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This paper discusses acousto-optic Bragg diffraction in uniaxial crystals when two intrinsic optical modes of the
crystal participate in the diffraction. The calculations are based on two crystals widely used in acousto-optics:
lithium niobate and paratellurite. It is shown that the character of the acousto-optical field formed in the dif-
fraction orders when optical rays propagate close to the optic axis while a sound wave propagates orthogonally to
the optic axis makes it possible to use the resulting field for two-dimensional processing of optical images. The
image can be filtered in this case by using both the zeroth and the first diffraction orders. Acousto-optic filters are
fabricated from a paratellurite crystal and are used to experimentally show that a two-dimensional contour is
discriminated when the image is subjected to optical Fourier processing (fast Fourier transform), using the zeroth
and first Bragg orders. © 2018 Optical Society of America

OCIS codes: (070.1060) Acousto-optical signal processing; (070.2615) Frequency filtering; (070.6110) Spatial filtering.
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1. INTRODUCTION

The contour of an image is discriminated by a widely practiced
method of processing optical images, after which it is recognized
(for example, see [1]). The goal of the contour-discrimination
operation is to substantially reduce the volume of information
to be processed while preserving such important characteristic
parameters of the image as its shape and size. These parameters
are in many cases quite sufficient to recognize the object.

Acousto-optic (AO) elements are widely used as controllable
spatial-frequency filters in order to Fourier-process various
optical fields and images [2–7]. In particular, such filters
can be used to distinguish one-dimensional [3,4] and two-
dimensional contours [5–7]. Later versions are of most interest
in practice, since they fully solve the problem of distinguishing
the two-dimensional contour of an object.

A typical layout of the optical apparatus for Fourier-
processing an image is shown in Fig. 1 [1]. The layout is based
on two lenses L1 and L2. We assume for simplicity that the
lenses have the same focal length F . Input-image plane S in
is positioned in front of lens L1 at the focal length from it.
Acousto-optic modulator AOM, which serves the function
of filtering spatial frequencies, is positioned behind lens L1
at the same focal length. An electric signal with frequency f
is applied to the modulator. Lens L2 is positioned behind
the modulator at focal length F , and screen Sout (the plane

of the output image) is positioned behind that at the same length
F . A feature of using an AO modulator is that there are two
images on the screen, corresponding to two diffraction orders.
In our experiments, polarizers P1 and P2, which improve the
characteristics of the two-dimensional image, were installed in
front of AOM and behind it. A two-dimensional contour of
the image is formed on the screen in one of the diffraction orders
by appropriately choosing the frequency supplied to AOM and
the necessary orientation of the modulator and the polarizers.
We should point out that, when the ordinary AO diffraction
regime is used, it is not possible in general to obtain a two-
dimensional contour when only one of the intrinsic optical
modes of the crystal participates in the diffraction. This can
be done only when both optical modes are involved in the dif-
fraction process. The proposed version of diffraction possesses a
number of features that are considered in the next section.

2. THEORY

A vector diagram of the AO diffraction of dual-mode optical
radiation is shown in Fig. 2. The initial optical radiation trans-
mitted by light with wave vector K is incident on the optical
face (XY ) of the crystal. Acoustic wave q propagates in the
Y direction. Plane Pd contains vector K and passes through
the Y axis. Plane Pd slopes toward optic axis Z by angle α.
The orientation of vector K is given by angles α and β.
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Angle β is defined as the angle between the projection of vector
K onto the ZY plane and the Z axis. Inside the crystal, the
incident radiation is represented in the form of two intrinsic
modes with wave vectors K01 and K02. The amplitude distri-
butions of these modes over the surfaces of the wave vectors are
denoted by C01 and C02, which intrinsically carry information
concerning the input image in the absence of a sound wave. As
a result of diffraction on an acoustic wave with wave vector q,
modes K01 and K02 diffract in the direction of modes K11 and
K12. The amplitude distributions of the diffracted modes are
designated C11 and C12, respectively. It is understood that, in
general, diffraction is accompanied by detuning Bragg synchro-
nism. Generally speaking, each of the incident modes K01 or
K02 diffract at once into the two modes K11 and K12 with dif-
ferent efficiency in this case. Mode K01 diffracts into K11 with
synchronism-detuning vector Δk1, K02 diffracts into K11 and
K22 with detunings Δk2 and Δk3, respectively. Mode K01

diffracts into K12 with detunings Δk1 � Δk2 � Δk3.
Modes K01, K02, K11, and K12 are connected with each
other via AO interaction. To find the amplitudes C01, C02,
C11, and C12, it is necessary to solve the system of differential
equations [8,9]

