 3Ω ′′2,

in which the imaginary part is determined from equation
Ω ′′3 + Ω ′′2 + (1/4)(1 + q2)Ω ′′ + (π/2a)q2 = 0.

Since all the coefficients in the second equation are pos-
itive, the solutions exist only for Ω ′′ < 0. Consequently,
the locally equilibrium state will be stable. The depen-
dence of Ω ′(q) does not have a gap.

Fig. 6. Dependence of the critical wave number on the
spatial dispersion constants.

Fig. 7. Dependence of the critical wave number on the
ratio of the velocities of the magnetization waves and
the speed of light.

5. Stationary locally non-equilibrium excitations
Instability is limited to nonlinear effects. Because

of the nonlinearity, the effective coupling constants and
spatial dispersion increase, and the relaxation times de-
crease. As a result, as the amplitude increases, the pa-
rameters shift to the stability boundary, where the am-
plitude of the wave is constant. To take into account
the nonlinearity, we can assume that the kinetic coeffi-
cients in (5) depend on thermodynamic variables, flows,
forces and their temporal and spatial derivatives. Next,
we restrict ourselves to the dependence of the coefficients
on the right-hand sides of Eq. (6) on magnetization and
thermodynamic forces.

Consider waves of the formB,M = B0,M0 exp(ikx−
iωt) + c.c., where B0,M0 are complex amplitudes. The
linear field Eqs. (8), taking into account the nonlinear in-
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ternal inductionBm = (a+a′M2)M , give the amplitude
ratio at the fundamental frequency cl1k(kM)+κ−1M =
B, where κ = (q2−Ω2)/(amΩ2−amπ q2), am = a(1+m2

0)
is the interaction constant renormalized by the square
of the amplitude, m2

0 = |M0|2/M2
a is the normalized

amplitude, M2
a = (a/2a′), a′ > 0, amπ = am − 4π,

cl1 = −4π/(k2 − k20). For a < 0, the region of instability
begins with q = 0 [5] and, consequently, the ground state
is ferromagnetic with the magnetization M2

s = −a/2a′.
We confine ourselves to the cubic nonlinearity in the
defining relations. Taking into account the amplitude re-
lation from (1) and (6), the dispersion relation for trans-
verse waves

(q2 − Ω2)(q2 − q2ms)− 4πq2csq
2 = 0, (16)

where q2ms = c1s/c0s and q2cs = c2s/c0s is the nor-
malized wave number, the change in the amplitude
of stationary waves, c1s = iΩ − τmνma

mζ−1v , c2s =
τmνmζ

−1
v + (q2/am)c0s, c0s = am(θtγηnζ

−1
t + θrγχnζ

−1
r ),

ζi =1+λ2i mq
2 − iΩθi, i = v, t, r, νm = ν(1 + νnm

2
0),

νn = m2
aν(1 + ν21κ

−1 + ν31κ
−2), m2

aν = M2
a/M

2
ν ,

M2
ν = ν/2ν1 is the effective magnetization, ν1,ν21, ν31

are the nonlinear viscosity coefficients in the first Eq. (6),
γηn = γη(1 + ηnm

2
0) is the renormalized ratio of shear

rates, ηn = m2
aη(1 + η21κ

−1 + η31κ
−2), m2

aη = M2
a/M

2
η ,

M2
η = η/η1 is the effective magnetization, η1, η21, η31 are

nonlinear shear viscosity coefficients in the second equa-
tion (6), γχn = γχ(1 + χnm

2
0) is the renormalized ratio

of rotational velocities, χn = m2
aχ(1 +χ21κ

−1 +χ31κ
−2),

m2
aχ = M2

a/M
2
χ, M2

χ = χ/χ1 is the effective magnetiza-
tion, χ1, χ21, χ31 are nonlinear rotational viscosity coef-
ficients in the last Eq. (6).

