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Methods for the calculation of the acousto-optic (AO) transfer functions forming as a result of superposition of
two AO fields with similar and orthogonal light polarizations are proposed. Specific calculations are made on the
basis of the parameters widely used in practice with uni-axial gyrotropic crystal paratellurite. It is revealed that the
resulting field is generally very inhomogeneous but contains domains with two-dimensional behavior properties.
These domains can be used for two-dimensional image edge enhancement based on Fourier processing.
Theoretical conclusions are verified by means of the optical image Fourier processing with the spatial frequency
AO paratellurite filters. © 2018 Optical Society of America
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1. INTRODUCTION

Acousto-optic (AO) is one of the effective methods for
controlling of optical radiation parameters such as amplitude,
phase, frequency, direction of the light propagation, etc. [1–4].
It was found that angular spectrum of the diffracted light is
determined by the divergences of the light and sound and
sound power [5,6]. It was also found that AO can successfully
process the optical images [7,8]. One of the promising appli-
cations of the AO cells is their use in the optical Fourier
processing systems. For the first time AO elements were con-
sidered as the spatial frequency filters in [9]. The conditions
were revealed in which the AO elements can operate as the lin-
ear spatial filters. After that, several publications were devoted
to the investigation of the transfer functions properties (see,
for example, [10,11]). Bragg diffraction image edge enhance-
ment was demonstrated for the first time theoretically and
experimentally in [12]. The edge enhancement is one of the
basic operations of the optical image processing because it suf-
ficiently decreases the processing information but at the same
time keeps very important object characteristics such as form
and dimensions [13,14]. These characteristics help to make
the identification of the object and observe its movement,
rotation, etc.

Traditionally, AO interaction is one-dimensional (1D),
therefore it allows performing only 1D image processing. The
1D processing on the basis of a single AO element and two-
dimensional (2D) processing with two orthogonally oriented

AO cells is demonstrated in [15]. For essential improving of
the 1D image contour, it is suggested the use of two cascaded
acousto-optic cells with contra-propagating sound [16]. Notch
spatial filtering with an acousto-optic modulator was also
proposed in [17]. Extensive investigation of all possible options
of AO diffraction for the image edge enhancement was imple-
mented in [18–23]. Among all versions, two cases were ex-
tracted that allow processing of 2D images: collinear diffraction
[18,20,21,23] and tangent geometry of diffraction [20–22]
when the tangential planes drown to the wave vector surfaces
in the crossing points of the wave vectors of incident and
diffracted beams are parallel each other [24].

In all cases mentioned above, it is assumed that only one
beam keeping the information is involved into diffraction
process. This beam diffracts into the first diffraction order.

In our paper, we are considering more complicated cases
when the transfer functions form as a superposition of two AO
fields. It occurs, for example, during multi-phonon Bragg dif-
fraction, or in the case when two eigenmodes of crystal take part
in the diffraction process.

It will be shown that the proposed versions are suitable for
2D image edge enhancement. The theoretical considerations of
these options appear more complicated in comparison with the
“common” Bragg diffraction into one order, but for all that, the
experimental realization of new cases is no more intricate at all.
The proposed options significantly extend the opportunities of
the AO interaction for image processing.
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2. TRANSFER FUNCTION AS A
SUPERPOSITION OF TWO FIELDS WITH
SIMILAR POLARIZATIONS

Several models of AO diffraction considering the ellipticity of
eigenwaves propagating in a TeO2 crystal have been developed
(see, for example, [3,25–27]). However, the equations in these
papers did not take into account the gyrotropy of the AO
crystal.

In our approach, we consider AO diffraction taking into
account both ellipticity of eigenmodes and the spatial curvature
of a wave vector surfaces of the gyro tropic crystal.

We start with wave equation for a dielectric crystal,

rot�rotE� � 1∕c2
∂2D
∂t2

� 0; (1)

where E and D are vectors of electric field and induction in the
crystal; c is speed of light in vacuum. The expression for a com-
ponent of dielectric tensor εik in the material equation Di �
εikEk, where Di and Ek are the components of vectors D and
E, respectively, is written in the form (see, for example, [27])

εik � ε0ik � ieiklGl − ε
0
ilε

0
kmplmnjunj: (2)

Here, ε0ik are the components of unperturbed dielectric per-
mittivity, Gl are the components of an axial gyration vector, eikl
is the Levi–Civita symbol, plmnj are the components of the ten-
sor of photo elasticity, unj are the components of a crystal strain
tensor related to the ultrasonic wave (the additives to the
dielectric function due to gyrotropy and photo elasticity are
assumed small). The components of the gyration vector may be
expressed in terms of components of gyration pseudo-tensor
Gij:Gi � Gijsj, where sj are the components of a unit vector
s of a plane wave propagating parallel to the wave vector
k�k � ks�. Further calculations will refer to the uniaxial crystal
of tellurium dioxide (TeO2), which has a point symmetry
group 422. In the basic system of coordinates of paratellurite,
we have ε0xx � ε0yy � ε1, ε0zz � ε3, Gxx � Gyy � G11, and
Gzz � G33. We assume also that an electromagnetic wave
propagates across the crystal at sufficiently small angles with
respect to the optical axes; in this case the effect of gyrotropy
is important.