2
dC01

dz
� −m1C11 exp�−iΔk1z� − m2C12 exp�iΔk2z�;

2
dC02

dz
� −m3C12 exp�−iΔk3z�
− m4C11 exp�−i�Δk1 � Δk2 � Δk3�z�;

2
dC11

dz
� m1C01 exp�iΔk1z�
� m4C02 exp�i�Δk1 � Δk2 � Δk3�z�;

2
dC12

dz
� m2C01 exp�−iΔk2z� � m3C02 exp�iΔk3z�; (1)

where C01, C02, C11, and C12 are the amplitudes of rays, K02,
K11, and K12, respectively; z is the direction along which the
AO interaction evolves; Δk1, Δk2, and Δk3 are the moduli
of detuning vectors Δk1, Δk2 and Δk3; and m1−4 are the
Raman–Nath parameters. These are defined as

m1−4 � 2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M �1−4�Pa�2LH�−1

q
λ−1; (2)

where λ is the wavelength of the light; L and H are respectively
the AO interaction length and the height of the acoustic col-
umn; Pa is the power of the sound wave; andM �1−4� are the AO
quality coefficients of the material, known in the literature as
the M 2 coefficient (for example, see [8] and [10]). We shall
assume for definiteness that the diffraction occurs in the uni-
axial negative LiNbO3 crystal, whose principal refractive indi-
ces are no and ne . The external wave surface of the crystal then
describes the propagation of the ordinary wave, and the internal
wave describes that of the extraordinary wave. In this case,

M 1 � n6o p2ee�ρV 3�−1; M 2 � n6o p2oe�ρV 3�−1;
M 3 � n6o p2eo�ρV 3�−1; M 4 � n6o p2oo�ρV 3�−1: (3)

Here ρ is the density of the crystal, V is the speed of sound,
pee is the effective photoelasticity coefficient, which describes
the diffraction of the extraordinary ray into an extraordinary
ray [the (e–e) form of diffraction], poe describes that of an ordi-
nary ray into an extraordinary ray (o–e). Coefficients peo and poo
describe diffraction of the forms (e–o) and (o–o), respectively.

To determine the photoelasticity coefficients, it is necessary
to know the polarization orientations of the crystal’s intrinsic
modes. They substantially depend on the orientation of the
incident radiation.

Let the orientation of the wave vector K of the incident
radiation be given by angles α and β. The projection of K
onto the X ; Y ; Z directions will then equal

K x � jK j cos β sin α; K y � jK j sin β;

K z � jK j cos β cos α: (4)

Here jK j � 2π∕λ. Inside the crystal, the projections K x and
K y of the refracted rays remain the same because of the law of
refraction, while projection K z varies. They become equal to

K z1 � �K 2
o − �K 2

x � K 2
y ��0.5

for the ordinary ray, and

Fig. 1. Optical layout for Fourier-processing a two-dimensional op-
tical image. L1 and L2 are lenses, AOM is an AOmodulator, P1 and P2

are polarizers, S in is the plane of the input image, and Sout is the plane
of the output image (a screen).

Fig. 2. Vector diagram of AO diffraction of dual-mode optical
radiation.
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K z2 � K o�1 − �K 2
x � K 2

y �K −2
e �0.5 (5)

for the extraordinary ray.
Here K o � 2πno∕λ and K e � 2πne∕λ. The refraction an-

gles ηio and ηie of the ordinary and extraordinary rays are then
determined from

tan ηio � K −1
z1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K 2

x � K 2
y

q
; tan ηie � K −1

z2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K 2

x � K 2
y

q
:

(6)

It is convenient to write the polarization of the ordinary and
extraordinary rays in the form of the column vectors

eio �
(

sin ξio
−cos ξio

0

)
; eie

( −cos ξie cos ηie
−sin ξie cos ηie

sin ηie

)
; (7)

where angles ξio and ξie are determined from

tan ξio � tan ξie � K −1
x K y: (8)

The polarizations of the diffracted rays are described by the
same expressions as in Eqs. (7), except that the angles included
in these equations will be different. Here angles ξio and ξie will
be replaced by ξdo and ξde , determined by

tan ξdo � tan ξde � K −1
x �K y − q�: (9)

Here q is the length of the wave vector of sound. The other
pair of angles ηdo and ηde is determined from

tan ηdo � K −1
z1d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K 2

x � �K y − q�2
q

;

tan ηde � K −1
z2d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K 2

x � �K y − q�2
q

; (10)

where

K z1d �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K 2

0 − �K 2
x � �K y − q�2�

q
;

K z2d � K 0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − K −2

e �K 2
x � �K y − q�2�

q
:

The moduli of the wave vectors of the synchronism
detunings are defined as

Δk1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K 2

o − �K 2
x � K 2

y �
q

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K 2

o − �K 2
x � �K y − q�2�

q
;

Δk2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K 2

o − �K 2
x � K 2

y �
q
− K 0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − K −2

e �K 2
x � �K y − q�2�

q
;

Δk3 � K o

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − K −2

e �K 2
x � K 2

y �
q

− K o

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − K −2

e �K 2
x � �K y − q�2�

q
: (11)

We assume that diffraction occurs on the transverse acoustic
wave that propagates along the Y direction, with its shift
direction along X . The photoelasticity constants are then
computed according to the technique described in [11] and
in this case equal

poe � 0.5�p41 sin ηde sin ξio � p66 cos ηde cos�ξio � ξde��; poo
� −0.5p66 sin�ξio � ξdo�; pee
� 0.5�p66 cos ηie cos ηde sin�ξie � ξde�

− p41�sin ηie cos ηde cos ξde

� sin ηde cos ξie cos ηie��; peo
� 0.5�p41 sin ηde sin ξdo � p66 cos ηie cos�ξie � ξdo��:

(12)

Here p41 and p66 are the components of the matrix of
photoelastic coefficients.

We assume that the polarization of the incident optical
radiation is oriented along X . The polarization is determined
by the orientation of polarizer P1 (see Fig. 1). The polarization
directions of the refracted rays inside the crystal will be
determined by the principal plane [12]—i.e., by the plane that
contains the wave vector of the light and the optic axis of the
crystal. The polarization of the ordinary ray is orthogonal
to the principal plane, and that of the extraordinary ray lies
in the principal plane and is orthogonal to the wave vector
of the light. Of course, the orientation of the principal plane,
and hence the polarization directions, will vary as the angles α
and β vary. This causes the field to be redistributed between the
refracted rays. Let the output polarizer P2 be oriented at an
angle ψ to the input polarizer. The field amplitudes of the re-
fracted rays will then be C01 � C sin ψ and C02 � C cos ψ ,
where C is the amplitude of the incident wave, while the system
of Eqs. (1) needs to be solved with boundary conditions
C01 � sin ψ∕20.5, C02 � cos ψ∕20.5, and C11 � C12 � 0
when z � 0. Solving Eq. (1), we determine the field amplitude
in the zeroth diffraction order after polarizer P2:

A0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2
1 � A2

2 � 2A1A2 cos�φ1 − φ2�
q

: (13)

Here A0 is the total field amplitude of the zeroth diffraction
order after the polarizer; A1 and A2 are the amplitudes of
the intrinsic modes, which form the first order,

A1 � C01 sin�ψ − ξio��
ffiffiffi
2

p
�−1;

A2 � C02 cos�ψ − ξid ��
ffiffiffi
2

p
�−1; (14)

and the phase increment between the intrinsic modes is

φ1 − φ2 � 2πl kr �n2�cos ηie�−1 − no�cos ηio�−1�λ−1;

n2 � none

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2o sin2ηie � n2e cos2ηie

p �
−1

; (15)

where l kr is the length of the crystal along Z .
As an example, Fig. 3 shows the results of calculating the

field formed in the zeroth diffraction order after polarizer P2

as a result of AO diffraction in the LiNbO3 [Fig. 3(a)] and
TeO2 crystals [Fig. 3(b)]. For LiNbO3, the calculations were
done with the following parameters: λ � 0.63 μm, no �
2.286, ne � 2.202, l kr � 1 cm, L � 0.6 cm, H � 0.4 cm,
Pa � 60 W, f � 100 MHz, ρ � 4.7g∕cm3, V � 3840 m∕s,
p41 � −0.151, p66 � −0.053 and ψ � 50°. The crystal’s physi-
cal parameters are taken from [13]. Angles α and β are mea-
sured from the center of the image, with the center being
displaced 0.5° downward and 0.5° to the left in angular space

28 Vol. 85, No. 1 / January 2018 / Journal of Optical Technology Research Article



from the crystal’s optic axis. This is done so that the working
region of the pattern, outlined by a square, is in the center. It
can be seen that the AO field as a whole is fairly inhomo-
geneous. Here a conoscopic pattern is observed as the cruciform
field distribution that characterizes the interference pattern that
shows up when light propagates close to the crystal’s optic axis
in crossed polarizers [12,14]. The working region designated on
the overall pattern makes it possible to discriminate the two-
dimensional contour of the optical image. The size of this entire
image is 10° × 10°, and that of the working region is
about 2° × 2°.