Equation (16) can be reduced to an equation for the
frequency in the implicit form

a06Ω
6 + a04nΩ

4 + a02nΩ
2 + a00n

+iΩ(a05Ω
4 + a03nΩ

2 + a01n) = 0, (17)
where a06 = fζ3, a05 = fζ2, a04n = −(fζ1 + fζ3q

2 +
amfγ2), a03n = −(fζ0 + fζ2q

2 + amfγ1), a02n = fζ1q
2 +

amfγ0 + amπ fγ2q
2, a01n = fζ0q

2 + amπ fγ1q
2, a00n =

−amπ fγ0q2 are the coefficients, fζ3 = θvθ1, fζ2 =
θvθtζrλ + θvθrζtλ + θrθtζvλ, fζ1 = θvζtλζrλ + θtζrλζvλ +
θrζvλζtλ, fζ0 = ζvλζtλζrλ are the functions determined
by the relaxation times and spatial dispersion, fγ2 =
θ1(τmνm+θvγ0nq

2), fγ1 = τmνm(θtζrλ+θrζtλ)+(θvγ1n+
θ1ζvλγ0n)q2, fγ0 = τmνmζtλζrλ + ζvλγ1nq

2 are the func-
tions additionally determined by linear and nonlinear vis-
cosities, γ0n = γηn+γχn, γ1n = θtζrλγηn+θrζtλγχn. For
m2

0 → 0, Eq. (17) is transformed into (11).
Since the “viscosities” depend on the frequency, in an

explicit form, Eq. (17) is an equation of the tenth power
with respect to frequency. In the weak dispersion approx-
imation of nonlinear viscosities |δ21κ−1 + δ31κ

−2| << 1,
δ = ν, η, χ the coefficients will be determined by the
relations νm = ν(1 + m2

aνm
2
0), γηn = γη(1 + m2

aηm
2
0),

γχn = γχ(1 + m2
aχm

2
0). Since in this approximation the

coefficients do not depend on the frequency, Eq. (17) re-
duces to (11) by replacing ν, γη, γχ → νm, γηn, γχn.

Consequently, formulae (11)–(15) will describe nonlinear
excitations with a constant amplitude for the indicated
substitution. From the equation e0(q,m2

0) = 0 one can
find the amplitude m2

0(q) and substituting it in (13) for
Ω ′′ = 0, we obtain the dispersion relation of waves of
constant amplitude.

The equation e0(q2,m2
0) = 0 can be written relative to

the square of the amplitude
Σn=8
n=0 e0nm

2n
0 = 0, (18)

where e0n = Σm+l=n
m,l=0 (i00mI00l + i10mI10l) + a206I20n are

coefficients depending on q2, 0 ≤ l, m ≤ 4, i00m =
Σk+r=m
k,r=0 (a00ka03r − a02ka01r), I00l = a05(2a06a01k −

a05a02k)δkl + Σk+r=l
k,r=0 (a05a04ka03r-a06a03ka03r), i10m =

a05a00kδkm − Σk+r=m
k,r=0 a04ka01r, I10l = a05i1l +

a06Σ
k+r=l
k,r=0 a03ka01r, I20n = Σk+r+p=n

k,r,p=0 a01ka01ra01p are
the terms of the coefficients, 0 ≤ k, r, p ≤ 2, δkl is
the delta symbol, a000 = −aπfγ00q2, a001 = −(afγ00 +
aπfγ01)q2, a002 = −afγ01q2, a010 = (fγ00 + aπfγ10)q2,
a011 = (fγ01 + afγ10 + aπfγ11)q2, a012 = afγ11q

2,
a020 = afγ00 + (fζ1 + aπfγ20)q2, a021 = a(fγ00 + fγ01) +
(afγ20+aπfγ21)q2, a022 = a(fγ01+fγ21q