Calculation of AO interaction by solving wave Eq. (1) is
simpler if one uses the coupled-mode approach with slowly
varying wave amplitudes. Without an ultrasonic wave, a solu-
tion for the electric induction vectorD�r� for every propagation
direction s is given by a linear combination of two orthogonal
elliptically polarized Eigen modes:

D�r� � B1b1eik1sr � B2b2eik2sr; (3)

where B1; B2 are the constants responsible for the contributions
of each mode into the induction, and

b1 �
e1 � iρe2ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ρ2
p ; b2 �

e2 � iρe1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ρ2

p ; (4)

where e1 and e1 are the unit vectors directed along main axes of
a central cross section of the crystal indicatrix by a wave-front
plane, which is determined by vector s (vector e1 is directed
along the short axis of the ellipse and e1-along the long axis);
ρ is the ellipticity of eigenmode polarization, i.e., the ratio of
short to long axis lengths of the polarization ellipse; and k1 and

k2 are the absolute values of the wave vectors of eigenmodes.
Ellipticity ρ and the absolute values k1 and k2 of the wave
vectors are given by known relations [27–29].

Expression similar to Eq. (3) can also be written for the
electric field vector E�r� where the ellipticity of eigenmodes
in the plane of the wave front coincides with ellipticity ρ in
Eq. (3), however, there is a small longitudinal field component
in this equation [28].

Let us assume that the slow shear acoustic wave propagates in
the [110] direction and causes mechanical deformation
perpendicular both to the crystal optical axis and to direction
of wave propagation. We may transfer from the basic system
of coordinates [100], [010], [001] to the system of coordinates
xyz where the axis x is parallel to �110�, y is parallel to [110], and z
is parallel to [001]. In this case AO interaction is described
by a single photo elastic constant p̃66 � �p11 − p22�∕2, where
p11, p22 are the components of photoelastic tensor in double-
index notation.

We will consider now double AO interaction describing the
zeroth and second diffraction orders by the solution branches
with the greater refraction index. Then, with neglected gyro-
tropy, the optical radiation will be represented by the extraor-
dinary beams. We will describe the first diffraction order by the
solution branch with the smaller refraction index, in this case
radiation may be presented by ordinary beam. The expressions
for the electric fields in the diffraction orders Em�r� are written
in the form of

Em�r� � V m�z�bmeikmz z�ik0x x�i�k0y�mq�y−iωmt ; (5)

where m � 0, 1, 2 is the diffraction order number; i is the
mode number (i � 1 corresponds to the slower mode, i �
2 corresponds to the faster mode); k0x and k0y are the wave
vector projections of the incident electromagnetic wave onto
the axis x and y; kmz is the z component of the wave vector for
the corresponding eigenmode described by the vector bm;
ωm � ω� mΩ, where ω and Ω are the angular frequencies
of electromagnetic and ultrasonic waves, respectively.

At the presence of ultrasonic waves, the amplitudes of
eigenmodes satisfying Bragg synchronism conditions are slow
functions of coordinates. By neglecting the longitudinal
components of the electric field, we may derive a system of
truncated equations for the amplitudes obtained from the
orthogonality of eigenmodes in the wave-front plane (see, for
example, [28]).

The resulting system of equations for diffraction orders
V m�z� is

dV 0

dz
� iγ�1e

iΔk1zV 1;

dV 1

dz
� iγ1e−iΔk1zV 0 � iγ2eiΔk2zV 2;

dV 2

dz
� iγ�2e

−iΔk2zV 1; (6)

where the asterisk means the complex conjugation; γ1;2 �
k2Δε1;2f 10;21

2k0z
are the coupling constants with Δε1 �

−1∕2qε21p̃66Ae−iφ and Δε2 � Δε�1 , where A and q are the am-
plitude and absolute value of the ultrasound wave vector; φ is
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the phase of the ultrasound wave; f 10 and f 21 are the coeffi-
cients describing influence of eigenwave ellipticity on the
diffraction process; and Δk1 and Δk2 are vectors of Bragg
synchronism mismatch. Expressions for f 10 and f 21 are rather
cumbersome even at small angles between the radiation
propagation direction and crystal optical axes [30].