Figure 3(b) shows the AO field formed as a result of diffrac-
tion in the uniaxial TeO2 crystal, which possesses gyrotropy.
The wave surfaces in the crystal turn out to be more
complicated—in the form of 2πn1λ−1 and 2πn2λ−1, where
n1 and n2 are the refractive indices of the gyrotropic crystal [9]:

n21;2 � �1� tan2 η��n−2o � 0.5 tan2 η�n−2o � n−2e �

� 0.5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0.5 tan4 η�n−2o − n−2e �2 � 4G2

33

q
�; (16)

where η is the angle between the optic axis Z of the crystal and
the direction of the wave vector of the light, no and ne are the
principal refractive indices of the crystal, and G33 is a compo-
nent of the pseudotensor of gyration. It is much easier to com-
pute the effective photoelasticity constants of diffraction in the
TeO2. The intrinsic waves of a gyrotropic crystal are circularly
polarized when light propagates close to the optic axis. The
polarization of the waves is independent of the orientation
of the principal plane. The same system of differential
Eqs. (1), combined with Eqs. (2), (3), and (12), is used to de-
scribe the AO diffraction of dual-mode radiation in TeO2.
Assuming that the light propagates close to the [001] optic axis,
while diffraction occurs on the transverse acoustic wave propa-
gating along [110] with displacement along �11̄0�, the effective
photoelasticity constants will be

peo � poe � 0.5�p11 − p12�;
poo � pee � 0.5peo: (17)

Here p11 and p12 are the elements of the photoelasticity ma-
trix of TeO2. These equations are based on [8] and [15]. It is
easy to derive from this that the effective photoelasticity
constants are independent of angles α and β.

To compute the absolute values Δk of the detuning vectors,
it is necessary to use the model of wave vectors described in
terms of projections kx , ky, and kz in the following form:

k4z �k−4o − �λ�2π�−1�4G3
33�

� �k2x � k2y ��k−20 � k−2e ��k2z k−2o − 1�
� k−2o k−2e �k2x � k2y �2 − 2k−20 k2z � 1 � 0: (18)

We should point out that detuning vectors Δk mainly
depend on AO diffraction in TeO2; that is, they are chiefly
responsible for the dependence of the amplitudes C01–C12

on angles α and β.
The calculated diffraction field [Fig. 3(b)] obtained in TeO2

was computed with the following parameters: λ � 0.63 μm,
no � 2.26, ne � 2.41, G33 � 2.62 × 10−5, L � 0.6 cm,
H � 0.4 cm, V � 617 m∕s, f � 28 MHz, ρ � 6 g∕cm3,
0.5�p11 − p12� � 0.12, Pa � 1 W, and ψ � 70°. It can be
seen that the AO field, as before, is inhomogeneous. The cono-
scopic pattern is observed in the form of a ring, which shows up
when linearly polarized light propagates close to the optic axis
of a uniaxial gyrotropic crystal at whose output a polarizer is
located. The overall size of the image is 10° × 10°. The working
region is distinguished on the figure by a 2° × 2° square. The
overall pattern is displaced in angular space to make it fairly easy
to estimate the position of the working region relative to the
center of the circle. The center coincides with the direction
of the optic axis of the crystal.

The regions outlined in Fig. 3 make it possible to obtain
two-dimensional contours of the image. The results of process-
ing with a fast Fourier transformation (FFT) using the outlined
regions are shown in Fig. 4. Here Fig. 4(a) shows the input
images in the form of a circle and a rectangle, and Fig. 4(b)
shows the images after FFT processing. It can be seen in

Fig. 4. (a) Initial images and (b) their contours after being processed
using the fast Fourier transform.

Fig. 3. Acousto-optic fields of zeroth diffraction order, formed as a
result of the diffraction of light in (a) LiNbO3 and (b) TeO2 crystals.
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Fig. 4(b) that the contours of the original images from Fig. 4(a)
are clearly expressed. In other words, the use of an AO cell as a
spatial-frequency filter with the AO field distribution in the
form of the outlined sections in Fig. 3 forms a two-dimensional
contour of the image in optical Fourier-processing systems.

Even though the character of the field distribution is differ-
ent in the outlined regions, the result of the FFT processing is
the same: A distinctly expressed two-dimensional contour of
the image is formed in both cases.

Based on these theoretical studies, it can be concluded that
the AO diffraction of dual-mode optical radiation forms a
strongly inhomogeneous diffraction field, individual sections
of which make it possible to discriminate a two-dimensional
contour of the optical image. The resulting field varies, depend-
ing on the frequency and power of the sound, as well as on the
positions of the input and output polarizers. We should
point out in passing that, generally speaking, other sections of
the field can be distinguished that manifest definite two-
dimensionality. However, the discriminated sections need to be
verified in each case by using them directly as filters in the
FFT processing of images.