2), a030 = −fζ0−
fζ2q

2 − afγ10, a031 = −a(fγ10 + fγ11), a032 = −afγ11,
a040 = −fζ1 − fζ3q

2 − afγ20, a041 = −a(fγ20 + fγ21),
a042 = −afγ21 are the coefficients for different degrees of
the square of the amplitude, fγ00 = a−1ζtλζrλ + γ1n0ζvλ,
fγ10 = a−1(θtζrλ + θrζtλ) + (θvγ1n0 + θ1ζvλγ0)q2, fγ20 =
θ1(a−1 + θvγ0q

2) and fγ01 = a−1ζtλζrλm
2
aν + γ1nmζvλ,

fγ11 = a−1(θtζrλ + θrζtλ)m2
aν + (θvγ1nm + θ1ζvλγ0m)q2,

fγ21 = θ1(a−1m2
aν + θvγ0mq

2) are functions determined
by linear and nonlinear viscosities, γ1n0 = θtζrλγη +
θrζtλγχ, γ0m = γηm

2
aη + γχm

2
aχ, γ1nm = θtζrλγηm

2
aη +

θrζtλγχm
2
aχ are linear and non-linear ratio of velocities.

The numerical solution of (18) is shown in Fig. 8 with
the previous parameters and m2

aδ = 0.01. The amplitude
interval coincides with the instability interval (positive
imaginary frequencies). With increasing m2

aδ, the de-
pendence of m2

0(q) becomes ambiguous near the upper
boundary of the instability.

Fig. 8. Dependence of the square of the amplitude of
stationary waves on the wave number.
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The wave number qc0 corresponding to the max-
imum amplitude is determined from the equation
(∂m2

0/∂q
2)qc0 = 0. The critical parameters are related by

the equation e00(qc0) = 0. Below the critical point, the
stationary amplitude is zero and above the critical point
the stationary amplitude is finite. Hence the maximum
stationary amplitude can be taken as the order param-
eter and consider the transition through the instability
point as a phase transition. In a new phase there exist
both damped (normal) excitations and undamped excita-
tions. Wave packets from the instability region propagate
without damping, as a result of scattering, a decrease in
the amplitude of the packet waves causes an instability
that restores the stationary wave amplitudes (analogous
to superfluidity, superconductivity).

6. Locally non-equilibrium standing waves

Consider harmonic oscillations in a bounded volume in
the form of a rectangular parallelepiped with sides l1, l2,
l3. Suppose that there are no singularities of the fields
and vanish on the boundary of the field. Then the solu-
tion of Eqs. (7), (8) can be sought in the form

Fx = F1[cos k1x sin k2y sin k3z] exp(− iωt) + c.c.,

Fy = F2[sin k1x cos k2y sin k3z] exp(− iωt) + c.c.,

Fz = F3[sin k1x sin k2y cos k3z] exp(− iωt) + c.c., (19)
where F = B,M , k1 = (π/l1)n, k2 = (π/l2)m, k3 =
(π/l3)p, n,m, p = 0, 1, . . . are integers. The components
of induction and magnetization are related by the rela-
tions Fnkn = 0. Using the amplitude relation from (1)
and (6), the dispersion relation for standing waves

(q2ν − Ω2)(q2ν − q2ms)− 4πq2csq
2
ν = 0, (20)

where q2ν ≡ λ2mk2nmp, k2nmp = k21 + k22 + k23 is the discrete
wave number. Equation (20) is transformed into (16)
by replacing the discrete wave number by the continuous
wave number q2ν → q2. Consequently, the dispersion and
attenuation of standing waves of small amplitude will be
determined by the system of Eqs. (13), (15) with q2 → q2ν
replaced. In the region of instability, standing stationary
waves with a wave number q2ν and amplitude of (18) will
exist.