In the case where the polarization of eigenmodes is almost
circular, we have [30]

jf 10j ≈
1� ρ0ρ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�1� ρ20��1� ρ21�
p ;

jf 21j ≈
1� ρ2ρ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�1� ρ22��1� ρ21�
p : (7)

Here ρ0, ρ1, ρ2 are the ellipticities of eigenmodes for zeroth,
first, and second orders, respectively. Expressions for the
coupling constants γ1;2 may be written in the form of γ1;2 �
�ν∕2L�f 10;21, where ν is the Raman–Nath parameter [3],

ν � 2π
λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M 2L
2H Pac

q
, where λ is the light wavelength; L and H are

the length and height of the acoustic column;M 2 is AO figure of

merit,M 2 ≈
n60P

2
ef

dV 3 , where n0 is refractive index and d and V are
the density of the material and acoustic velocity and Pef is ef-
fective elasto-optic constant. In our case, Pef � 0.5�p11 − p12�.
For linear (ρ0;1;2 � 0) and circular (ρ0;1;2 � 1) polarizations we
obtain f 10;21 � 1, and Eqs. (5)–(7) transfer to well-known
expressions (see, for example, [1–3]). Note that system of
Eqs. (5)–(7) describes an experimental situationwhere the inten-
sities of the radiation diffracted into different orders determined
by the functions jV m�z�j2, which are experimentally measured.

For the processing of 2D images we considered a three-
dimensional model of the wave vector surfaces taking into
account the angular mismatch of Bragg scattering both in
the diffraction plane and in the orthogonal plane. Figure 1
shows three-dimensional vector diagram of two-phonon Bragg
diffraction in a uni-axial positive gyrotropic crystal TeO2.

Here, S1 and S2 are the wave-vector surfaces of ordinary and
extraordinary beams, respectively. The Z axis coincides with

the optical axis of the crystal; the acoustic wave with the wave
vector q is directed along the X axis. Let us assume that inci-
dent beam with the wave vector k0 is directed to the point A0

lying at the intersection of the plane XZ and the surface S2. As
a result of the AO interaction with the acoustic wave q, the
beam k0 successively diffracts in the direction of the beams
whose wave vectors are directed to points A1 and A2. Point
A1 lies on the surface S1, while point A2 lies on the surface
S2. The case of anisotropic diffraction has occurred. Both acts
of diffraction take place in the regime of strong Bragg synchro-
nism. If now the beam k0 is inclined at an angle α to the plane
XZ , i.e., propagates in the direction of the beam k1

0 directed to
the point A0, it successively diffracts during the interaction
with the same acoustic wave in the direction of the beams
whose wave vectors are directed to points B1 and B2. However,
diffraction acts are accompanied by Bragg synchronism mis-
match. The mismatch vectors are denoted in Fig. 1 as Δk1

and Δk2.
For the calculations in the case of TeO2 crystal, we used a

model where refractive indices were equal to [31,32]

n21;2 �
1� tg2φ

1
n20
� tg2φ

2

�
1
n20
� 1

n2e

�
	 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tg4φ

�
1
n20
− 1
n2e

�
� 4G2

33

r (8)

and ellipticity of the optical beam is

ρ � 1

2G33

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tg4φ

�
1

n20
−
1

n2e

�
2

� 4G2
33

s
− tg2φ

�
1

n20
−
1

n2e

�#
;

(9)

where n0 and ne are the principal refractive indices of the crys-
tal; φ is the angle between the optical axis of the crystal and the
wave vector of the light wave; and G33 is the component of the
gyration pseudo-tensor. The parameters that were used for
calculations corresponded to the wavelength λ � 0.63 μm,
n0 � 2.26, ne � 2.41, G33 � 2.62 × 10−5.

Equation (8) allows one to determine the surfaces of the
light wave vectors in Cartesian coordinates [32],

k4z

�
1

k40
−

�
λ

2π

�
4

G2
33

�
� �k2x � k2y �

�
1

k20
� 1

k2e

��
k2z
k20

− 1

�

� �k2x � k2y �2
k20k

2
e

−
2k2z
k20

� 1 � 0; (10)

where k0 � 2πn0λ−1; ke � 2πneλ−1; λ is wavelength; and kx ,
ky, and kz are the projections of optical wave vector k onto
axes X , Y , and Z , respectively. Note that Eq. (10) is a
fourth-order equation. If gyrotropy is absent, this expression
is reduced to two second-order equations. Indeed, at G33 � 0
it transforms into�
k2z
k20

− 1

�
2

��k2x � k2y �
�
1

k20
� 1

k2e

��
k2z
k20

− 1

�
��k2x � k2y �2

k20k
2
e

� 0:

(11)

And using the relationship

1

k20k
2
e
� 1

4

��
1

k20
� 1

k2e

�
2

−

�
1

k20
−
1

k2e

�
2
�
; (12)Fig. 1. Three-dimensional diagram of two-phonon Bragg diffrac-

tion in uni-axial positive gyrotropic crystal TeO2.
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we obtain�
k2z
k20

− 1� k2x � k2y
k2e

��
k2z
k20

− 1� k2x � k2y
k20

�
� 0; (13)

where the first multiplier is an ellipsoid of revolution with semi-
axes k0 and ke , and the second one corresponds to a sphere of
radius k0. Therefore, Eq. (13) characterizes the surfaces of a
uniaxial crystal.