We should add to what has been said that sections suitable
for processing can be found not only in the zeroth order but
also in the first diffraction order. All this offers opportunities
of using dual-mode diffraction for two-dimensional image
processing.

3. EXPERIMENT AND DISCUSSION OF THE
EXPERIMENTAL RESULTS

Experiments were carried out to check the theoretical results.
The optical layout of the experimental apparatus completely
conforms to the diagram in Fig. 1. A 1 mm × 1.5 mm rectan-
gular aperture uniformly illuminated by the wide beam of a
He–Ne laser (λ � 0.63 μm) was chosen as the image to be
processed. A Fourier-processing apparatus was mounted on
the other side of the slit. The lenses used in the apparatus
had a focal length of 16 cm. All the most important proportions
and spacings indicated in Fig. 1 were followed. An AO cell
made from paratellurite was chosen as the AO filter, since a
TeO2 cell required substantially less electric energy than a
LiNbO3 cell and required no cooling system. A LiNbO3

piezoconverter that generated a transverse acoustic wave was
cemented to the (110) face of the TeO2 crystal. The AO in-
teraction length was 0.6 cm, and the size of the converter was
0.6 × 0.4 cm. A slow wave propagated in the crystal at
617 m/s. The optical radiation was directed at a small angle
to the crystal’s [001] optic axis. Anisotropic and isotropic dif-
fraction was carried out in the crystal on the sound in this case,
and this was verified from the existence of triple diffraction [8].

When the high-frequency signal voltage supplied to the con-
verter (in this case the optimum voltage of 7.8 V), the angular
orientation of the AO cell, and the 26.6 MHz sound frequency
were chosen, a two-dimensional contour of the image was dis-
tinctly observed on the screen in both the zeroth and the first
diffraction orders with different positions of the output polar-
izer P2. Figure 5 shows photographs of the diffraction patterns
of the AO fields of the zeroth order [Fig. 5(a)] and the first
order [Fig. 5(b)], observed on the output screen Sout of the

apparatus. The contour was clearly observed in zeroth-order
diffraction when the angle of the output polarizer was ψ �
90° and in first order at ψ � 0°. The contours are formed with
fairly good quality in both the vertical and the horizontal di-
rections. Some disagreement of the experimental data with the
theoretical results (a slight difference in the sound frequencies,
the angular orientation of the output polarizer, and the sound
powers in theory and experiment, with the sound power in
the experiment being substantially less than the theoretically
predicted value, etc.) can be caused by a number of factors
(inaccuracy of the model that describes a gyrotropic crystal, di-
vergence of the sound, inaccurate orientation of the crystal
faces, etc.). In any case, in the opinion of the authors of this
article, the experiments completely confirmed that a two-
dimensional image contour based on AO spatial-frequency fil-
ters could be obtained using the dual-mode diffraction regime.

4. CONCLUSIONS

Based on the above explanation, the following conclusions can
be drawn:

A version of AO diffraction of dual-mode radiation on one
acoustic wave in uniaxial crystals has been considered in which
the optical radiation propagates close to the optic axis while the
acoustic wave propagates orthogonally to the optic axis.

The amplitudes of all the optical waves that participate in
the diffraction have been calculated, using as an example a uni-
axial LiNbO3 crystal and a uniaxial gyrotropic TeO2 crystal.
The transfer functions (diffraction fields) of each of these
crystals have been obtained.

It has been shown that, in all cases, the fields have a region of
2° × 2° in both the zeroth and first orders of diffraction, making
it possible to obtain a two-dimensional contour of the image
when it is Fourier-processed. This shows that it is promising
to use the corresponding AO cells as spatial-frequency filters
for processing two-dimensional images.

Fig. 5. Results of experimental Fourier processing of an optical im-
age in the form of a rectangular aperture in the (a) zeroth and (b) first
Bragg orders.

30 Vol. 85, No. 1 / January 2018 / Journal of Optical Technology Research Article



Experiments have been carried out using AO cells made from
TeO2. Regimes have been found in which a two-dimensional
contour of an image is formed in both the zeroth and first dif-
fraction orders. A transition is made from one regime to the
other by rotating the output polarizer by 90°. All the other
parameters (the frequency and power of the sound, as well as
the orientation of the AO cell) remain unchanged in this case.

These results substantially broaden the possibilities of using
the AO interaction for optical-image processing—in particular,
for discriminating a two-dimensional contour.

Funding. Russian Foundation for Basic Research (RFBR)
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