7. Propagation of waves
in locally non-equilibrium continuum

with spatial dispersion

We consider the excitation of waves by an external
source on the boundary of the medium. In this case, the
frequency will be real (Ω ′ ≡ Ω , Ω ′′ = 0) and the wave
vector q = q′ + iq′′ complex. Equation (11) is written
with respect to the square of the wave number

b08q
8 + b06q

6 + b04q
4 + b02q

2 + b00 = 0, (21)
where b08 = b′08 + ib′′08, b′08 = a004, b′′08 = Ωa014,
b06 = b′06 + ib′′06, b′06 = a003 + Ω2a023, b′′06 = Ω(a013 +
Ω2a033), b04 = b′04 + ib′′04, b′04 = a002 + Ω2a022 + Ω4a042,

b′′04 = Ω(a012 + Ω2a032), b02 = b′02 + ib′′02, b′02 = a001 +
Ω2a021 + Ω4a041, b′′02 = Ω(a011 + Ω2a031 + Ω4a051),
b00 = b′00 + ibb′′00, b′00 = Ω2a020 + Ω4a040 + Ω6a06,
b′′00 = Ω(Ω2a030 + Ω4a050) are the coefficients. In the
general case, the solutions q2n (21) are expressed in terms
of the square roots of the cubic equation (the resolvent of
the original equation). The polarization of the waves is
determined by (9), in which the wave numbers q2n . The
real and imaginary parts of the wave number

q′′,
′′

n = ( 1
2
)
1
2 [((q2′n )2 + (q2′′n )2)

1
2 ± q2′n ]

1
2 , (22)

where q2′ = q′2 − q′′2 and q2′′ = 2q′q′′ are the real and
imaginary parts of the square of the wave number.

It follows from (22) that there exist frequencies Ω1

satisfying the equation q2′n (Ω1) = 0. These boundary
frequencies separate the transmission regions q2′n > 0
(q′n > q′′n) and the non-transmission q2′n < 0 (q′n < q′′n).
At the points Ω1, the wave numbers q′n1 = q′′n1 =

2−
1
2 |q2′′n (Ω1)|

1
2 . There exist critical frequencies Ωc sat-

isfying the equation q2′′n (Ωc) = 0. In the transmis-
sion region q2′n (Ωc) > 0 at the transmission frequencies
q′nc = (q2′n (Ωc))

1
2 , q′′nc = 0 the waves propagate without

damping. In the non-transmission region q2′n (Ωc) < 0, the
waves do not penetrate into the medium at the opacity
frequencies q′nc = 0, q′′nc = (−q2′n (Ωc))

1
2 .

The spatial dispersion constants determine the first
two coefficients in (21) and change the remaining co-
efficients. Hence, spatial dispersion creates additional
modes and shifts the characteristic frequencies and
asymptotic velocities of the waves.

For a weak spatial dispersion and a small ratio of the
velocities in the coefficients (22), one can ignore terms of
order λ6, λ4 and γλ2. Then Eq. (21) reduces to a second-
degree equation, the solution of which gives the SE and
ES branches q2n = ( 1

2
b04)(−b02 ± d

1
2 ), where n = 1, 2,

d = b202 − 4b04b00. The real and imaginary parts of
the discriminant d′ = b′202 − b′′202 − 4(b′04b

′
00 − b′′04b′′00) and

d′′ = 2b′02b
′′
02 − 4(b′04b

′′
00 + b′′04b

′
00) and the root of the dis-

criminant (
√
d)′,′′ =

√
|d| ± d′/

√
2. As a result, the real

and imaginary parts of the square of the wave number
q2′n = [−b′04b′02 − b′′04b′′02

±(b′04(d
1
2 )′ + b′′04(d

1
2 )′′)]/2|b04|2,

q2′′n = [−b′04b′′02 + b′′04b
′
02

±(b′04(d
1
2 )′′ − b′′04(d

1
2 )′)]/2|b04|2. (23)