The model used in this study determines the distribution of
diffracted fields. Distribution of the light field in diffraction
orders is characterized by transfer functions. These functions
were derived under the assumption that the AO interaction
is linear with respect to the light field. The spectral method
[14,20,33], which involves expansion of the field of the light
wave incident on the AO cell into a spectrum of plane waves,
may be used in this case. It was also assumed that all acts of
plane wave diffraction are independent. In the case of double
interaction, when a plane optical wave is diffracted by a plane
monochromatic acoustic wave, the diffracted beams are also
plane waves, and their amplitudes are written as

V 0�θi� � V inc�θi�H 0�θi�;
V 1�θi � q∕k� � V inc�θi�H 1�θi�;
V 2�θi � 2q∕k� � V inc�θi�H2�θi�; (14)

where V 0, V 1, and V 2 are the amplitudes of the fields of the
zeroth, first, and second diffraction orders; V inc is the ampli-
tude of the incident light; θi is the orientation angle of the
incident plane wave; q and k are the wave numbers of the
acoustic and optical plane waves; and H 0, H 1, and H 2 are
the transfer functions of the zeroth, first, and second orders.

Figure 2 shows a calculated 2D transfer function of the first
diffraction order under the assumption that it coincides with
the distribution jV 1j. The transfer function is obtained by
solving the system in Eq. (6) with boundary conditions
V 0 � 1 and V 1 � V 2 � 0 at z � 0. It was assumed that
optical radiation at 0.63 μm diffracts on the slow acoustic wave
(which propagates in a TeO2 crystal at the velocity of
0.617 × 105 cm∕s) with the frequency close to two-phonon
resonance.

The angular dimensions in Fig. 2 correspond to ∼2° × 2°.
The Raman–Nath parameter ν was taken equal to ∼4

ffiffiffi
2

p
π,

which corresponds to acoustic power in our experiment.
The length L � 6 mm. The image in Fig. 2 is an ensemble of
elliptical fringes, which result from the interference of the first-
order diffraction beam with the beams diffracted into the first
order from the zeroth and second orders. Domains with sub-
stantial inhomogeneity are seen in the fringe image. The fringes
are strongly distorted, and their distribution is actually two-
dimensional. One such domain is marked by a square and used
as a mask for optical Fourier processing.

In Fig. 3 numerical results of fast Fourier transformation
(FFT) processing are presented for images of (a) rectangular,
(b) circle, and (c) figure “68” by use of the transfer function
jV 1j (Fig. 2). One can see that in all cases sufficiently clear
2D edges are formed. Hence, in general, the mask presented by
the distribution of Fig. 2 can be used as 2D spatial low-cut filter
despite its sufficiently large inhomogeneity.

The theoretical results were verified experimentally. The ex-
perimental setup is presented in Fig. 4. A wide optical beam is
directed on a screen with aperture Pin, which serves as the
initial image. The radiation transmitted through the aperture
is directed onto lens L1 with the focal distance of 16 cm.
The AO cell is mounted behind lens L1 and serves as a filter
of spatial frequencies. An acoustic wave propagates in the cell
orthogonally to the optical beam. The cell operates in the dou-
ble Bragg diffraction mode. Optical beams leaving the AO cell
are directed to lens L2 identical to L1. The images obtained after
Fourier processing are observed on screen Pout. To improve the

Fig. 2. Transfer function of the first diffraction order jV 1j formed
as the result of two-phonon Bragg diffraction. Dark regions corre-
spond to minimum field distribution, and light regions correspond
to maximum distribution.

Fig. 3. Results of FFT processing for (a) rectangular, (b) circular
holes and (c) figure “68” images with the transfer function shown
in Fig. 2.

Fig. 4. Experimental setup for Fourier processing.
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image quality, polarizers A1 and A2 are used in some experi-
ments. Two-phonon and three-phonon diffractions were inves-
tigated without polarizers. We will show below that in the
experiments with eigenmodes, superposition of the polarizers
is very important.