Figure 9 shows the dependences q′(Ω), q′′(Ω) on the ba-
sis of (22), (23) in the paramagnet for the parameters
θv = 4, θt = 2, θr = 4, γη = 0.05, γχ = 0.07, a = 10π,
λ2ym = λ2tm = λ2rm = 0.04. It can be seen that in
the high-frequency region the SE wave has two trans-
parency frequencies and a cut-off frequency, the ES wave
has two transparency frequencies. In addition, in the
low-frequency region, the SE has a transparency fre-
quency, the ES wave has two frequencies of opacity and
boundary frequency. Figure 10 shows the dependences
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of q′(Ω),q′′(Ω) in a diamagnet for the previous parame-
ters, except for a = π. In the high-frequency region, the
SE has an opacity frequency, the ES has a frequency of
transparency, and in the low-frequency region the SE has
an opacity frequency, the ES have an opacity frequency
and a cut-off frequency. The SE wave does not propa-
gate in the diamagnet, for Ω → 0 the q′(Ω) and q′′(Ω)
dependences merge (the skin effect).

Fig. 9. Dependence of the real (1′, 2′) and imaginary
(1′′, 2′′ ) parts of the wave number on the frequency for
paramagnets.

Fig. 10. Dependence of the real (1′, 2′) and imaginary
(1′′, 2′′) parts of the wave number on the frequency for
diamagnets.

The frequencies of transparency and opacity can be
explained as follows. Electromagnetic (EM) wave excites
oscillations of magnetization with a period less than the
relaxation time of magnetization. The variable magneti-
zation emits an induced wave in a phase with EM wave
at a transparency frequency. As a result, the energy of

the EM wave is preserved. The propagation of EM wave
at the frequency of transparency is analogous to the ef-
fect of self-induced transparency in optics [15]. In the
latter, a short pulse of coherent light excites atoms at
a resonance frequency in a time less than the relaxation
time of polarization and then stimulates the atoms to
stimulated emission, and turns the energy into a pulse.
At the opacity frequency, the magnetization radiates in
antiphase with the EM wave, consequently, the EM wave
decays at the wavelength.

In the locally equilibrium state (τv, τt, τr → 0) without
spatial dispersion (λ2v, λ

2
t , λ

2
r → 0), Eq. (21) gives the ES

wave with
q′ = Ω(1 + (1 + Ω2

α)
1
2 )

1
2 /2

1
2 ,

q′′ = Ω2(1− α)/2
1
2 (α2 + Ω2)(1 + (1 + Ω2

α)
1
2 )

1
2 ,

where Ω2
α = Ω2(1 − α)2/(α2 + Ω2)2. It is clear that in

the local equilibrium state the characteristic frequencies
Ω1, Ωc are absent.

8. The discussion of the results

In the above discussion, stationary waves were not in-
vestigated with respect to the amplitude instability. The
development of modulation instability leads to the for-
mation of solitary envelope waves (solitons). In solitary
waves, the spreading of a wave packet due to dispersion
is compensated by its contraction due to nonlinearity. In
the region of instability, the solitons will be stationary.
The phase with solitons will be more ordered than the
phase with wave packets.

A non-equilibrium state can arise in a limited region
due, for example, to a local change in temperature, a
constant, or relaxation times. This region of a non-
equilibrium continuum can further change (contract, col-
lapse, expand) or have stable dimensions (for example,
spontaneous stable thermoelectromagnetic solitons).

We have considered above the dynamics of magneti-
zation at a constant temperature. Taking into account
the change in temperature in space and time gives ad-
ditional effects similar to those in a liquid with internal
rotation [9]. In particular, a thermomagnetic effect and
the propagation of thermomagnetic waves without damp-
ing are possible.

By analogy, we can write the equations of motion of
polarization, magnetization, current for a locally non-
equilibrium multicomponent continuum, in particular an
antiferromagnet.

Calculations showed that in the liquid there exist un-
stable coupled transverse waves of momentum and spin
(internal rotation) for long relaxation times and weak
spatial dispersion, as above, waves of the magnetic vec-
tor potential and magnetization were considered.
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