The distances between Pin, L1, the AO cell, L2, and Pout are
equal to focal distance. Lenses L1 and L2 perform the first and
second Fourier transforms; in the latter case, the transform is
equivalent to the inverse Fourier transform with coordinate in-
version [34,35]. Three images formed in the 0th, �1st, and
�2nd diffraction orders are observed on screen Pout. The in-
tensity distributions of these images may be altered by changing
acoustic frequency, the acoustic power, and the angular orien-
tation of the AO cell. The initial image was either a rectangular
hole of the size 1 × 1.5 mm or a circular hole 1.0 mm in diam-
eter. The holes were illuminated from one side by wide radi-
ation of a He–Ne laser (λ � 0.63 μm), which then directed to
an input lens L1. The AO cell is made of TeO2 crystal. The
voltage applied to a piezoelectric transducer was 5.0 V, and the
frequency of an ultrasound wave was 35.5 MHz. By angular
adjustment of the AO cell in the diffraction plane and in
the orthogonal plane, we obtained a 2D edge of the image
in the first order.

Figure 5 shows photographs of the images of zeroth and first
diffraction orders on the output screen. One can see a clear 2D
edge, which is formed in the first diffraction order. In other
words, the experiment confirms that in accordance with the
theoretical conclusion, two-phonon AO diffraction makes it
possible to enhance a 2D edge of an image in the first diffrac-
tion order.

The polarization features of the 2D image edge enhance-
ment are investigated in our paper [36]. In the experimental
setup, the polarizers A1 and A2 are used. It is shown that
the change in sound power varies the first-order diffraction’s
transfer function constructed in different polarization states,
thus modifying the conditions of the formation of image edges
depending on both the output radiation polarization and the
sound wave power. For example, in some position of polarizer
A2 a contour of image is observed, while after rotation of A2 at
angle 90°, the contour disappeared. It is interesting to note that
contour appears again at other voltage applied to the AO cell.
A theory was developed to explain this phenomenon [36].

The similar results were also obtained for three-phonon
Bragg diffraction [37]. This diffraction in a gyrotropic crystal
is described by the following set of differential equations:

dV 0

dz
� −

νa
2L

f 01V 1 exp�−iΔk0z�;
dV 1

dz
� νa

2L
f 10V 0 exp�iΔk0z� −

νi
2L

f 12V 2 exp�−iΔk1z�;
dV 2

dz
� νi

2L
f 21V 1 exp�iΔk1z� −

νa
2L

f 23V 3 exp�−iΔk2z�;
dV 3

dz
� νa

2L
f 32V 2 exp�iΔk2z�: (15)

Here, V 0, V 1, V 2, and V 3 are the amplitudes of the zeroth,
first, second, and third diffraction orders, respectively; z is the
direction of evolution of the AO interaction (in our case, it
coincides with the direction of optical axis Z of the crystal);
νa and νi are Raman–Nath parameters for the anisotropic
and isotropic diffraction, respectively (in accordance with [1],
we assumed that νa � 2νi). L is the length of the AO interac-
tion, and Δk0, Δk1, and Δk2 are the magnitudes of mismatch
vectors. Coefficients f 10, f 01, f 12, f 21, f 32, and f 23 take into
account the ellipticity of interacting waves and are defined in
accordance with Eq. (7).

The system in Eq. (15) may have an analytical solution.
Let us find a partial solution of Eq. (15) in a form of [38]

V 0 � a exp�iαz�; V 1 � b exp�iβz�;
V 2 � c exp�iγz�; V 3 � d exp�iδz�; (16)

where a, b, c, d , α, β, γ, δ are arbitrary constants. We must find
these constants so that the functions in Eq. (16) would satisfy
Eq. (15). Now put Eq. (16) in Eq. (15),

iαa exp�iαz� � −A1b exp�i�β −Δk0�z�;
iβb exp�iβz� � A1a exp�i�α�Δk0�z� −A2c exp�i�γ −Δk1�z�;
iγc exp�iγz� � A2b exp�i�β�Δk1�z� −A3d exp�i�δ −Δk2�z�;
iδd exp�iδz� � A3c exp�i�γ�Δk2�z�; (17)

where A1 � νa
2L f 01, A2 � νi

2L f 12, A3 � νa
2L f 32.

Each Eq. (17) should be fulfilled at any z. Now we have
relationship for the exponent coefficients,

α � β − Δk0; β � α� Δk0 � γ − Δk1;

γ � β� Δk1 � δ − Δk2; δ � γ � Δk2: (18)

Under the conditions in Eq. (18), Eq. (17) transforms into
Eq. (19),

iαa� A1b � 0;

iβb − A1a� A2c � 0;

iγc − A2b� A3d � 0;

iδd − A3c � 0: (19)

This is a system of homogeneous equations in respect to a,
b, c, and d . It has nonzero solution when the determinant is
equal to zero,

Fig. 5. Photographs of rectangular and circular holes after experi-
mental Fourier processing. Right and left images correspond to the
zeroth and first diffraction order, respectively.
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Det �

									

iα A1 0 0

−A1 iβ A2 0

0 −A2 iγ A3

0 0 −A3 iδ

									
� 0: (20)

From Eq. (18), let us write β, γ, δ over α,

β � α� Δk0; γ � α� Δk0 � Δk1;

δ � α� Δk0 � Δk1 � Δk2: (21)

Substituting Eq. (21) in Eq. (20), we obtain a fourth-order
equation in respect to α,

α4 � B3α
3 � B2α

2 � B1α� B0 � 0; (22)

where B3 � 3Δk0 � 2Δk1 � Δk2,

B2 � �Δk0 � Δk1��Δk0 � Δk1 � Δk2�
� Δk0�2Δk0 � 2Δk1 � Δk2� − �A2

1 � A2
2 � A2

3�;
B1 � Δk0�Δk0 � Δk1��Δk0 � Δk1 � Δk2�

− A2
1�2Δk0 � 2Δk1 � Δk2�

− A2
2�Δk0 � Δk1 � Δk2� − A2

3Δk0;

B0 � A2
1�A2

3 − �Δk0 � Δk1��Δk0 � Δk1 � Δk2��: (23)

By solving Eq. (22) we obtain four roots αk, where « k » is
“running” from 1 to 4.

The general solution for amplitudes is now written as

V 0 � a1 exp�iα1z� � a2 exp�iα2z�
� a3 exp�iα3z� � a4 exp�iα4z�;

V 1 � b1 exp�iβ1z� � b2 exp�iβ2z�
� b3 exp�iβ3z� � b4 exp�iβ4z�;

V 2 � c1 exp�iγ1z� � c2 exp�iγ2z�
� c3 exp�iγ3z� � c4 exp�iγ4z�;

V 3 � d 1 exp�iδ1z� � d 2 exp�iδ2z�
� d 3 exp�iδ3z� � d 4 exp�iδ4z�: (24)

For the next calculations, we shall use the boundary
conditions in a form of

V 0 � 1; V 1 � V 2 � V 3 � 0 under z � 0: (25)

Then, Eq. (24) is now

1 � a1 � a2 � a3 � a4;

0 � b1 � b2 � b3 � b4;

0 � c1 � c2 � c3 � c4;

0 � d 1 � d 2 � d 3 � d 4: (26)

By using Eq. (19) and Eq. (21) we may write bk, ck, dk over
αk and ak,

bk � −
iαkak
A1

; ck �
ak
A2

�
A1 −

αk�αk �Δk0�
A1

�
;

d k � −iak
A3

A2�αk �Δk0 �Δk1 �Δk2�

�
A1 −

αk�αk �Δk0�
A1

�
:

(27)

After substitution of Eq. (27) into Eq. (26), we get a system
of linear equations with unknown ak. By solving this system,
we shall find all parameters to calculate amplitudes of V 0, V 1,
V 2, and V 3 from Eq. (24) under condition z � L. These
amplitudes should satisfy the conservation low for any z,

V 0V �
0 � V 1V �

1 � V 2V �
2 � V 3V �

3 � 1: (28)

Figure 6 shows the domain of 2D transfer function of the
first order, which allows obtaining the 2D contour of an image.

The acoustic frequency at which triple diffraction occurs was
chosen to be 26.33 MHz. The mathematical model of the sur-
faces of wave vectors was based on Eqs. (8)–(10). Theoretical
investigations show that the obtained transfer function allows
us to extract the 2D contour of an optical image. Let us say that
images represented in Fig. 3 transform into their contours after
applying the transfer function Fig. 6.

These theoretical results were verified experimentally [37].
The contour of the rectangular using the AO cell of TeO2

in which the acoustic wave propagates with the frequency
26.3 MHz and applied voltage of 2.7 V was also obtained.

The possibility of formation of the edge of a 2D optical
image in two diffraction orders (first and second) simultane-
ously by means of Fourier processing with the use of triple
Bragg diffraction is demonstrated theoretically and experimen-
tally [39].

Taking these arguments into account, now we can make the
conclusion that the multi-phonon Bragg diffraction is the
effective method for processing of the 2D images. From a
physical point of view, the proposed method is based on the
superposition of two AO fields with similar polarizations but
different amplitude and phase distributions. This phenomenon
has been taken into account in the sets of Eqs. (6) and (15). As a
result, the fields of the “intermediate” orders are normally very
inhomogeneous, while some domains possess the 2D proper-
ties. Such domains can be in several places of the field. For ex-
ample, in Fig. 6, besides the marked domain there is analogous

Fig. 6. Transfer function of first diffraction order forming as a result
of triple diffraction.
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domain that is symmetrically located in respect to the O–O 0

axis. It should be added that configuration and position of
the “proper” domains depend on the acoustic power [40].
Forming of the inhomogeneous domains can occur not only
in intermediate orders but in the zeroth and highest order as
well. It is caused by the influence of the fields of “neighbor’s”
orders with inhomogeneous distributions. For example, we in-
vestigate the image edge enhancement with second diffraction
order in the two-phonon diffraction process in [41]. Thus,
transfer function was obtained; the experiments confirmed
the possibility of 2D image contours forming by the highest
diffraction order.

3. TRANSFER FUNCTIONS AS SUPERPOSITION
OF THE FIELDS WITH ORTHOGONAL
POLARIZATIONS

In this section, we consider the transfer function forming as a
superposition of the eigen optical modes of the crystal. Note
that the polarization of the eigenmodes is orthogonal with re-
spect to each other. The vector diagram of two versions of
AO diffraction, which involve the simultaneous diffraction of
both optical modes on the single acoustic wave, is presented
in Fig. 7. An incident beamwith wave vectorK falls on the input
optical face OX of the crystal. Inside the crystal, the beam splits
into two eigenmodes with wave vectorsK1 andK2. These beams
diffract on the acoustic wave with wave vector q. Both beams
diffract on the one side in respect to the incident beam,
Fig. 7(a); otherwise, they diffract on both sides, Fig. 7(b). In
the first case K1 or K2 diffracts into K3 and K4; in the second
case beamK1 diffracts intoK3, andK2 intoK4. The diffraction
presented in Fig. 7(a) is described by the set of equations [42]

dV 1

dz
� −

νi
2L

f 14V 4 exp�iΔk3z� −
νa
2L

f 13V 3 exp�iΔk2z�;
dV 2

dz
� −

νi
2L

f 23V 3 exp�iΔk1z�

−
νa
2L

f 24V 4 exp�i�Δk1 � Δk2 � Δk3�z�;
dV 3

dz
� νi

2L
f 32V 2 exp�−iΔk1z� �

νa
2L

f 31V 1 exp�−iΔk2z�;
dV 4

dz
� νi

2L
f 41V 1 exp�−iΔk3z�

� νa
2L

f 42V 2 exp�−i�Δk1 � Δk2 � Δk3�z�: (29)

It should be noted that with this approach, the system of
Eq. (29) also has analytical solution.

It is assumed that the amplitudes of beamsK1 andK2 before
entering into the region of AO interaction are equal, therefore
by solving the system of Eq. (29) we use the boundary
conditions V 1 � V 2 � � ffiffiffi

2
p �−1, V 3 � V 4 � 0 at z � 0.

It is known that the combining of two circularly polarized
waves with equal amplitudes rotating in opposite directions
leads to linearly polarized wave [43]. If the velocities of waves
are different, then the angle of rotation of linear polarization
varies as a function the crystal length. In addition, when the
wave amplitudes are not equal to each other, the total wave will
be elliptically polarized rather than linear. Our calculations take
into account the extracting of the linear polarization compo-
nent at the output of the optical system. The optimal position
of polarizer A2 determines the best quality of image contour.
The orientation of polarizer is measured by the angle α, which
is counted in respect to the propagation direction of acoustic
wave. The theoretical analysis shows that the polarizer
significantly improves the AO filter characteristics.

Example of transfer function of the zeroth Bragg order
calculated by solving the system in Eq. (16) with allowance
for Eqs. (2)–(6) for α � 100° and Pa � 1.5 W is shown in
Fig. 8. Diffraction occurs in TeO2 crystal at the frequency
of acoustic wave of 26 MHz. The angular size of the field
in Fig. 8 is 15° × 15°. The field represents a family of circles
with a single center and several inhomogeneous domains
caused by AO interaction. Two domains are marked by squares
which, according to our analysis, are suitable for obtaining a
2D image edge. The domains are located symmetrically in re-
spect to the axis O − O 0. It should be noted that transfer func-
tion of the zeroth order is formed by two different physical
mechanisms, i.e., the conoscopic effect and the acousto-optic
interaction.

It can also be seen that both isotropic and anisotropic
diffraction are involved in Eqs. (16). By fitting the voltage
of a high-frequency signal applied to transducer (in our case,
optimum voltage was 7.8 V), angular orientation of AO cell,
sound frequency of 26.6 MHz, and angle of polarizer inclina-
tion of α ≈ 45°, the 2D image edge enhancement in the zeroth
diffraction order was clearly observed [42].

Let us consider case (b) in Fig. 7. Here the eigenmodes K1

andK2 diffract on different sides in respect to incident beamK.
This version is similar to the polarization-independent AO light

Fig. 7. Vector diagram of two versions of the AO diffraction.
Fig. 8. Transfer function of the zeroth diffraction order. Beams
diffract on the one side in respect to the incident light.
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modulation [44], which gives rise to elaboration of different
AO devices (see for example [45–50]). But in these papers,
it was used in the case when the beams K1 and K2 propagate
collinearly to each other. In our case, the beams are not collin-
ear; they refract at different angles on the face OX. At the same
time, the projections of K1 and K2 on the face OX are equal
toeach other in accordance with the refraction law [43]. Beam
K1 diffracts into K3 with the vector mismatch Δk1, and K2

diffracts into K4 with the vector mismatch Δk2. The acts of
diffraction occur independently and are described by well-
known equations [1–3]. At the output of the crystal, beams
K1 and K2 are collinear and form the zeroth diffraction order.
Beams K3 and K4 are −1st and �1st orders of diffraction,
respectively. Figure 9 represents the distribution of the zeroth
diffraction order as a result of superposition of fields K1 and K2

with taking into account the shift of beams inside of the crystal.
The angle of the polarizer A2 was taken equal to 45°. As before,
diffraction occurs on a “slow” acoustic wave, but the frequency
was 9 MHz. The angular size of field is 10° × 10°. As in the
previous case, the field represents a family of circles. The do-
main is marked out by square, which, according to our analysis,
is suitable to obtain the 2D contour of the image. The mask of
Fig. 9 results in FFT processing of images, which are similar to
the cases shown in Fig. 3. The results of the experiment are
shown in Fig. 10 where the photographs of the rectangular hole
after experimental optical Fourier processing are presented. The
picture above is the image observing on the output screen
without an acoustic wave, and the picture below is when the
acoustic power turns on. In the middle of low picture, the
zeroth diffraction order is shown; on the right and left sides
�1 and −1 orders are shown. The voltage applied to the trans-
ducer was 3.9 V and frequency of acoustic wave 9 MHz. It can
be seen that image contour of the zeroth order has very good
quality. Hence, the proposed case of diffraction can be success-
fully used for image edge enhancement processing.

It should be noted that similar investigations were made
with the use of two transfer functions for the Fourier processing
[16,51–54]. However, in these investigations, light crosses two
different acoustic fields. In our case, the light crosses only one
field. The final result depends only on AO process peculiarities
and on the properties of AO media and not on the number of

acoustic fields. The use of a single AO cell instead of several
offers a lot of advantages: the absence of inter-modulation proc-
esses, a minimum of light loses due to scattering or reflection of
light from crystal faces, minimal cell dimensions and supplied
electrical power, etc.

4. CONCLUSION

AO image processing is determined by the transfer function of
AO interaction. In this paper, we have examined a new
approach for formation of the transfer function based on the
superposition of two AO fields with similar and orthogonal po-
larizations. For example, the case when the fields have similar
polarization takes place for multi-phonon Bragg diffraction. In
common cases, the superposition of the fields with different
amplitude and phase distributions leads to a very inhomo-
geneous field; some domains of the field possess 2D properties.
The position and configuration of domains can be changed
by a variation of acoustic frequency and power. In this paper,
we have described the transfer functions forming in the
“intermediate” diffraction orders. But this process is possible
in the zeroth and highest order as well. It is caused by influence
of the fields of “neighbor’s” orders with inhomogeneous
distributions.

A case when transfer function is formed as a superposition of
two AO fields with orthogonal polarizations takes place, for
example, in the process simultaneous diffraction of two
eigenmodes of crystal on a single acoustic wave. Two versions
of such diffraction when diffracted beams propagate on one side
and on both sides in respect to the incident beam are proposed
and investigated.

It should be noted that not every domain with the inhomo-
geneous field distribution is proper for the 2D processing and
therefore has to be checked by FFT processing. In our study, we
carried out this procedure for each domain and selected only
the domains with the desired properties. All obtained theoreti-
cal results were confirmed experimentally.

Generally speaking, the AO transfer functions can be
formed by other methods; for instance, considering two-
dimensional AO diffraction or AO diffraction on several acous-
tic waves. But the advantage of our approach is the use of

Fig. 9. Transfer function of the zeroth diffraction order. Beams
diffract on the different sides in respect to the incident light.

Fig. 10. Photographs of rectangular hole after experimental Fourier
processing. Above: image without acoustic power; below: acoustic
power turns on.
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one-dimensional AO diffraction equations on the base of single
acoustic wave for the calculation of two-dimensional AO
transfer functions.

Though the theory of proposed cases is more complicated in
comparison with the “common” Bragg diffraction into one
order, the experimental realization of these versions is no more
intricate at all.
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